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PREFACE

There are several reasons for studying approximation theory and
methods, ranging from a need to represent functions in computer cal-
culations to an interest in the mathematics of the subject. Although
approximation algorithms are used throughout the sciences and in many
industrial and commercial fields, some of the theory has become highly
specialized and abstract. Work in numerical analysis and in mathematical
software is one of the main links between these two extremes, for its
purpose is to provide computer users with efficient programs for general
approximation calculations, in order that useful advances in the subject
can be applied. This book presents the view of a numerical analyst, who
enjoys the theory, and who is keenly interested in its importance to
practical computer calculations. It is based on a course of twenty-four
lectures, given to third-year mathematics undergraduates at the Uni-
versity of Cambridge. There is really far too much material for such a
course, but it is possible to speak coherently on each chapter for about
one hour, and to include proofs of most of the main theorems. The pre-
requisites are an introduction to linear spaces and operators and an inter-
mediate course on analysis, but complex variable theory is not required.

Spline functions have transformed approximation techniques and
theory during the last fifteen years. Not only are they convenient and
suitable for computer calculations, but also they provide optimal
theoretical solutions to the estimation of functions from limited data.
Therefore seven chapters are given to spline approximations. The classi-
cal theory of best approximations from linear spaces with respect to the
minimax, least squares and L;-norms is also studied, and algorithms are
described and analysed for the calculation of these approximations.
Interpolation is considered also, and the accuracy of interpolation and
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other linear operators is related to the accuracy of optimal algorithms.
Special attention is given to polynomial functions, and there is one
chapter on rational functions, but, due to the constraints of twenty-four
lectures, the approximation of functions of several variables is not
included. Also there are no computer listings, and little attention is given
to the consequences of the rounding errors of computer arithmetic. All
theorems are proved, and the reader will find that the subject provides a
wide range of techniques of proof. Some material is included in order to
demonstrate these techniques, for example the analysis of the con-
vergence of the exchange algorithm for calculating the best minimax
approximation to a continuous function. Several of the proofs are new. In
particular, the uniform boundedness theorem is established in a way that
does not require any ideas that are more advanced than Cauchy
sequences and completeness. Less functional analysis is used than in
other books on approximation theory, and normally functions are
assumed to be continuous, in order to simplify the presentation. Exercises
are included with each chapter which support and extend the text. All
references to related work are given in an appendix.

It is a pleasure to acknowledge the excellent opportunities I have
received for research and study in the Department of Applied Mathema-
tics and Theoretical Physics at the University of Cambridge since 1976,
and before that at the Atomic Energy Research Establishment, Harwell.
My interest in approximation theory began at Harwell, stimulated by the
enthusiasm of Alan Curtis, and strengthened by Pat Gaffney, who
developed some of the theory that is reported in Chapter 24. I began to
write this book in the summer of 1978 at the University of Victoria,
Canada, and I am grateful for the facilities of their Department of
Mathematics, for the encouragement of Ian Barrodale and Frank
Roberts, and for financial support from grants A5251 and A7143 of the
National Research Council of Canada. At Cambridge David Carter of
King’s College kindly studied drafts of the chapters and offered helpful
comments. The manuscript was typed most expertly by Judy Roberts,
Hazel Felton, Margaret Harrison and Paula Lister. I wish to express
special thanks to Hazel for her assistance and patience when I was
redrafting the text. My wife, Caroline, not only showed sympathetic
understanding at home during the time when I worked long hours to
complete the manuscript, but also she assisted with the figures. This work
is dedicated to Caroline.

Pembroke College, Cambridge M. J. D. POWELL
January 1980



1

The approximation problem and existence of
best approximations

1.1 Examples of approximation problems

A simple example of an approximation problem is to draw a
straight line that fits the curve shown in Figure 1.1. Alternatively we may
require a straight line fit to the data shown in Figure 1.2. Three possible
fits to the discrete data are shown in Figure 1.3, and it seems that lines B
and C are better than line A. Whether B or C is preferable depends on
our confidence in the highest data point, and to choose between the two
straight lines we require a measure of the quality of the trial approxima-
tions. These examples show the three main ingredients of an approxima-
tion calculation, which are as follows: (1) A function, or some data, or

Figure 1.1. A function to be approximated.
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Figure 1.2. Some data to be approximated.

X

Figure 1.3. Three straight-line fits to the data of Figure 1.2.
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Approximation in a metric space 3

more generally a member of a set, that is to be approximated. We call it f.
(2) A set, o say, of approximations, which in the case of the given
examples is the set of all straight lines. (3) A means of selecting an
approximation from /.

Approximation problems of this type arise frequently. For instance we
may estimate the solution of a differential equation by a function of a
certain simple form that depends on adjustable parameters, where the
measure of goodness of the approximation is a scalar quantity that is
derived from the residual that occurs when the approximating function is
substituted into the differential equation. Another example comes from
the choice of components in electrical circuits. The function f may be the
required response from the circuit, and the range of available
components gives a set & of attainable responses. We have to approxi-
mate f by a member of &/, and we require a criterion that selects suitable
components. Moreover, in computer calculations of mathematical
functions, the mathematical function is usually approximated by one that
is easy to compute.

Many closely related questions are of interest also. Given f and &, we
may wish to know whether any member of & satisfies a fixed tolerance
condition, and, if suitable approximations exist, we may be willing to
accept any one. It is often useful to develop methods for selecting a
member of & such that the error of the chosen approximation is always
within a certain factor of the least error that can be achieved. It may be
possible to increase the size of & if necessary, for example & may be a
linear space of polynomials of any fixed degree, and we may wish to
predict the improvement in the best approximation that comes from
enlarging & by increasing the degree. At the planning stage of a numeri-
cal method we may know only that f will be a member of a set 3, in which
case it is relevant to discover how well any member of 9% can be
approximated from . Further, given 2, it may be valuable to compare
the suitability of two different sets of approximating functions, &, and
1. Numerical methods for the calculation of approximating functions
are required. This book presents much of the basic theory and algorithms
that are relevant to these questions, and the material is selected and
described in a way that is intended to help the reader to develop suitable
techniques for himself.

1.2 Approximation in a metric space
The framework of metric spaces provides a general way of
measuring the goodness of an approximation, because one of the basic
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properties of a metric space is that it has a distance function. Specifically,
the distance function d(x, y) of a metric space 4 is a real-valued function,
that is defined for all pairs of points (x, y) in %, and that has the following
properties. If x # y, then d(x, y) is positive and is equal to d(y, x). If x =y,
then the value of d(x, y) is zero. The triangle inequality

d(x,y)<d(x, z)+d(z,y) (1.1)
must hold, where x, y and z are any three points in .
In most approximation problems there exists a suitable metric space

that contains both f and the set of approximations /. Then it is natural to
decide that aq € o is a better approximation than a, € & if the inequality

d(ao, f)<d(ai,f) (1.2)
is satisfied. We define a* € o to be a best approximation if the condition
d(a*,f)<d(a,f) (1.3)

holds for all a € .

The metric space should be chosen so that it provides a measure of the
error of each trial approximation. For example, in the problem of fitting
the data of Figure 1.2 by a straight line, we approximate a set of points
{(xi, yi);i=1,2,3,4,5} by a function of the form

p(x)=co+tcix, (1.4)
where ¢o and c; are scalar coefficients. Because we are interested in only
five values of x, the most convenient space is &°. The fact that p(x)
depends on two parameters is not relevant to the choice of metric space.
We measure the goodness of the approximation (1.4) as the distance,
according to the metric we have chosen, from the vector of function
values {p(x;); i=1, 2, 3, 4, 5} to the data values {y;; i =1, 2, 3, 4, 5}.

It may be important to know whether or not a best approximation
exists. One reason is that many methods of calculation are derived from
properties that are obtained by a best approximation. The following
theorem shows existence in the case when & is compact.

Theorem 1.1

If o is a compact set in a metric space %, then, for every f in %,
there exists an element a* € &, such that condition (1.3) holds for all
acd.

Proof. Let d* be the quantity
d*= inéfd d(a, f). (1.5)
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If there exists a* in & such that this bound on the distance is achieved,
then there is nothing to prove. Otherwise there is a sequence {a;; i =
1,2,...} of points in & which gives the limit

lim d(a;, f) = d*. (1.6)

By compactness the sequence has at least one limit point in &, a™ say.
Expression (1.6) and the definition of a* imply that, for any € >0, there
exists an integer k such that the inequalities

d(aw, f)<d*+3¢ (1.7)
and

d(aw, a*)<7e (1.8)
are obtained. Hence the triangle inequality (1.1) provides the bound

da*,f)<d(a",ax)+d(ay,f)
<d*+e. (1.9)

Because ¢ can be arbitrarily small, the distance d(a”, f) is not greater
than d*. Therefore a” is a best approximation. [

When & is not compact it is easy to find examples to show that best
approximations may not exist. For instance, let B be the Euclidean space
#* and let o be the set of points that are strictly inside the unit circle.
There is no best approximation to any point of @ that is outside or on the
unit circle.

1.3 Approximation in a normed linear space

The properties of metric spaces are not sufficiently strong for
most of our work, so it is assumed that &f and f are contained in a normed
linear space, which we call 2 also when we want to refer to it. The norm is
a real-valued function ||x|| that is defined for all x € 9. Its properties are
such that the function

d(x,y)=llx -yl (1.10)

is suitable as a distance function. Therefore, by letting z be zero in
expression (1.1) and by reversing the sign of y, we may deduce the triangle
inequality

llx +yll<llxll+l yll (1.11)
Moreover, the norm must satisfy the homogeneity condition
axli=[A] llel (1.12)

for all x € B and for all scalars A.



The approximation problem 6

The specialization from metric spaces to normed linear spaces does not
exclude any of the approximation problems that we will consider. There-
fore mostly we use the distance function (1.10). It occurs naturally in the
approximation calculations that are of practical interest, and it allows the
existence of a best approximation to be proved when & is a linear space.

Theorem 1.2

If &/ is a finite-dimensional linear space in a normed linear space
A, then, for every fe 9B, there exists an element of & that is a best
approximation from & to f.

Proof. Let the subset &, contain the elements of &/ that satisfy the
condition

lall=<2[lf. (1.13)

It is compact because it is a closed and bounded subset of a finite-
dimensional space. It is not empty: for example it contains the zero
element. Therefore, by Theorem 1.1, there is a best approximation from
o to f which we call a§. By definition the inequality

la —fll=llad —fl.  aest, (1.14)

holds. Alternatively, if the element a is in & but is not in &, then, because
condition (1.13) is not obtained we have the bound

la —fl=llall-1l
>|ifl
=|lag —fl, (1.15)

where the last line makes further use of the fact that the zero element is in
Ao. Hence expression (1.14) is satisfied for all a in &, which proves that
ad is a best approximation. O

1.4 The L,-norms
In most of the approximation problems that we consider, f and &/
are in the space %[a b], which is the set of continuous real-valued
functions that are defined on the interval [a, b] of the real line. Occasion-
ally we turn to discrete problems, where f and & are in #"™, which is the
set of real m-component vectors. Both of these spaces are linear and we
have a choice of norms.
We study the three norms that are used most frequently, namely the
L,-norms in the cases when p =1, 2 and co. For finite p the L,-norm in
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%[a, b] is defined to have the value

b 1/p

=[] 1rer ax] ", 1<p<e, (1.16)
and in #™ it has the value

o=[E1nr] " 1<p<m, L.17)
where{y;;i=1,2,..., m}are the components of f. The c0-norms are the
expressions

1flo = max, |f(x)| (1.18)
and

Ifllo = max |y (1.19)
respectively.

There are excellent reasons for giving our attention to the 1-, 2- and
co-norms. The 1-norm is the least used of the three, but it has one
remarkable property that makes it highly suitable for fitting to discrete
data in the case when it is possible that there may be some gross errors in
the data due to blunders. It is that the magnitude of a blunder makes no
difference to the final approximation. This statement will be made clear in
Chapter 14. Further, we find later that an understanding of the conditions
that are obtained by best approximations in the 1-norm is necessary to
analyse some error expressions that occur in the approximation of
functionals.

The 2-norm, or perhaps a weighted 2-norm of the form

||fl|z=“b w ()| f(o)? dxr, (1.20)

a

where w is a fixed positive function, occurs naturally in theoretical
studies of Hilbert spaces. The practical reasons for considering the
2-norm are even stronger. Statistical considerations show that it is the
most appropriate choice for data fitting when the errors in the data have a
normal distribution. Moreover, when & is a linear space, the calculation
of the best approximation in the 2-norm reduces to a system of linear
equations, which allows highly efficient algorithms to be developed.
Often the 2-norm is preferred because it is known that the best approxi-
mation calculation is straightforward to solve.

The co-norm provides the foundation of much of approximation
theory, for our next theorem shows that, if we succeed in finding an
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approximation a € & such that the co0-norm distance function d(f, a) is
small, then the 2-norm and 1-norm distance functions are small also.
However, an example that follows the theorem shows that the converse
statement may not be true. A practical reason for using the co-norm is
that, when in computer calculations a complicated mathematical
function, f say, is estimated by one that is easy to calculate, p say, thenitis
usually necessary to ensure that the greatest value of the error function
{If(x)—p(x)|; a<x<b} is less than a fixed amount, which is just the
required accuracy of the approximation. In other words we have a
condition on the norm ||f — p||w.

Theorem 1.3
For all e in €[a, b] the inequalities
llell: < (& —a)lell. < (b —a)llello (1.21)

hold.

Proof. The Cauchy-Schwarz inequality provides the bound

b
lelh = [ "leol 1] dx

< [Lb le(x)? dx] %[Lb dx]%
=(b-a)ell, (1.22)

which is the first part of the required result. Moreover, by replacing an
integrand by its maximum value, we obtain the inequality

el = j el dx]

b ;
s[I el dx]

= (b - a)?e|lw, (1.23)

which completes the proof of the theorem. 0

Itis interesting to consider the statement of Theorem 1.3, when e is the
error in approximating the constant function {f(x)=1;0<x=<1} by
{x*;0=<x =<1}, where A is a positive parameter. Straightforward cal-
culation shows that the norms have the values

lelli =A/(A +1), (1.24)
lell. = [2A%/( + 1)(2A + DT, (1.25)
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and
lello=1. (1.26)

We see that, if A becomes arbitrarily small, then |e|); and |le|, tend to
zero, but ||e|l. remains at one. Hence it is not always possible to reduce the
co-norm of an error function by making small its 2-norm or its 1-norm. In
order to develop algorithms that give approximations with small errors in
the 1-, 2- and co-norms, we just have to ensure that the algorithm is
suitable for the co-norm.

The co-norm is sometimes called the uniform or minimax norm, and
the 2-norm is sometimes called the least squares or Euclidean norm.

1.5 A geometric view of best approximations

In the case when f and & are contained in a normed linear space
A, and when we require a best approximation from & to f, it is sometimes
helpful to think of the balls of different radii whose centres are at f. The
ball of radius r is defined to be the set

N(f,={g: llg—fl<r, g B}. (1.27)
It follows that, if r; > ro, then (£, ro) = N'(f, r1). Hence, if f¢ of, and if r is
allowed to increase from zero there exists a scalar, r* say, such that, for
r>r*, there are points of & that are in N(f,r), but, for r<r*, the
intersection of A'(f,r) and & is empty. The value of r* is equal to
expression (1.5), and we know from Theorem 1.2 that, if &f is a finite-
dimensional linear space, then the equation

r*= int |If ~al|=|f - a*| (1.28)

is obtained for a point a* in &.

For example, suppose that & is the two-dimensional Euclidean space
®°, and that we are using the 2-norm. Let f be the point whose
components are (2, 1), and let &/ be the linear space of vectors

A={A,A); —0< A <0}, (1.29)
where A is a real parameter. Figure 1.4 shows the set &f and the three
balls, centre f, whose radii are %, J % and 1. If we imagine that the value of r
is allowed to increase from zero, we see that the best approximation is the
point where the ball of radius «/% touches 4.

The shapes of balls in two-dimensional space for the 1-, 2- and
co-norms are interesting, because they indicate some of the implications
of the choice of norm. The boundaries of the three unit balls centred on
the origin are shown in Figure 1.5. We note that, if the 2-norm is replaced
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Figure 1.4. An approximation problem in %2>
&

Figure 1.5. The unit balls of the 1-, 2- and co-norms.
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by the 1-norm in Figure 1.4, and if the radius of the ball centred at f is
again allowed to increase from zero, then we find that many points of &/
are best approximations to f. The question of the uniqueness of best
approximations is considered in the next chapter.

1.1

1.2

1.3

1.4

1.5

1.6

1 Exercises

Let o, be a compact set and &/, be a finite-dimensional linear
space in a normed linear space 9. Prove that there exists a$ in
o and a¥ in &, such that the inequality

||a3‘ _a”s”ao_‘h”, ao € Ao, a, €,

is satisfied.

Let & be the set of bounded regions in two-dimensional space,
whose shapes can be cut from a piece of flat card. For any pair of
elements {x, y} of %, let the number d(x, y) be the area of the
union of x and y minus the area of the intersection of x and y.
Show that d(x, y) satisfies the axioms of a distance function. Let
o be the set of triangular regions in two-dimensional space.
Prove that every element of % has a best approximation in &
with respect to the distance function d(x, y).

Let of be the set of straight lines in three-dimensional Euclidean
space ®°. For any point x in &> and for anyline a in &, let d(x, a)
be the Euclidean distance from the point to the line. Let ¥ be a
set that contains a finite number of points of 3, Prove that there
exists an element a* in & that satisfies the inequality

max d(a*, s)<maxd(a, s), aecd.
se¥ se&

Prove that expression (1.16) satisfies the axioms of a norm in
%l[a, b], when p=1,2 and 4.

Let &/ be the set of real continuous functions on the interval
[a, b] that are composed of straight line segments. Hence & is a
subspace of €[a, b]. Prove that, for any f in €[a, b] and for any
positive number ¢, there exists an element a in & such that
|lf — all~ is less than e, where the co-norm is defined by equation
(1.18). It follows that in general there is not a best approximation
from o to f with respect to the co-norm.

Let ||fll; and ||f]. be the 1-norm and 2-norm respectively of a
function f in ¢[a, b]. Construct an example to show that the ratio
Ifll2/llfl can be arbitrarily large.
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1.8

1.9

1.10

The approximation problem 12

What point of the plane 3x +2y + z —6 = 0 in three-dimensional
space is closest to the origin when distance is measured by each of
the following three norms: (1) the 1-norm, (ii) the 2-norm, and
(iii) the co-norm.

The set & is composed of the functions f in €[0, 1] that have the
form

f(x)=(co+c1x)/(c2+c3x), Osx=<l1,

where cq, ¢1, c2 and cs; are real coeflicients such that the
denominator {c; +c3x; 0=<x =<1} is strictly positive. Let & be a
set of points from [0, 1], and let f be a function in €[0, 1]. Show

that sometimes there is no element a* in &/ that satisfies the
condition

max |f(x)—a*(x)|<max|f(x)-a(x), aed

Let of be the set that is defined in Exercise 1.8. Prove that every
function f in €[0, 1] has a best approximation in &, with respect
to the co-norm distance function.

Let & be a finite-dimensional linear subspace of €[0, 1], let f be
any function from %[0, 1], and, for all positive integers p, let a,
be an element of & that minimizes the p-norm

Ir-ale=[[ Vico-atoras] . acat

Investigate whether the sequence of functions {a,;p=
1,2, 3,.. }converges to a function that is the best approximation
from & to f with respect to the co-norm. This sequence gives
‘Polya’s algorithm’.



2

The uniqueness of best approximations

2.1 Convexity conditions

In order to approximate a point or a function f by an element of a
set &, it is usual to choose conditions that define a particular approxima-
tion. Best approximation with respect to an appropriate distance function
is often suitable, but sometimes there are several best approximations.
Some general conditions for uniqueness are given in this chapter, that
depend on the convexity of the distance function and the convexity of the
set o. Hence it is shown that in many important cases the best approxi-
mation is unique, including best approximation with respect to the
2-norm when & is a linear space. We find, however, that, if the 1-norm or
co-norm is used, then stronger conditions are required on & in order to
ensure uniqueness.

The set & of a linear space is convex if, for all s and s, in &, the points
{650+ (1—6)s1; 0< 6 <1} are also in &. The set is strictly convex if, for all
So # 51, the points {#so + (1 — 6)s,; 0 < 6 < 1} are interior points of . Thus,
it is not possible for the boundary of a strictly convex set to contain a
segment of a straight line. The nature of the ideas that are studied in this
chapter is suggested by considering the uniqueness of the best approxi-
mation if the circles in Figure 1.4 are replaced by balls that are derived
from some other norm. Our next theorem shows that these balls are
convex sets.

Theorem 2.1
Let %3 be a normed linear space. Then, for any f € # and for any
r>0, the ball

NE=k:lx—flsr,xeRB} (2.1
is convex.
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Proof. Let xo and x; be in /(f, r). Then the axioms of a norm and the
definition (2.1) give the bound

ll6xo+ (1~ 8)x1 — fll<l|6x0— 6fll+ /(1 — 6)x1 — (1 - 6)f]]
=16|llxo—fll+1 = 6| llx: — £l
<r{lo|+]1-6]}
=r0<6<1, (2.2)

which is the required convexity condition. [

It is now easy to prove one of the basic properties of best approxima-
tions, which depends on the convexity of the set of approximating
functions. This convexity condition holds, of course, when & is a linear
space.

Theorem 2.2

Let of be a convex setin a normed linear space %, and let f be any
point of 9 such that there exists a best approximation from & to f. Then
the set of best approximations is convex.

Proof. Let h* be the error of the best approximation

h* =min ||la —f]. (2.3)
acsA
The set of best approximations is the intersection of & and the ball
N(f, h*). The theorem follows from the fact that the intersection of two
convex sets is convex. [

The uniqueness theorems of the next section require either & or the
norm of the linear space 2 to be strictly convex. The norm is defined to be
strictly convex if and only if the unit ball centred on the origin, namely
N(0, 1), is strictly convex. Because the general ball (2.1) can be obtained
from A'(0, 1) by translation and magnification, strict convexity of the
norm implies that the set (2.1) is strictly convex for any f and r.

2.2 Conditions for uniqueness of the best approximation

The two uniqueness theorems that are given below are self-
evident if one takes the geometric view of best approximation that is
described in Section 1.5. We recall that a ball with centre f is allowed to
grow until it touches the set & of approximating functions, and then the
radius of the ball has the value (2.3). The two theorems state that there is
only one point of contact between & and N'(f, h*), if the boundary of
either of or ¥(f, h*) is curved, and if both sets are convex.
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Theorem 2.3
Let & be a compact and strictly convex set in a normed linear
space 2. Then, for all f € %, there is just one best approximation from &/

to f.

Proof. Theorem 1.1 shows that there is a best approximation. We
continue to let £* be the error (2.3). Suppose that s, and s; are different
best approximations from & to f. Because the triangle inequality for
norms gives the condition

I2(s0+ 1) — Al =<2llso — fll+3lls1 — 11l (2.4)

and because & is convex, it follows that %(s0+sl) is also a best approxi-
mation, and therefore it satisfies the equation

3(so+s1)—fll=h*. (2.5)
Welet A be the largest number in the interval 0 < A < 1 such that the point
s =3(so+s1)+ALf —3(s0+51)] (2.6)

is in &. The value of A is well-defined because & is compact. Expressions
(2.5) and (2.6) imply the equation

s —fll=(1—A)n*. (2.7)

However, h* is positive because otherwise so=f =s;, and A is positive
because the strict convexity of & implies that 3(so + 51) is an interior point
of . It therefore follows from equation (2.7) that |is — f|l is less than A*.
This contradiction proves the theorem. 0

Theorem 2.4

Let o be a convex set in a normed linear space %, whose norm is
strictly convex. Then, for all f € 93, there is at most one best approxima-
tion from & to f.

Proof. Suppose that s and s, are different best approximations from &
to f. Because the strict convexity of the norm implies that the set /(f, h*)
is strictly convex, the point 3(so+ s1) is an interior point of ¥ (f, h*), which
is the condition

||%(So+51)_f||<h*- (2.8)
This is a contradiction, however, because 3(so + s1) € &. The theorem is
proved. 0

Theorem 2.4 is much more useful to us than Theorem 2.3, because our
sets of approximating functions are finite-dimensional linear subspaces.
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Therefore it is important to know whether the norm of & is strictly
convex. It is proved in Section 2.4 that the 2-norms in €[a, b] and in R"
are strictly convex, but that the 1- and co-norms are not. In fact all the
p-norms are strictly convex for 1 <p <oo.

2.3 The continuity of best approximation operators

When there is a unique best approximation from &f to f for all
fe B, we can regard the best approximation as a function of f. Hence
there is a best approximation operator from 2 to &, which we call X, and
which, incidentally, must be a projection. It is shown in this section that
often the operator X is continuous. This result is important to computer
calculations, because, if it does not hold, then the effect of computer
rounding errors in the definition of f may cause substantial changes to the
calculated approximation.

Theorem 2.5

Let & be a compact set in a metric space %, such that for every f
in B there is only one best approximation in &, X (f) say. Then the
operator X, defined by the best approximation condition, is continuous.

Proof. If the theorem is false, there exists a sequence of points {f;; i =
1,2,3,...} in & that converges to a limit, f say, such that the sequence
{X(f); i=1,2,3,...} in A fails to converge to X (f). Therefore, by
compactness, the second sequence has a limit point, a* say, that is in &/
but that is not equal to X (f). It suffices to show that both a* and X (f) are
best approximations to f, for then we have a contradiction that proves the
theorem.

Therefore we consider the distance d(a*, f), and, by applying the
triangle inequality (1.1) twice, we deduce the bound

d(a*, fy=d(a*, X(f)) +d(X(f), fi) +d(fs f). (2.9)

Moreover, the definition of X (f;) gives the relation

d(X(f), f)=d(X(f), f)
<d(X(f),H+d(f, f), (2.10)

where the last line makes use of the triangle inequality again. Now, for
any ¢ >0, there exists i such that the conditions

d(a*, X(f))<3ie (2.11)
and
d(f, f)<3e (2.12)
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hold. It follows from expressions (2.9) and (2.10) that the bound
d(a*,f)<dX(f),f)+e (2.13)

is obtained. Since ¢ can be arbitrarily small, a* is a best approximation
from & to f, which is the required contradiction. 0

By applying the technique that is used in the proof of Theorem 1.2, it
can be shown that the following theorem is true also. The proof is left as
an exercise.

Theorem 2.6
If o is a finite-dimensional linear space in a normed linear space
A, such that for every f in @B there is only one best approximation in &,
X(f) say, then the operator X, defined by the best approximation
condition, is continuous. [
The last theorem is directly relevant to the approximation problems
that are studied in later chapters. Note that it provides additional
motivation for giving attention to the uniqueness of best approximations.

2.4 The 1-, 2- and co-norms

The method that we use to prove that the 2-norm is strictly
convex in €[a, b] and &" makes use of scalar products. It is well known
that the scalar product of y and z in R" has the value

(y,2)= gl YiZis (2.14)

and in €[a, b] the scalar product of the functions f and g is the expression

b
(f. g) = j f(x)g(x) dx. (2.15)

It is important to note that (f, f) is equal to ||f|3. Further, the identity
IiF+gllz =IFIZ +2(£, &) +ligll2 (2.16)

is obtained, either when f and g are in €[a, b], or when they are in Z". In
fact it holds for all Hilbert spaces, but, if the reader has not met Hilbert
spaces before, it is sufficient for him to recognise that equation (2.16) is
valid both for €¢[d, b] and for Z". We note also that the scalar product
(f, g) is linear in f and in g.

Theorem 2.7
The 2-norm of the linear space 2 is strictly convex when 4 is
either €[a, b]or R".
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Proof. We let f and g be any two distinct points of 9% such that
Ifll = llgll2= 1. It is sufficient to prove that the bound
lof +(1-6)gll.<1 2.17)
is satisfied for all 0 < @ <1. The identity
llof + (1 - 6)gllz+6(1 - )lIf —gll2
=6"+20(1-6)(f, g)+(1—6)*+6(1—0)[1-2(f, g)+1]
=1, (2.18)
which holds for all values of 6, gives the required inequality (2.17). 0
It has been stated already that the 1- and c0-norms in €[a, b]landin #"
are not strictly convex, and now this statement is proved. We also wish to
find out whether best approximations from linear subspaces are always
unique. If we prove first that the norms are not strictly convex, then
Theorem 2.4 does not answer the uniqueness question. If instead,
however, we can demonstrate that a best approximation from a linear
subspace of a normed linear space is not unique, then we may deduce
from Theorem 2.4 that the norm is not strictly convex. We give examples
of this kind. In each one there is a linear subspace & and a point f such
that the best approximation from & to f is not unique, where & and f are
contained in either %[a, b] or in ", and where the accuracy of the
approximation is measured either by the 1-norm or by the co-norm.
When the 1-normis used in €[ —1, 1], we let f be the constant function
whose value is one, and we let & be the one-dimensional linear space that
contains all functions of the form

a(x):Ax, —1$x$1, (2'19)
where A is a parameter. It is straightforward to derive the equation

minj lf(x)—a(x)| dx=2, (2.20)
aed J-1

and to show that the minimum value is obtained when A is in the range
—1=<A\ =<1. Hence the best approximation is not unique.

This example for the 1-norm is extended to R" (n =2) by dividing the
interval [—1, 1] by the points —1=x;<x,<...<x,=1, which are
equally spaced

x;+1—x;=2/(n—l), i=1,2,...,n—1. (2.21)

We evaluate the function f that we had before at these points to give a
vector fe R". Moreover, corresponding to equation (2.19), we let a e
A< R" be the vector whose components have the values

a; = Ax;, i= 1, 2, I (Y (222)
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where A is still a parameter. Now, instead of equation (2.20), we find the
expression

min Y |fi—a:|=n, 2.23)

acd i=1
and again the minimum value is obtained for all values of A in the range
-1=sAi=1.
For the co-norm in €[ —1, 1], we again let f be the constant function

whose value is one, but now we let o be the one-dimensional linear space
that contains functions of the form

a(x)=A(1+x), —-1=sx=1. (2.24)
We deduce the equation

min |[f—allx=1, (2.25)

acd

and we find that the function (2.24) is a best approximation if and only if A
satisfies the condition

O<sA=<l. (2.26)

Hence we have non-uniqueness once more. We extend the example to R"
in the way described in the previous paragraph. The componentsof fe #"
are the same as before, but, because of equation (2.24), the components
of a € o have the values

ai=A(1+x), i=1,2,...,n, 2.27)
instead of the values (2.22). The range of values of A that give a best
approximation from & to f is still the range (2.26).

The reader is advised to draw figures that show the non-uniqueness of
the best approximation in these four examples. It should be noted also
that the examples illustrate the usefulness of Theorem 2.2.

In many important cases, in particular when the normed linear space is
€[a, b], when the norm is either the 1-norm or the c0-norm, and when &
is the space 2, of algebraic polynomials of degree at most », then the best
approximation is unique for all f in €¢[a, ). This statement is proved
later. The purpose of the examples, therefore, is to show that, if &/ is a
linear subspace of a normed linear space, whose norm is not strictly

convex, then the uniqueness of best approximations depends on proper-
ties of & and f.

2 Exercises
2.1 Let of be a closed, bounded convex set of a linear space %, such
that the zero element is an interior point of &, and such that if
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fesf then —fesf. Show that the following definition of |lf||
satisfies the axioms of a norm. If f is the zero element we let
|fll= 0, and otherwise we let ||f|| be the smallest positive number
such that f/||f]| is in the set .

Prove Theorem 2.6.

Prove that the norm

e=[ [ rcor . fedtan)

is strictly convex.

Let o be the set {a: |lall, <1} in the two-dimensional space %7,
but let the co-norm be used as a distance function. Draw a
diagram to show the best approximation in & to a general point
in 7. Verify that the best approximation operator from % to &
is continuous.

Let & be a linear space that has a strictly convex norm, and that is
such that the unit ball & ={a: ||a||=< 1} is compact. For any f € 3,
let X (f) be the best approximation from & to f. Show that, if
Ifll> 1, then X (f) is the point f/||f|l. Hence prove that the opera-
tor X satisfies the continuity condition

X (f1) — X (f)I=<2|lf1 — f2lls

where f; and f, are any two points of 2.

By considering the approximation of the function {f(x)=x;
— 7 <x < 7} by amultiple of {sin® x; — 7 < x < 7}, show that the
norm

M=[ Fwlde+ max Yol fed-mm)
is not strictly convex.

Let the set of in €[ — 1, 1] contain the continuous functions that
are each composed of one or two straight line segments. Show
that there is more than one best approximation from & to the
function {f(x) = x>; —1=<x <1}, with respect to the co-norm.
Find a plane in & that has several closest points to the origin
with respect to the 1-norm, and that also has several closest
points to the origin with respect to the co-norm.

Investigate the following hypothesis. If & is a compact set in a
normed linear space %, and if & is not convex, then there exists a
point f in & that has more than one best approximation in .
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Let &/ be a compact and strictly convex set in a normed linear
space %. For any a in «, let #(a) be the set of points in B such
that s is in $(a) if and only if a is the best approximation from ¢

to s. Investigate general conditions that ensure that the set ¥(a)
is convex.



3

Approximation operators and some
approximating functions

3.1 Approximation operators

We continue to let & be a set of approximating functions in a
normed linear space 2. It was noted in Section 2.3 that if, for every f in %,
there is a unique best approximation from & to f, X (f) say, then we may
regard X as an operator from % to &/. We now take the more general
point of view that X is an approximation operator if it is any mapping
from & to A.

Nearly all numerical methods for calculating approximations are
approximation operators. It is only necessary for the method to select a
unique element of & as an approximation to any f in 8. We make this
remark because it is helpful sometimes to relate some fundamental
properties of operators to algorithms.

For example, some of the work of Chapter 17 concerns algorithms that
possess the projection property. Therefore we note that the operator X is
defined to be a projection if the equation

XX(Hl=X(), fe%, (3.1)

is satisfied. Hence a sufficient condition for X to be a projection is the
equation
X(a)=a, acH. (3.2)

Most of the approximation methods that are considered in this book do
satisfy condition (3.2), but an important exception is the Bernstein
operator, which is discussed in Chapter 6. Sometimes X (f) is written
as Xf.

The idea of alinear operator is also well known; namely, we define X to
be linear if the equation

X(Af) =2X(f) (3.3)
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holds for all f € 88, where A is any real number, and if the equation
X(f+g)=X()+X(g) (3.4)

is obtained for all fe # and for all g € 8. Usually, when X is linear and
when & is a finite-dimensional linear space, the calculation of X (f)
reduces to the solution of a system of linear equations. For example, we
find in Chapter 11 that this case occurs when X (f) is the best approxima-
tion to f with respect to the 2-norm. However, if X(f) is the best
approximation in the 1-norm or co-norm, then X is hardly ever a linear
operator.

Also we make frequent use of the norm of an approximation operator.
The norm of X is written as ||X|}, and it is the smallest real number such
that the inequality

IX(Hl=<Ix1 A (3.5)

holds for all f € 9. The notation || X||, indicates that | X|| is derived from
1 1e-

An example of an approximation operator that is useful because it is
easy to apply is as follows. Let % be the space %[0, 1] of real-valued
functions that are continuous on [0, 1], and let &f be the linear space 2, of
all real polynomials of degree at most one. Then, in order that the
calculation of an approximation to a function f in & depends on only two
function evaluations, we let p be the polynomial in & that satisfies the
interpolation conditions

p(0) =f(0)}
p(D=fD))
Thus p = X (f), where X is a linear projection operator from % to .

In order to define the norm of this operator we choose a norm for the
space €[0, 1]. However, if the 2-norm

(3.6)

ime={[ treor &), et 67

is used, we find that the operator X is unbounded, because it is possible
for ||Xf]|> to be one when ||f]), is arbitrarily small. It is therefore necessary
to prefer the co-norm

Ifle = max [f(x)l,  fe [0, 1], (3.8)

when considering approximation operators that are defined by
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interpolation conditions. In this case, because p is in #;, equation (3.6)
implies the inequality
IX(HI=1pl

=max [|p(0)], |p(1)[]

=max [| f(0)], |£(1)[]

<|fl, fe%lo,1]. (3.9)
Hence the value of | X|| is at most one. Because the function {f(x)=1; 0=
x <1} shows that ||X]| is at least one, it follows that the norm of the
approximation operator is equal to one. The norms of several other

operators are calculated later, and the work of the next section gives one
reason why they are important.

3.2 Lebesgue constants

The norm of an approximation operator is sometimes called the
Lebesgue constant of the operator. In particular this term is used when
one compares the error of a calculated approximation with the smallest
error that can be achieved. The next theorem shows that the value of the
norm is of direct relevance to this comparison.

Theorem 3.1

Let of be a finite-dimensional linear subspace of a normed linear
space %, and let X be a linear operator from % to & that satisfies the
projection condition (3.2). For any f in %, let d* be the least distance

d*=min||f-al (3.10)
from f to an element of /. Then the error of the approximation X (f)
satisfies the bound

If-X(Ol<[1+]X]1d*. (3.11)

Proof. Let p* be a best approximation from &f to f, which is shown to
exist by Theorem 1.2. The projection condition (3.2) and the linearity of
X give the equation

f=-X(NH=(-p"-X(f-p". (3.12)
It follows from the triangle inequality for norms, and from the definitions
of | X|| and p*, that the bound

If =X ON<If—p*I+IX(f—p)
<[ +IxI1if-p*

=[1+|x])a* (3.13)
is obtained, which is the required result. 0O



Polynomial approximations to differentiable functions 25

If we apply this theorem to the example given in Section 3.1, where
p = X (f) is the linear polynomial that satisfies the conditions (3.6), then
we find the bound

£ =X (Plle<2 min I~ pllo. (3.14)

Hence the maximum error of the approximation from %, to f that is

defined by the interpolation conditions (3.6) is never more than twice the

least maximum error that can be achieved. Results of this kind often show

that the extra work of calculating best approximations is not worthwhile.
If the interpolation method (3.6) is applied to the function

fx)=x>  O0=x<l, (3.15)

then the calculated approximation is the polynomial {p(x)=x;0<x=<
1}, while the approximation that minimizes the co-norm of the error is the
function {p*(x) =x —5, 0<x <1}. This example shows that expression
(3.11) can be satisfied as an equality.

One useful application of Theorem 3.1 is to the case when one requires
a polynomial approximation p to a function f in €[a, b] that satisfies the
condition

If-plo=<e, (3.16)

where ¢ is a given positive number. The degree of the polynomial is not
specified, but it should not be much larger than necessary. Let & be the
space P, of polynomials of degree at most »n, and let X be a linear
operator from ¥[a, b] to o that satisfies condition (3.2). If X(f) is
calculated, and if it is found that at a point of the range [a, b] the modulus
of the error function [ f— X (f)] is larger than [1+ || X]w]e, then it follows
from Theorem 3.1 that the degree of p must exceed n. Hence it is possible
sometimes to derive useful information about best approximations from
simple algorithms. Therefore, when we consider practical algorithms that
are linear projections, we usually give some attention to the norm of the
approximation operator.

3.3 Polynomial approximations to differentiable functions

Much of the work of this book is given to approximation by
polynomials. One could try to justify this specialization by the well-
known Weierstrass theorem. It is proved in Chapter 6, and it states that,
for any f in €[a, b] and for anv £ > 0, there exists an algebraic polynomial
p that satisfies the condition

If—plo<e. 3.17)
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Sometimes, however, the degree of p has to be so large that the poly-
nomial is not a useful approximation in practice. Therefore there are
other reasons for giving so much attention to polynomials. One is that
polynomials show nicely the properties of best approximations in the 1-,
2- and oo-norms that help the numerical methods of calculation.
Moreover, the theoretical work of the subject provides several tech-
niques of analysis that can be used sometimes in new applications. One of
these techniques is shown in this section, because it is instructive to
compare it with the use that was made of equation (3.12) in the proof of
Theorem 3.1. The result that is obtained shows that the adequacy of
polynomial approximations depends on the differentiability properties of
the function that is being approximated.

In order to give this result, we introduce some more notation, and we
accept some assertions that are proved later. We take from Chapter 7 the
statement that the bcst approximation in the c0-norm from the space 2,
to any function f in €¢[a, b]is unique. We let X, be the best approxima-
tion operator, and we define 4 (f) to be the least maximum error

di(N=f-Xa(Nlle,  fe€la,bl. (3.18)

We take from Chapter 16 the statement that there exists a constant ¢ such
that, if f is any continuously differentiable function on [a, b], then the
inequality

ax(n=()Ifle (3.19)

is satisfied for all positive integers n. We let €“’[a, 5] be the linear space
of real-valued functions on [a, b] that have continuous kth derivatives.
The result is as follows.

Theorem 3.2
Condition (3.19) implies that, if the function f is in €[, b] and
if n =k, then the distance d (f) satisfies the bound

(n— k)c

d¥ () =—f"o. (3.20)

Proof. By hypothesis, Theorem 3.2 holds when k = 1. The method of
proof is inductive. Therefore we suppose that the theorem is true when k
is replaced by (k — 1), and we prove it is true for k.
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Because n =k implies (n —1)=(k —1), we may apply the inductive.
hypothesis to the function f’, which is in €“ "[a, b], to obtain the
condition

_ k—1
T @.21)

We let g be an indefinite integral of the best approximation from #,,_; to
f'. It follows from expression (3.19) that the inequality

di(f—q)<(c/nlf —q'lo
=(c/n)d-1(f) (3.22)

is satisfied, where the last line depends on the definition of q. The result
that we use that is similar to equation (3.12) is the identity

dii(f)=

min If=pllo= min If —q = pliw, (3.23)

which holds because q is in the linear space %,. This identity is the
equation
di(f)=di(f—q). (3.24)
The proof of the theorem is a straightforward consequence of expressions
(3.21), (3.22) and (3.24). 0O
Expressions (3.19) and (3.20) are useful because, when f is a continu-
ously differentiable function from %[a, b], they provide bounds on the
rate of convergence of the sequence {X,,(f); »n =0,1,2,...} to f, where
X, is the best minimax approximation operator. It is interesting to
investigate how closely the bounds are satisfied in some particular cases.
Therefore some values of d7(f) are given in Table 3.1 for the two

functions f that are obtained by letting k have the values 1 and 3 in the
definition

fx)=x5, -l1sx=<1. (3.25)
The table suggests that, as n -0, the error ||f—X,(f)|| converges like

(1/n)*, which is the rate of convergence of the bound (3.20) when f is in

Table 3.1. Some values of d*(f) when f(x)=|x|*

n k=1 k=3
2  0.12500 0.074 07
4 0.06762 0.008 88
8 0.03469 0.001 14
16 0.017 47 0.000 14
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%“)[—1, 1]. Because the trial functions are in €“’[—1, 1], except for the
kth derivative discontinuity at x =0, Theorem 3.2 seems to be quite
realistic. This statement can be made more definite because, by applying a
technique that is described in Chapter 16, it can be proved that inequality
(3.20) is satisfied without change to the constant c, if the derivative f*isa
piecewise continuous function, provided that the number of dis-
continuities is finite.

This discussion shows that, if a very accurate approximation is required
to a function f, then usually it is not appropriate to let the approximating
function be a single polynomial, unless high derivatives of f exist. Even
when f is infinitely differentiable, then polynomial approximations may
not be suitable. One reason is that the only polynomials p(x) that remain
bounded when x - oo are constant functions. Therefore, if the function
shown in Figure 1.1 is approximated closely by a polynomial, there is a
strong natural tendency for the approximation to diverge rapidly to an
unbounded value when the variable x is outside the range [a, b]. It may be
difficult to suppress this tendency inside the range of x.

Rational approximations, therefore, are preferred to polynomials
almost exclusively in the computer subroutines that calculate standard
mathematical functions, such as sines, exponentials and arc-tangents. In
rational approximation, the set & depends on two non-negative integers
m and n, for it is composed of functions of the form

r(x)=p(x)/q(x), asx<b, (3.26)

where pe®?,, and g€ ?,. Hence & is not a linear space, and the
algorithms for obtaining rational approximations are not linear opera-
tors. Some methods of calculation are described briefly in Chapter 10.

The question whether to give further attention to rationals was con-
sidered carefully when this book was planned. Because it was decided to
concentrate on the cases when & is a finite-dimensional linear space, we
emphasise now that rational approximations are usually far superior to
polynomials, in terms of the number of coeflicients that are required in
order to provide sufficient accuracy. Further information can be found in
the references.

3.4 Piecewise polynomial approximations
Consider the problem of deciding on an approximation, s say, in
%[a, b], to a function f, given only the function values

f(xi)zyh i=1’21---1m1 (3.27)
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where the abscissae of the data are in ascending order
asx1<x<...<xp<b. (3.28)

Often a suitable approach to this problem is to imagine that the data are
plotted, and that s is defined by drawing a smooth curve through the data
points. One advantage of this method is that it allows much flexibility. For
example, if f is composed of a sequence of peaks that are separated by a
flat background, then each peak can be plotted separately. However,
suppose that instead we let s be an analytic function. Then this flexibility
is lost, because, by analytic continuation, the form of s in any part of the
range [a, b] determines the whole of the approximating function. It is
inefficient, therefore, to restrict s to a single polynomial or rational form
in approximation algorithms that are intended for general use. Instead,
most of the flexibility of the graphical method can be obtained by letting s
be a piecewise polynomial function.

An example of a piecewise polynomial approximation that occurs
frequently is linear interpolation in a table of function values. Given the
data (3.27), where x; = a and x,, = b, the function s is defined on each of

the intervals {[x;, x;+1]; i =1, 2, ..., m —1} by the equation
i + i+
s(x)=(x +1—X) f(xi) +(x —x;) f(x; 1) n<x<x.. (329
(xx+1 xl)

Hence s is composed of a sequence of straight line segments that are
joined so that s is continuous. If the smoothness of f varies greatly on
[a, b], then it is usually advantageous to concentrate the data points
where the curvature of f is large.

We define s to be a continuous piecewise polynomial of degree k, if it is

in €[a, b], and if there exist points {£&;i=0, 1, ..., n}, satisfying the
conditions
a=§0<§1<...<§n=b, (3.30)

such that s is a polynomial of degree at most k on each of the intervals
&1, &);i=1,2,. .., n}. Wedefine s to be a spline function of degree k
if, in addition to being a continuous polynomial of degree %, it is in the
space €“"V[a, b]. In this case the points {&; i =1, 2, ..., n — 1} are called
knots. We use the notation F(k, &, &1, .. ., &) for the linear space of
spline functions of degree k that have these knots. We note that each
member of the space has the form

s(x)= i cix ’+— Z di(x — &)%, asx<b, (3.31)
j=0
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where the subscript ‘+’ has the meaning
(x—sf,-)+=max [09x_§i], (332)

and where the parameters{c;; j=0,1,..., k}and{d;;j=1,2,...,n—1}
distinguish the different members of F(k, &, &1, ..., &). Hence the
dimension of the space is (n + k). We find later, however, that the form
(3.31) of a spline function is less suitable for numerical calculation than
one that is recommended in Chapter 19. When a spline is obtained from
the data (3.27) there is no need for the knots {£;; i =1,2,...,n—1}tobe
a subset of the abscissae {x;;i=1,2,...,m}.

There are several reasons for giving attention to spline functions. If one
requires an approximating function s that is in €[, 5] and that is more
flexible than an analytic function, then the simplest kind of function to
handle in computer calculations is a spline of degree (j+1). If one
requires an approximating function that is a piecewise polynomial of
degree k, then an advantage of using a spline is to provide a high order of
derivative continuity. Thus some of the freedom in s is fixed automatic-
ally, which can be important if there is a limited amount of data to
determine the approximating function. Moreover, we find in Chapters
22-24 that splines occur naturally in the analysis of many approximation
methods.

In order to keep the properties that are obtained when the set of
approximating functions is a linear space, we suppose that the parameters
kand{&;i=0,1,...,ntof Pk, &, &1, . . ., &) are given. Often in prac-
tice the value of k is three. Larger values provide more smoothness in the
approximating function, but they reduce the amount of flexibility. The
question of accuracy is also important to the choice of k. Specifically, if f is
a fixed function in €“*[a, b], and if the value of n and the distribution of
the knots is variable, then the equation

min )Ilf—s||=0(h"”) (3.33)

seF(k,£0,€15--1€n
is satisfied, where 4 is the greatest interval between knots

h = max |§i—fi—1|~ (3.34)

l<is<n

A proof of this result is given in Chapter 20. Expression (3.33), however,
conceals one of the main properties of spline approximation, which is that
it is usually advantageous to concentrate the knots where f varies most
rapidly.

Splines of degree three are called cubic splines. They are used often in
practice for approximations to functions and data, because they usually
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provide a suitable balance between flexibility and accuracy, and because
reliable algorithms are available for calculating them. Some of these
algorithms choose the knot positions automatically. One of these
methods is described in Chapter 21, and references to other algorithms
are given in Appendix B.

31

3.2

33

34

3.5

3 Exercises
Every linear operator X from " to ®" can be written in the
form

(Xfh= % %lfl,  fed”

where X is an n X n matrix, and where the notation [ f]; means
the ith component of the element f in &". Express || X||;, | Xl and
Xl in terms of the elements of X.

For any f in €[a, b], let Xf be the function

b
(X)(x) = J' K y)f(y)dy, a<x<b,

where {K(x,y);a<x<b,a<y<b} is a given continuous
function of two variables. Express || X]lo in terms of K, and
investigate whether, if | X|lo =1 and Xf =/, then f is a constant
function.
In Exercise 3.2 let [a, b] be the interval [-1, 1], and let K be the
function

K(x,y)=3(1+3xy), -—-1=sx=<1, -lsy=l.

Prove that the operator X is a projection from 6[—1, 1] to the
space ?; of linear polynomials, and that | X[l has the value 3.
For any f in €[0, 1] let Xf be the function

(XF)(x) =2 j:fm di+ (=D -fO)], O=<x=<l.

Prove that the bound

If = Xflleo <320l ~ P Il

is satisfied, where p is any approximation to f from the space %,
of linear polynomials.

Investigate whether the inequality of Exercise 3.4 can be
satisfied as an equation.
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Show that the estimate

f(3)=—3f(0)+f(1) +3f(4)

is exact if f is a quadratic polynomial. For a particular f in €¢[0, 4]
it is found that the error of the estimate is 0.15. Prove that the
inequality

min max |f(x)~p(x)|=0.05

holds.

We use the notation of Theorem 3.2. For any positive integer k

let the numbers {c(k, n); n = k} satisfy the condition

dr(N=cle,mlf e,  fe€“la,b].

Prove that, if n =2k, then the bound

dx(fy=sclk,n)ecle,n=k)f* o,  fe€*[a,b],

is obtained. Hence deduce a relation between 4 (f) and [|f**||w

from expression (3.20).

Let &/ be the set of quadratic splines in €[—1, 1] that have at

most two knots in the open interval (—1, 1), and let f be the

function {f(x)=|x|; —1<x <1}. Show that there exists s in &

such that || f — s||- is less than any given positive number, but that

no member of & satisfies the condition ||f — s}l = 0.

Let s be the cubic spline function

s(x)=x’—4(x—1)I+6(x-2)1—-4(x-3) 1 +(x-4)3,
0=x=<100.

Show that s is identically zero if x =4, but that severe cancel-

lation occurs if s(100) is evaluated from the definition of s.

Let o be the set of piecewise functions of the form

0, O=sx=\),
sA(x)={

1, A<x<1,
where A is a parameter from the interval [0, 1], and let f be a
function in %[0, 1]. Show that, if s, is a best L; approximation
from & to f, then A =0, 0r A =1, or f(A) =3. Find an f in €[0, 1]
that has exactly two best L; approximations in .
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Polynomial interpolation

4.1 The Lagrange interpolation formula
If one decides to approximate a function f € €[a, b] by a poly-

nomial
px)= Y cx’, asx<}, 4.1)
i=0
one has the problem of specifying the coefficients {c;;i=0,1,...,n}.

The most straightforward method is to calculate the value of f at (n +1)
distinct points {x;;i =0, 1, ..., n} of [a, b], and to satisfy the equations
p(xi)=f(x;), i=0,1,...,n 4.2)
We note that there are as many conditions as coefficients, and the
following theorem shows that they determine p € 2,, uniquely.

Theorem 4.1

Let {x;;i=0,1,...,n} be any set of (n+1) distinct points in
[a, b], and let fe €[a, b]. Then there is exactly one polynomial pe 2,
that satisfies the equations (4.2).

Proof. Fork=0,1,...,n,let, be the function

n

Lx)=T11 x—x)/(xe—x;), a<x<b. (4.3)
oy
We note that [, € 2, and that the equations
L (x;) = 6 i=0,1,...,n, 4.4

hold, where 6,; has the value

1 k=i
5,'={ ’ ‘, 4.5
k 0, k#1i. 45
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It follows that the function
p= kZ FO) b (4.6)
=0

is in 2, and it satisfies the required interpolation conditions (4.2). To
show uniqueness, suppose that the equations (4.2) are satisfied by both
p € P, and q € P,.. Then the difference (p —q) is in #, and it has roots at
the points {x;; i =0, 1, ..., n}. However, a polynomial of degree at most
n that has (n + 1) distinct roots is identically zero. Therefore p is equal
tog. O

The numerical value of the interpolating polynomial p(x) for any fixed
x in [a, b] can be calculated by first computing the numbers (4.3) for
k=0,1,...,n, and then by substituting them in the equation

pi)= 5 fln) L(x). @.7)

This method is called the Lagrange interpolation formula. There are
many other algorithms for calculating p(x) that are equivalent in exact
arithmetic. They differ, however, in the accuracy that is obtained in the
presence of computer rounding errors, and in the amount of work that is
done when they are applied. One of the most successful algorithms, which
is called Newton’s interpolation method, is described in the next chapter.

The uniqueness property, proved in Theorem 4.1, allows us to regard
the interpolation process as an operator from %[a, b] to %?,, which
depends on the choice of the fixed points {x;;i=0, 1,...,n}. The
operator is a projection because, if fe?,, then we may satisfy the
interpolation conditions (4.2) by making p equal to f. Moreover, because
the functions /i (k=0,1,...,n) are independent of f, equation (4.6)
shows that the operator is linear. Therefore we may apply Theorem 3.1,
and we find in Section 4.4 that it gives some interesting results.

When the function values {f(x;); i=0,1,..., n} cannot be obtained
exactly, it may be important to know the contribution that their errors
make to the calculated polynomial p. Equation (4.6) answers this ques-
tion directly, for, if the true function value f(x) is replaced by the
approximation {f(x;) + e} fork =0, 1, ..., n, we see that the change to p
is the expression Y ely.

The Lagrange interpolation formula provides some algebraic relations
that are useful in later work. They come from our remark that the
interpolation process is a projection operator. In particular, for 0<i <n,
we let f be the function

fx)=x', as<x<b, (4.8)
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in order to obtain from expression (4.7) the equation
Xihe(x) =x', <x<b.
k§0 ke (x) asx<b (4.9)
The value i = 0 gives the identity
Y Lx)=1, asx<b, (4.10)
k=0

which is useful for checking the numbers {/;(x); k =0, 1, ..., n} whenthe
Lagrange interpolation method is applied. Moreover, by substituting the
definition (4.3) in equation (4.9), and then by considering the coefficient
of x", we find the identity

Z ——Si,,, i=0,1,...,n (4.11)

n

H _xl
i=0

jAk

4.2 The error in polynomial interpolation
We use the notation e for the error function of an approximation,
and in this chapter it has the value

e(x)=f(x)—p(x), as<sx<ph, 4.12)

where p is the polynomial in 2, that satisfies the interpolation conditions
(4.2). It should be clear that, if we change f by adding to it an element of
?,, then the interpolation process automatically adds the same element
to p, which leaves ¢ unchanged. Expressions for the error should show
this property. It is therefore appropriate, when f€ € *"[a, b}, to state e
in terms of the derivative f("“), which is done in our next theorem.

Theorem 4.2
" For any set of distinct interpolation points {x;; i =0, 1, ..., n}in
[a, b] and for any f€ €""*[a, b], let p be the element of P, that satisfies
the equations (4.2). Then, for any x in[a, b], the error (4.12) has the value

1 (n+1)
e(x)= (+1),H(x x)f 6, (4.13)

where £ is a point of [a, b] that depends on x.

Proof. Two methods are used in this book to express errors in terms of
derivatives. One is to apply the Taylor series expansion, and the other one
is to use Rolle’s theorem several times. Rolle’s theorem states that, if a
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continuously differentiable function is zero at two points, then its deriva-
tive is zero at an intermediate point. By using this result inductively, we
deduce that, if a function g€ €"*"[a, b]is zero at (n +2) distinct points
of [a, b], then its (n + 1)th derivative has at least one zero in [a, b]. The
present proof depends on this fact.

We note first that, if x is in the point set {x;;i=0, 1,..., n}, then
equation (4.13) holds, because both sides of the equation are equal to
zero. Otherwise we define the function g by the equation

gO)=f()—p(t)- e(x)H x) ast=<b, (4.14)

and it is important to note that ¢ is the variable, the value of x being fixed.
We see that ge €"*"[aq, b], and that g(¢) is zero both when ¢ =x and

when ¢ is in the point set {x;;i =0, 1,..., n}. Therefore there exists a
point £ in [a, b] at which the equation
g (&)=0 (4.15)

is satisfied. By substituting the definition (4.14) in this equation, and by
rearranging terms, we find the required result (4.13). 0O
A helpful way of remembering this result is to let f be the function
f)=x""",  asx<b. (4.16)
In this case the error function is the polynomial

n+1

e(x)=x""-p(x), asx<p, (4.17)
and, because the error is zero at the interpolation points {x;;i=
0,1,...,n}, e(x) must be a multiple of the product

_[I0 (x = x;). (4.18)

iz

The multiplying factor is the term f("”)(f) times a constant, which has to
have the value 1/(n +1)!, in order that the coefficient of x"*" in e(x) is
equal to one, as required by equation (4.17).

Some applications of Theorem 4.2 are as follows. If a bound on
[F** Vo is known, then expression (4.13) gives a bound on the error of
polynomial interpolation. Similarly, an estimate of the term f"*(¢)
provides an estimate of the interpolation error, which is discussed further
in the next chapter. Moreover, Theorem 4.2 is useful sometimes when
one wishes to compare polynomial interpolation with some other linear
approximation operator that is exact for fe @, If the error of the
alternative operator is expressed in terms of f("“), then equation (4.13)
helps to show which approximation method is more accurate.
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4.3 The Chebyshev interpolation points

This section concerns the choice of the interpolation points
{x;;i=0,1,..., n}. Most of the conclusions are obtained by applying
polynomial interpolation to a particular function f, known as Runge’s
example. It is the function

fx)=1/1+x%, -5<xs<5. (4.19)
Because most of the variation in f occurs in the middle of the range
—5=x =35, the discussion given in Section 3.3 shows that it is not really
suitable to approximate f by a single polynomial. We have to choose a
polynomial of very high degree if we wish to achieve high accuracy.
Therefore the example serves quite well to show the kinds of difficulty
that can occur in polynomial interpolation. In particular, we find that the
positions of the interpolation points {x;; i=0,1,..., n} are important
when # is large.

If the interpolation points are spaced uniformly

x;=—5+10i/n, i=0,1,...,n, (4.20)
then the size of the error function (4.12) near the ends of the range
—5=<x <S5 is interesting. We let x,_1 be the point

Xnot=5-5/n, (4.21)
which is the mid-point of the last interval between interpolation points.
The value of p{x,_i) was found by Lagrange interpolation for n =

2,4,...,20,and the results are shown in Table 4.1. We see that the error
almost doubles in magnitude each time » is increased by two. Therefore it

Table 4.1. The dependence of e(x,_1) on n in
Runge’s example

n flx.-3) px.-3) e(x,-3)
2 0.137931 0.759 615 —-0.621 684
4  0.066 390 —-0.356 826 0.423 216
6 0.054463 0.607 879 —0.553416
8 0.049 651 —0.831 017 0.880 668
10 0.047 059 1.578 721 -1.531 662
12 0.045440 —-2.755 000 2.800 440
14 0.044 334 5.332743 —5.288 409
16 0.043530 —-10.173 867 10.217 397
18 0.042 920 20.123 671 -20.080751

20 0.042 440 —39.952 449 39.994 889
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is futile to try to improve the accuracy of the approximation by increasing
the value of n.

The reason for the large values of ¢(x) shown in Table 4.1 can be found
from the form of the error function when n = 20. Values of this function
are given in Table 4.2 at the points that are midway between the
interpolation points in 0<x =<35. Negative values of x are omitted
because f and p are both even functions of x. The function (4.18), which is
called prod(x), is also tabulated. The most important feature of the table
is that the very rapid increase in the tabulated values of e(x) also occurs in
the tabulated values of prod(x). Indeed the ratio e(x)/prod(x) is almost
constant.

It follows, therefore, that in this example the dependence on x of the
term f(”“)(f) in equation (4.13) does not make much difference to the
form of e(x). A good practical strategy is to assume that this property
remains true if the positions of the interpolation points {x;;i=
0,1,..., n} are altered. Therefore we wish to find interpolation points
that do not give large variations in the heights of the peaks of prod(x). By
bunching interpolation points near the ends of the range, the very large
peaks of prod(x) can be reduced, at the expense of increasing the heights
of the small peaks near the centre of the range —5=<x =<35. The inter-
polation points that equalize the peak heights are called the Chebyshev
interpolation points, and they are found by making use of ‘Chebyshev
polynomials’.

For the range — 1 <x <1, the Chebyshev polynomial of degree » is the
function T, that satisfies the equation

T..(cos 8) = cos (n@), (4.22)

Table 4.2. An example of equally spaced interpolation points (n =20)

x f(x) p(x) e(x) prod(x)

0.25 0.941 176 0.942 490 —0.001 314 2.05x10°
0.75 0.640 000 0.636 755 0.003 245 —2.48x10°
1.25 0.390 244 0.395093 —-0.004 849 3.64 x10°
1.75 0.246 154 0.238 446 0.007 708 —6.56x10°
2.25 0.164 948 0.179 763 -0.014 814 1.46 x 10’
2.75 0.116 788 0.080 660 0.036 128 -4.12x107
3.25 0.086 486 0.202 423 -0.115936 1.51x 108
3.75 0.066 390 —0.447 052 0.513442 -7.56x 108
425 0.052 459 3.454 958 —-3.402 499 5.59%x10°

4.75 0.042 440 —39.952 449 39.994 889 —7.27x10"°
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which is equivalent to the equation
T,.(x)=cos (n cos™ ' x), -1=<x=1. (4.23)
An easy way of imagining T,,(x) as a function of x is to expand cos (n6) in

powers of cos 6, and to write x in place of cos . Hence T, € ?,, and the
identity

cos [(n+1)8]+cos[(n —1)8]=2 cos @ cos (n8) 4.24)
gives the recurrence relation
Trs1(x) =2xT,,(x)— Tp—1(x), —-1sx=1. (4.25)

Chebyshev polynomials have many applications in approximation
theory, and they are useful now because the heights of the peaks of the
function

T, (x) =cos (n6), X =Cos 6, (4.26)
are all equal to one. We can force prod (x) to be a multiple of T,,.1(x) by
letting the interpolation points {x;;i=0,1,..., n} be the roots of the

polynomial T,.;, which gives the points
[2(n=i)+1]m
2(n+1) } ’
In order to adapt these values to a general range a<x<b, we
introduce real parameters A and u, and we define the points
Rnr-)+1]x
2(n+1) } ’
to be Chebyshev interpolation points. By construction they have the
property that the magnitudes of the peaks of the polynomial (4.18) are all
equal, which helps usually to reduce the greatest value of the error
function (4.13), provided that x, is close to a and x,, is close to b. We really
want to choose the interpolation points in a way that makes the expres-
sion

x,~=cos{ =0,1,...,n. (4.27)

x,~=)«+/.4,cos{ i=0,1,...,n, (4.28)

max |prod (x)| (4.29)

asx<b

small. A theorem in Chapter 7 shows that this expression is minimized

over all sets {x;; i =0,1,...,n}if A and u have the values
A=3a+b
21( )} (4.30)
u=3(b—a)

in equation (4.28).

In order to show that the use of Chebshev interpolation points can
improve on the accuracy that is shown in Table 4.2, we let {x;;i=
0,1,..., n}have the values (4.28), where n =20 and where A and u are
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such that xo=—35 and x,0=>5. The Lagrange interpolation method was
applied again to Runge’s function (4.19). Table 4.3 shows the errors of
interpolation at the positive values of x where |prod (x)| is greatest.
We find that the greatest value of |e(x)| is smaller than in Table 4.2 by a
factor of over two thousand, and the cost of this gain is that the small
errors near the centre of the range —5<x <35 are increased by about a
factor of five. Now all the variations in the tabulated values of e(x) are due
to the term f"*(¢) in equation (4.13).

Itis also of interest to note the improvement over Table 4.1 that can be
obtained by using Chebyshev interpolation points. Therefore, for n =2,
4,...,20, we let the set {x;;i=0,1,...,n} be defined by equation
(4.28), where, as in the last paragraph, the values of A and w are such that
xo=-5 and x,, = 5. Thus an interpolating polynomial p € #,, is obtained
for each n. By applying Lagrange interpolation for several values of x, the

Table 4.3. An example of Chebyshev interpolation points (n =20)

x f(x) p(x) e(x)

0.374 698 0.876 886 0.887 135 —-0.010 249
1.115724 0.445 466 0.429 963 0.015503
1.831 827 0.229 590 0.242 708 -0.013 119
2.507 010 0.137 266 0.126 532 0.010734
3.126 190 0.092 824 0.101 876 —0.009 052
3.675537 0.068 920 0.061018 0.007 902
4.142 778 0.055058 0.062 173 —-0.007 115
4.517 476 0.046 712 0.040 130 0.006 582
4,791 261 0.041 743 0.047 981 —0.006 238
4.958 018 0.039 090 0.033 045 0.006 045

Table 4.4. The maximum error when Chebyshev interpolation points are used

n x f(x) p(x) e(x)
2 2.024 604 0.196 116 0.842 345 —0.646 229
4 1.393 399 0.339765 0.761 908 —0.442 143
6 1.097 876 0.453 447 0.727 637 —-0.274 191
8 0.912 455 0.545 680 0.721 700 —0.176 020
10 0.781 995 0.620 534 0.732 455 —-0.111921
12 0.684 167 0.681 159 0.751 878 -0.070718
14 1.526 988 0.300 148 0.252 887 0.047 260
16 1.356 570 0.352 078 0.319 037 0.033 040
18 1.221 054 0.401 449 0.378 684 0.022 765

20 1.110 623 0.447 731 0.432224 0.015 507
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maximum value of |e(x)| was calculated. The values of x that maximize
the error function and the corresponding values of f, p and e are shown in
Table 4.4. We see that the use of Chebyshev interpolation points is so
much better than equally spaced ones, that now the accuracy of the
approximation improves when n is increased.

4.4 The norm of the Lagrange interpolation operator

Theorem 3.1 provides an excellent reason for studying the norm
of the Lagrange interpolation operator. We use the co-norm for the
elements of €[a, b], we assume that the set of interpolation points
{x;;i=0,1,..., n}hasbeen chosen and, for each fin €[q, b], welet X (f)
be the element of ?, that is defined by the conditions (4.2). The value of
|X|| is the subject of our next theorem.

Theorem 4.3
The norm of the Lagrange interpolation operator has the value
IXll= max ¥ |L(x)|, 4.31)
asx<b k=0
where the functions {/,; k =0, 1, ..., n} are defined by equation (4.3).

Proof. The definition of a norm and equation (4.6) give the identity
IX1l = sup |X (£
lAl=1

n

Z Fa) i (x)

k=0

io FEh(x)

k=

= sup max

Ifl<1 a<x=b

= max sup

a=x=b|fil=1

= max ¥ L), (4.32)

asx=sbk=0

which is the required result. 0

We note that the method of proof is to treat the supremum over f in
equation (4.32) before the maximum over x. Often expressions for norms
are suprema of maxima, and it is usually helpful, especially in the case of
interpolation operators, to take account of the conditions on f before
maximizing over x.

Theorem 3.1 states that the error |[f—X(f)| is within the factor
[1+]X]] of the least error

d*(f)=min |If —p| (4.33)

peP,
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that can be achieved by approximating f by a member of 2,. Hence we
obtain from Tables 4.2 and 4.4 a lower bound on [[X||, where X is the
interpolation operator in the case when n =20 and the interpolation
points have the equally spaced values (4.20). Because Table 4.4 shows
that 0.015 507 is an upper bound on d*(f), it follows from Theorem 3.1
and Table 4.2 that the inequality

IX1=(39.994 889/0.015 507)—1 (4.34)

holds. Hence || X|| is rather large, and in fact it is equal to 10 986.71, which
was calculated by evaluating the function on the right-hand side of
equation (4.31) for several values of x. Table 4.5 gives | X|| for n =
2,4,...,20 for the interpolation points (4.20). It also gives the value of
IX| for the Chebyshev interpolation points (4.28) that are relevant to
Table 4.4, where A and w are such that xo=-5 and x, = 5.

Table 4.5 shows clearly that, if the choice of interpolation points is
independent of £, and if n is large, then it is safer to use Chebyshev points
instead of equally spaced ones. Indeed, if n =20 and if Chebyshev points
are preferred, then it follows from Theorem 3.1 that, for all f€ €[ -5, 5],
the maximum error of the interpolating polynomial is within the factor
3.48 of the least maximum error that can be achieved. However, if the
interpolation points are equally spaced, then the form of the error
function shown in Table 4.2 is typical, where the maximum error is much
larger than necessary. Moreover, another good practical reason for
keeping || X|| small is that it makes the calculated polynomial less sensitive
to errors in the data.

Table 4.5. The norms of some
interpolation operators

Equally
spaced Chebyshev
n points points
2 1.25 1.25
4 2.21 1.57
6 4.55 1.78
8 10.95 1.94
10 29.90 2.07
12 89.32 2.17
14 283.21 2.27
16 934.53 2.34
18 3171.37 2.42

20 10986.71 2.48
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The results in Table 4.5 are not special to the range —S5<x <5,
because a general linear transformation of the form

x - ax+8, a>0, 4.35)

where @ and B are real parameters, which changes [a, b] to [ea +8,
ab+B] and {x;;i=0,1,...,n} to {ax;+B;i=0,1,...,n}, does not
alter the value of ||X]|. The reason is that this transformation just
introduces the factor a” into the numerator and denominator of the
definition (4.3) and these factors cancel each other. Hence the trans-
formation stretches or contracts the graphs of I, (k=0,1,..., ) in the
x-direction, but it leaves them unaltered in the y-direction. Thus the
value of expression (4.31) does not change, and identities like equation
(4.10) are preserved.

4 Exercises

4.1 Let p be the cubic polynomial that interpolates the function
values f(0), f(1), f(2) and f(3). Express p(6) in terms of these
function values, and verify that your formula is correct when f is
the function {f(x)=(x — 3)?; 0<x <6}. What is the uncertainty
in the value of p(6), if the uncertainty in each function value is
+e?

4.2 Let f € €7[0, 1], and let the function value f(x) be estimated by
linear interpolation to two of the three values f(0.0)=0.0,
f(0.7)=0.7 and f(1.0) = 0.1. Show that, if Theorem 4.2 is used to
express the error in terms of f”, then, in order to minimize the
multiplying factor in the error estimate, it is best to interpolate to
£(0.0) and £(0.7) if 0=x < 0.5, but it is best to use f(0.7) and
f(1.0) if 0.5 <x <1.0. Deduce that f(0.5) satisfies the condition

1.1-0.05/f o <£(0.5) < 0.5+ 0.05| f |0y

and hence obtain a lower bound on [|[f®|«.

4.3 Piecewise polynomial approximations p; and p; to the function
{f(x)=cos x; 0<x <} are defined in the following way. Posi-
tive integers n; and n, are chosen, where n, is even. The function
p1 is composed of straight line segments that join at the points
{x=km/n; k=1,2,..., n;—1}, and its parameters are defined
by the conditions {p,(kw/n.)=f(kmw/ny); k=0,1,...,n;}. The
function p, is composed of quadratic polynomial segments that
join at the points {x =knw/n,; k=2,4,6,...,n,—2} and its
parameters are defined by the conditions { p,(kw/n,) = f(km/n,);
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k=0,1,..., n,}. Estimate the smallest values of n, and n, that
make the errors ||f — pillo and ||f — pz/lo less than 1078,

Let fe €?™[0, 1], and let p be a polynomial of degree (2n — 1)

that satisfies the equations

P(k)(°)=f(k)(0)} k=0,1,...,n—1.

PP = B

Prove that, for every x in [0, 1], there exists £ in [0, 1], such that

the error of the polynomial approximation has the value
x"(x— 1) (2n)

fO)=p) === 57— .

Show that, if the Chebyshev interpolation points (4.27) are used

instead of the equally spaced points {x;=(2i—n)/n; i=

0,1,...,n}, then the greatest distance between interpolation

points is multiplied by a factor that is less than %17. Show,

however, that the Chebyshev points have the property that the

ratio of the largest to the smallest intervals between interpolation

points is greater than (n +1)/ 7.

For any f in €[0, 3], let Xf be the function of the form

(Xf)(x)=co+clx +c3x3, 0sx=<3,

whose coefficients co, ¢; and c3 are defined by the interpolation
conditions (Xf)(0) =£(0), (Xf)(2)=f(2) and (Xf)(3)=f(3).
Deduce that | X |l has the value (1+32/45V3).

Let M(x, x1,...,x,) be the co-norm of the Lagrange inter-
polation operator from the space €[a, b] to P, where the
interpolation points have the values {x;; /=0, 1, ..., n}. Prove
that, if the interpolation points are changed continuously so that
two of them tend to be equal, then M(xy, x4, ..., x,) tends to
infinity.

Suppose that one has to calculate p(x) from equations (4.7) and
(4.3) for many million values of x, where n is about twenty. Show
that, by calculating in advance some auxiliary quantities that
depend on the data points {x;; i =0, 1,..., n} and the function
values {f(x;); i=0,1,..., n}, the number of computer opera-
tions in each evaluation of p(x) can be reduced to a small
multiple of n.

Consider the problem of calculating the coefficients {a,;i=
0,1,...,m}and {B;;i=0,1,...,n} of the rational function

agtagx+.. . tax™
r(x)= 01 e asx<),
Bo+ﬁ1x+...+B,.x
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so that the interpolation conditions
r(x;) =f(xy), i=0,1,...,m+n,

are satisfied, where {x;;i=0,1,...,m+n} is a set of distinct
points in [a, ], and where the function values {f(x;);i=
0,1,...,m+n}are given. Show that suitable coefficients can be
found usually by solving a square system of linear equations, but
that sometimes the linear equations have no adequate solution.
Sketch the graph of the function

Y |k (x)], as<x=<bh,
k=0

that occurs in equation (4.31). Consider the problem of placing
the interpolation points {x;; i =0, 1, ..., n} in a way that mini-
mizes || X||. Show that it is suitable to let x, and x,, have the values
a and b respectively. Investigate the position(s) of the other
point(s) when n =2 and when n =3.



S

Divided differences

5.1 Basic properties of divided differences

Let {x;;i=0,1,...,n} be any (n+1) distinct points of [a, b],
and let f be a function in €[q, b]. The coefficient of x" in the polynomial
p € P, that satisfies the interpolation conditions

p(xi)zf(xi)a i=0’1’--~’n, (51)

is defined to be a divided difference of order n, and we use the notation
flxo, x1, ..., x,] for its value. We note that the order of a divided
difference is one less than the number of arguments in the expression
fl.».5...,.) Hence f[xo] is a divided difference of order zero, which, by
definition, has the value f(x,). Moreover, when n =1, it follows from
equations (4.3) and (4.6) that the equation

flxo, x1, ..., xa]= i —n—f—(ﬂ‘)— (5.2)
k=0 .I;[O (xk—x/)
ik

is satisfied. We see that the divided difference is linear in the function

values {f(x;);i=0,1,..., n}, but formula (5.2) is not the best way of
calculating the value of f[xo, x1, . . ., x,,]. A better method is described in
Section 5.3.

Divided differences have several uses. They are applied in this chapter
to provide a good method of polynomial interpolation. They are used in
Chapter 19 to generate a convenient basis of the space of splines
F(k, &, &1, - - ., &), which was mentioned in Section 3.4. Other appli-
cations include checking values of a tabulated function for errors, and the
automatic adjustment of ‘order’ and step-length in the numerical solution
of differential equations.
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Itis often convenient to think of the divided differerice f[xo, X1, . . . , X,
as a value of the nth derivative of the function f divided by the factor n!.
The following theorem justifies this point of view.

Theorem 5.1

Let fe €™[a, b] and let {x;;i =0, 1,..., n} be a set of distinct
points in [a, b]. Then there exists a point £, in the smallest interval that
contains the points {x;; i =0, 1, ..., n}, at which the equation

flxo, X15 -+« 5 Xu1=f"(£) /0! (5.3)

is satisfied.

Proof. Let e be the error function

e(x)=f(x)—plx), as<xs<b, (5.4
where p € 2, is defined by the interpolation coenditions (5.1). We note
that e is in €"[a, ], and that e(x) is zero when x is in the point set
{xi;i=0,1,...,n}. Therefore, by applying Rolle’s theorem inductively,
we find that e ™ (¢) is zero, where £ is a point in the range that is given in
the statement of the theorem. Hence the equation

p™(&)=f"(&) (5.5)
is obtained, so the required result (5.3) follows from the definition of the
divided difference. 0O

This theorem is an important part of the standard method of checking
tabulated values of a function for errors. Suppose that the function

fe €™[a, b] is given on the point set {x;;i=0,1,..., m}, where m is

much larger than n, and where the points are in ascending order
asxo<x;<...<xnm<b. (5.6)

Then the sequence {f[xj Xj+1,...,%+n);j=0,1,...,m—n} may be

calculated, using the method described in Section 5.3. Theorem 5.1
shows that, in exact arithmetic, the terms of the sequence are values of the
function {f"(x)/n!;a<x<5b} in each of the intervals {lxj, xj+nl; j =
0,1,...,m—n}. Therefore, if the data points {x;;i=0,1,..., m} are
closely spaced, we may expect the sequence of divided differences to vary
slowly. In this case, however, the denominators of expression (5.2) are
small. Hence any errors in the function values are magnified by amounts
that can easily be calculated. It is usual to attribute unsmooth changes in
the terms of the sequence {f[x; xj+1,...,Xj+n];7=0,1,...,m—n} to
errors in the tabulated function values, which provides a procedure for
estimating the size of the errors.
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5.2 Newton’s interpolation method

Suppose that one has to estimate the function value f(x) from a
large number of data {f(x;); i =0, 1, ..., m}, where x is a fixed point. It is
usually poor to fit a polynomial of degree m to all the data, but it may be
suitable to apply polynomial interpolation to a subset of the given
function values, in which case the question arises of choosing which data
to use. A suitable procedure can be obtained from the remark that, if p, is
the polynomial in %, that interpolates the function values {f(x;);i=

0,1,...,n}, and if n <m, then Theorems 4.2 and 5.1 suggest the error
estimate
£ =pa)~{ 1T (2=} Lo, 31y e (5.7)
i=

Because it is sensible to prefer data points that are close to x, it is
convenient to label the data points so that the differences {|x —-x,-l; i=
0,1,..., m}increase monotonically. The procedure for choosing # is to
consider the error estimate (5.7) for n=0,1,...,(m—1). One should
not necessarily prefer the value of »n that gives the smallest error estimate,
because expression (5.7) can be small by chance. Instead one should seek
the value of n at which the trend in the error estimates is least. What
usually happens is that at first the accuracy of the interpolation method
improves, but one reaches a stage where the additional data is so remote
from x that it is not helpful to use extra function values.

Even if the value of n is known in advance, there are advantages in

calculating the polynomials {px; k =0, 1, ..., n}in sequence, where py is
the polynomial in %, that is defined by the interpolation conditions
pe(xd)=f(x)), i=0,1,...,k (5.8)

The main advantage is the subject of the next theorem, and it is that one
can calculate p;.1(x) from p;(x) by adding on the estimate of the error
{f(x)—p(x)} that is obtained by replacing n by k in expression (5.7).

Theorem 5.2
Let p, be the polynomial in %, that is defined by the inter-
polation conditions (5.8). Then the function

k
Pie+1(x) = pi(x) +{ EIO (x —xi)}f[xo, X1,. .5 X1, asx<b,

(5.9)
is the polynomial in ;. that satisfies the conditions
pk+1(xi)=f(xi), i=0,1,...,k+1. (510)
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Proof. Letp, ., bedefined by equation (5.9), and let q be the polynomial
in P, .1 that interpolates the function values {f(x;);i=0,1,...,k+1}.
Equations (5.8) and (5.9) imply the identities

q(xi)_pk+l(xi)=09 l=0a 1a---’k' (5'11)

Moreover, the definition of the divided difference f[xo, x1, ..., Xk+1]
implies that the function {q(x)—pr+1(x); a < x <b} is in P. It follows
from expression (5.11) that the difference {q(x)—pr+1{x); a<x <b}is
identically zero, which proves the theorem. [

By applying the theorem inductively, we obtain the definition

D (x) = f(x0) + (x — x0)f[x0, x1]+ (x — x0)(x — x1)f[x0, X1, X2]

n—1
+.. .+{ T (x—x,)}f[xo,'xl, ey Xn], asx<b,
j=0
(5.12)

of the polynomial in &, that satisfies the interpolation conditions (5.1).
This form of the interpolating polynomial is called ‘Newton’s inter-
polation method’, and it is useful for several reasons. For example, we
find in Section 5.4 that the effects of computer rounding errors when the
formula is used in practice are less damaging than the effects that occur
when the Lagrange interpolation method is applied. It is important to
notice that the numbers {x;;i=0,1,..., n} need not be in ascending
order. A good method of calculating the divided differences of expression
(5.12) is described in the next section.

5.3 The recurrence relation for divided differences

The standard procedure for calculating the divided differences of
Newton’s interpolation formula (5.12) requires the evaluation of all the
terms in the tableau

flxo]
flxo, x1]
flxi] flxo, x1, x2]
flx1, x2] - flxo, x1, ... X (5.13)
flx2] f[xn—z,xn—l,xn]'..
: flxn-1, x]

flx.]
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The first column is composed of the given function values {f(x;);i =
0,1,..., n}, and the remaining columns are calculated in sequence, using
the formula that is given in the next theorem.

Theorem 5.3
The divided difference f[xj, Xj+1, - - . , Xj+x+1] of order (k+1)
is related to the divided differences f[xj xj+1,...,Xj+x] and
flxi+1, Xj+2, - . ., Xj+x+1] Of order k by the equation
_f[xf+1, s Xiver1) = flxs - Xk
f[Xj, Xitlyr ooy x,-+k+1] = .

(xj+k+1 “'xj)

(5.14)

Proof. Let p; be the polynomial in %, that interpolates the function

values {f(x;);i=J,j+1,...,j+k}, and let g, be the polynomial in P,

that interpolates the function values {f(x;); i=j+1,j+2,...,j+k+1}.

Then it is straightforward to verify that the function

(x = x)quc (%) + (Xjie+1 — %) Pic (x)
(Xj+k+1—X;)

is in P11, and it satisfies the conditions

Pi+1(x) = , asx<p), (5.15)

Peri(x)=f(x)), i=jj+1,...,j+k+1. (5.16)
Hence the divided difference f[x;, x;+1, ..., Xj+k+1] is the coefficient of
x**' in the polynomial (5.15). Because f[xj Xj+1,...,X+x] is the

coefficient of x* in Pr, and because f[xji1, Xj42, ..., Xj+k+1] IS the
coefficient of x* in gy, it follows that equation (5.14) is satisfied. O

The theorem shows that the calculation of each entry in the second and
subsequent columns of the tableau (5.13) requires only two subtractions
and one division. Hence the number of computer operations to obtain the
divided differences for Newton’s interpolation formula is of order n>.

The recurrence relation (5.14) was used to calculate the divided
differences of the function

fx)=10e?**, O0=sx<2, (5.17)

tabulated on the point set {1.60, 1.63, 1.70, 1.76, 1.80}. The results are
shown in Tables 5.1 and 5.2. All data and all calculated numbers were
rounded to a fixed precision before they were recorded and used for
subsequent calculation. The difference between the tablesis that in Table
5.1 the precision is six decimal places, but in Table 5.2 it is only five
decimal places. We note the large change in the fourth divided difference
that is caused by the change in accuracy, which shows the care that has to
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be given to the accuracy of the data and the precision of the computer
arithmetic, if one uses divided differences to estimate derivatives.

5.4 Discussion of formulae for polynomial interpolation
Often there are several ways of carrying out a computer cal-
culation that would give identical results in exact arithmetic. The
numerical analyst studies the effect of computer rounding errors, which is
often a major part of the development of a successful algorithm. In this
book, however, much more attention is given to the theoretical questions
that are relevant to approximation methods, assuming that computer
arithmetic is exact. Therefore, we show now that the consequences of
limited precision arithmetic are important also, by giving this question
some attention in the case of polynomial interpolation.
Three methods of interpolation are compared. Two of these have been
described already, namely the Lagrange formula and Newton’s method,

Table 5.1. Some divided differences in six-decimal arithmetic

X; f(x:) Order 1 Order 2 Order 3 Order 4
1.60 0.082 297
-0.236 100
1.63 0.075214 0.325710
—0.203 529 —0.297 900
1.70 0.060 967 0.278 046 0.203 735
—-0.167 383 -0.257 153
1.76 0.050 924 0.234 330
—0.143 950

1.80 0.045 166

Table 5.2. Some divided differences in five-decimal arithmetic

X f(x:) Order 1 Order 2 Order 3 Order 4
1.60 0.082 30
-0.236 33
1.63 0.075 21 0.329 00
—0.203 43 —0.328 87
1.70 0.060 97 0.276 38 0.500 80
-0.167 50 -0.228 71
1.76 0.05092 0.237 50
—0.143 75

1.80 0.045 17
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and the third one is to evaluate the coefficients {¢;;i=0,1,...,n}, in
order that p(x) may be calculated from the formula

px)=Y cx’, as<x<b, (5.18)
i=0

for any value of x. Thus a polynomial approximation to f is defined in
three ways, and we ask first whether they satisfy accurately the inter-
polation conditions (5.1).

In the case of the Lagrange formula, when x is the interpolation point
x;, 0=<<i=n, then the definition (4.3) makes [, (x) zero for k # i, and it
makes /;(x) equal to or very close to the value one on a floating point
computer. Hence good accuracy in the interpolation conditions is
obtained from equation (4.7). The situation is less clear for Newton’s
formula (5.12), except when x = xq, because the function values do not
occur explicitly in the equation that defines p(x). Instead the formula is
dependent on the accuracy of the calculated divided differences. A
comparison of Tables 5.1 and 5.2 suggests at first that this accuracy may
be poor, but if, for example, we take the divided differences from the top
line of Table 5.2, and if we let x =1.80 in equation (5.12), then exact
arithmetic gives the value

p(1.80)=0.045 169 950 8, (5.19)

which agrees very well with the data value 0.045 17. The reason for the
good precision in the interpolation conditions is due to the cancellation
that occurs when differences are calculated. Because of it, the number of
digits that are needed to retain the information that is present in the
original table of function values becomes less as each new column of
differences is formed. Hence, the effect of working to a fixed number of
digits is that more and more guard digits are introduced, whose values are
ill-defined, but they prevent loss of information during the calculation.
Exercise 5.4 helps to make the point clear, for it shows that the whole of
Table 5.2 can be recovered to high accuracy from the data in its leading
diagonal.

The situation is rather different, however, if p(x) is obtained from
equation (5.18). Again the function values do not occur explicitly, and
now the accuracy to which the interpolation conditions (5.1) hold
depends on the errors in the coefficients {c;; i =0, 1, . . ., n}. In the case of
the data of Table 5.2, for example, it is appropriate to calculate the
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coefficients to at least five decimals accuracy, and to this precision p is the
polynomial

p(x)=6.700 98 —13.360 21x +10.385 60x>
—3.69241x>+0.502 72x*. (5.20)

However, because computers use floating point arithmetic, it is inconsis-
tent to allow seven decimals of accuracy in the coefficients {c;;i=
0,1,..., n}, when making comparisons with a calculation that is accurate
to only five decimals. Therefore we may have to accept the approximation

p(x)=6.7010—13.360x + 10.386x>
—3.6924x>+0.502 72x* (5.21)

instead of expression (5.20). This less accurate approximation gives the
value

p(1.8)=0.046 92, (5.22)

which shows a large error in the interpolation conditions. It is generally
better, therefore, to use Newton’s formula, unless one knows in advance
that the computer arithmetic is so accurate that one can obtain suitable
values of the coefficients {¢;; i =0,1,...,n}.

A consideration that is important sometimes is the magnitude of the
discontinuities that occur in the approximating function {p(x); a <x <b}
due to the discrete nature of computer arithmetic. We consider this
question in the frequently occurring case when f is so smooth that the
successive terms of Newton’s formula (5.12) decrease rapidly in magni-
tude. In this case, if we change the variable x continuously, then computer
rounding errors introduce discontinuities into the polynomial (5.12),
whose magnitude is about |f(x,)| times the relative precision of the
computer arithmetic. However, because the terms of the sum (4.7) of the
Lagrange formula are calculated separately, we find in this case that the
magnitude of the discontinuities is approximately the relative precision
times the largest of the numbers {{ f(x) I (x)|; k =0,1, ..., n}. Hence, in
the cases when the factor |/, (x)| is much larger than one, an advantage of
using Newton’s method instead of the Lagrange formula is that one
usually obtains smaller discontinuities in the calculated interpolating
polynomial.

5.5 Hermite interpolation
It happens sometimes that, in addition to the function values on
the right-hand side of equation (5.1), some values of the derivative of f
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are known also. The general Hermite interpolation problem is to cal-
culate p € 2, that satisfies the conditions

pPx)=fx), j=0,1,...,L  i=0,1,...,m, (5.23)

where the number of coefficients of p is equal to the number of data,
which implies that » is defined by the equation

nel=3 (Li+1). (5.24)
i=0

We find in this section that p can be obtained from an interesting
extension of Newton’s interpolation method, but first it is proved that the
data on the right-hand side of equation (5.23) does define the required
polynomial uniquely.

Theorem 5.4

Let{x;;i=0,1,..., m}beasetof distinct points froma <x < b,
and let the real numbers {f(x;);j=0,1,...,0;i=0,1,..., m} be
given. Then there is just one polynomial p in %, that satisfies the
equations (5.23), where the value of n is defined by equation (5.24).

Proof. The first part of the proof is a highly useful general method for
demonstrating the uniqueness of an approximation from a linear space.
We parameterize the approximating functions by choosing a basis of the
linear space, and in the present case every member of %, can be
expressed in the form

p(x)= f cax', asx<b. (5.25)
i=0

Because the number of conditions on p is equal to the number of
parameters, the required coefficients {c;; i =0, 1, . .., n} satisfy a square
system of linear equations. It is therefore sufficient to prove that the
matrix of the system is non-singular. An equivalent condition is that, if we
set the right-hand sides of the equations to zero, then they are satisfied
only if all the parameters are zero. Hence it suffices to prove that, if all the
data values are zero, then p is identically zero.

We find that, when the data are zero, then p is a multiple of the
polynomial

M G=-x)"" asxsb. (5.26)
i=0

+

Because this polynomial includes the term x"*', the multiplying factor

must be zero. Hence p is identically zero. 0O
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We note that Theorem 4.1 can be deduced as a corollary of Theorem
5.4. We note also that the proof of Theorem 5.4 depends on the condition
that, if the derivative value f(")(x,-) occurs in the data, then the values
{f2x);j=0,1,...,k—1} are given also. The divided difference
method for calculating p makes further use of this condition.

In order to describe this method, we change the notation for the data
points in the following way. We replace the set{x;; i =0, 1, ..., m} by the
Set {X0, X0y« 3 X0s X1, X1y e v vy X1y e vvsXoms Xomy - - - » Xm}, Where, for i=
0,1,..., m, the number x; occurs (/; + 1) times. We renumber the indices
of the terms in the new set so that its elements are {x;;i=0,1,...,n}
Hence the repeated terms in the new set indicate which derivatives are
given as data, and we have returned to the case where there are (n +1)
data points.

We now try to apply Newton’s interpolation formula (5.12) to our data.
The only difficulty occurs in the calculation of the divided differences, due
to the fact that the recurrence relation (5.14) gives zero divided by zero if
Xj+k+1 = x;. However, Theorem 5.1 provides a solution to this problem,
for it shows that if x; = xj+1 =...= x;+k+1, then it is appropriate to make
the definition

FIx Xists - oy Xjawrr) = FE 00 /(K + 1)1, (5.27)

which is very convenient because the right-hand side is available as data.
Thus all the terms in the table of divided differences (5.13) can be found,
either from equation (5.14) or from equation (5.27), provided that the
repeated terms in the set {x;;i=0,1,...,n} are grouped together.
Hence formula (5.12) can still be used.

For example, we calculate the polynomial of degree four that satisfies
the conditions

p(1.6) = 0.082297
p'(1.6) = —0.246 892
p(1.7) = 0.060967 (5.28)
p(1.8) = 0.045166
p'(1.8)=—0.135 497

The data are obtained from the function (5.17). The tableau of divided
differences is shown in Table 5.3, where the first and last entries in the
column of first-order differences are data. The remainder of this column
and the higher order terms are calculated by using the recurrence relation
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(5.14). Hence Newton’s method gives the polynomial
p(x)=0.082297—0.246 892(x —1.6)+0.335 920(x — 1.6)*
-0.297 350(x — 1.6)*(x — 1.7)

+0.203 750(x — 1.6)*(x — 1.7)(x — 1.8). (5.29)

It is easy to verify that the conditions (5.28) are satisfied. The final
theorem of this chapter proves that the given extension of Newton’s
method is suitable generally for calculating the polynomial in &, that is
defined by the conditions (5.23).

Theorem 5.5

Let the function value f(x) be given at the points {x;;i=
0,1,...,n}, and, if x; occurs (k+1) times in the point set, let the
derivatives {f"(x;); j=1,2,..., k} be given also. Let any repeated terms
intheset{x;;i=0,1,..., n} be grouped together, and let p, € P, be the
polynomial that is calculated by the extension of Newton’s method that
has just been described. Then the polynomial p, interpolates the data.

Proof. Because Theorem 5.4 states that there is exactly one polynomial,
p* say, that interpolates the data, and because the definition of p, is
unchanged if f is replaced by p*, we assume without loss of generality that
fis in &,. Therefore we have to prove that p, is equal to f. For any small

positive number &, we let {&;i=0,1,..., n} be a set of distinct points
that satisfies the conditions {|¢& —x;|<e;i=0,1,..., n}, and we apply
Newton’s method to calculate the polynomial in %, that interpolates the
function values {f(&);i=0, 1,..., n}, which is straightforward because

Table 5.3. A divided difference table that includes derivative values

X; f(x;) Order 1 Order 2 Order 3 Order 4
1.60 0.082 297
—0.246 892
1.60 0.082 297 0.335920
-0.213 300 —0.297 350
1.70 0.060 967 0.276 450 0.203 750
-0.158 010 -0.256 600
1.80 0.045 166 0.225130
—0.135 497

1.80 0.045 166
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the points {&; /=0, 1, ..., n} are distinct. Because this polynomial must
be f itself, the identity

f(x) = f(&) + (x — &o)f [£o, E11+ (x — &0)(x — €1)f [éo, &1, &2]

T c-o)) e 6. 6] (5.30)
is satisfied. We compare this calculation with the definition of p,, that is
given in the statement of the theorem. In particular we compare the two
tables of divided differences that are formed.

In the table that is used to calculate p,, the first column contains the
function values {f(x;); i=0, 1, ..., n}, and in the other table it contains
the numbers {f(&);i=0,1,..., n}. Moreover, if equation (5.27) is used
in the calculation of p,, then the entry f("“)(x,-)/ (k +1)! occurs in one
divided difference table, and the corresponding entry in the other table is
the expression f{¢&, &1, .- ., &+k+1), Which, by Theorem 5.1, has the
value f**1(£)/(k +1)!, where ¢ is in the shortest interval that contains
the points {&;i=j,j+1,...,j+k+1}. Therefore ¢ is in the interval
[x;—¢€, x; +€]. Hence, by choosing ¢ to be sufficiently small, one can
achieve arbitrarily close agreement between the entries in the two divided
difference tables that correspond directly to the data that determine p,.
All remaining entries are defined by the recurrence relation (5.14). Each
recurrence relation that is used has a non-zero denominator, and the
denominator (&.x+1— &) can be made arbitrarily close to (xj.x+1— x;) by
choosing ¢ to be sufficiently small. Hence arbitrarily close agreement can
be obtained between the two complete tables. Therefore, for any value of
x, and for any positive number &, there exists ¢ >0 such that the
difference | f(x) — p.(x)| between expressions (5.30) and (5.12) is less than
5. However, both f(x) and p,(x) are independent of ¢. Therefore the
polynomials f and p, are the same. U

5 Exercises

5.1 Form the table of divided differences of the function values
f(=2)=3.28, f(—-1)=17.36, f(2)=14.96, f(3)=19.28 and
f(4)=36.16. Verify that Newton’s interpolation method is in
agreement with the given value of f(4).

5.2 Deduce from equation (5.12) that p'(x,) has the value

p'(x0) = flx0, x1]+ (xo —x1)f[x0, X1, x2]+. ..

+{"1:[1 (xo—x,-)}f[xo, X1y ooy Xnl

ji=1
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Hence obtain p’(2) from the divided difference table of Exercise
5.1, where p is the polynomial in 2, that interpolates the data of
that exercise. Note that, if xo=2, x;=3, x,=4, x3=—-1 and
x4 = —2, then all the divided differences that occur in the expres-
sion for p'(2) have been calculated already. Check the value of
p'(2) by repeating the calculation for a different ordering of the
data points.

If the data points {x;;i =0, 1, ..., n} have the equally spaced

values {x; =xo+ih;i=0,1,..., n}, where h is a constant, then
equation (5.2) implies that the divided difference
flxo, x1, ..., x,.] takes the value
" 1
—n _1 n—k .
R e ALY

Verify that this statement is consistent with the recurrence
relation of Theorem 5.3.

Given the column of data points {x;} and the first entry in each of
the other columns of Table 5.2, calculate the remaining ten
entries in the table.

By following the procedure described in Section 5.5, that
requires the construction of a divided difference table, obtain an
expression for the polynomial in %, that interpolates the
function values f(0) and f(1) and the derivative values f'(0), f"(0)
and f'(1). Check that your calculation is correct by letting f be the
function {f(x)=(x+1)* 0<sx=<1}.

Let fe %(l)[a, b], and let the function values {f(x;);i=
0,1,...,n} and the derivative value f'({) be given. Prove that
there is a unique polynomial, p say, in ?,.; that satisfies the
conditions {p(x;) =f(x;);i=0,1,...,n}and p'(¢)=f'({), unless
q'(¢) is zero, where q is the polynomial

qx)=1Il x—x), a<x<b.

i=0
Use Rolle’s theorem to deduce that gq'(¢) is non-zero if { is in the
set {x;;i=0,1,...,n}.
Let f be a function in €“*"[a, b], whose kth derivative increases
strictly monotonically. Let the points {x;; i =0, 1, . . ., m} satisfy
the conditions
as=xo<;<...<xm<b,

where the integer m is greater than k. Prove that the sequence of
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divided differences {flx; xj+1,...,%+x);/=0,1,..., m—k}
increases strictly monotonically.

When a table of differences is formed from the function values
{f(x);i=0,1,...,n}, and when the data points are equally
spaced, the denominator of the recurrence relation (5.14) is
independent of j. Therefore, in order to avoid a division for each
value of j, it is convenient to take account of the denominator by
a normalizing factor that multiplies a complete column of
differences. Hence form the first-, second- and third-order
differences of the data

f(0.0)=0.000000 f(0.4)=0.533604 f(0.8)=1.227 134
f(0.1)=0.119778 f(0.5)=0.694767 f(0.9)=1.423 943
f(0.2)=0.249 126 £(0.6)=0.862 569 f(1.0)=1.630435.
f(0.3)=0.388 062 f(0.7) =1.040 023

The data contain two errors that are indicated by the behaviour
of the differences. Find and correct these errors.

Given f and g in %[a, b], let h be the product {h(x)=
f(x)g(x); asx<b}. Prove by induction the formula for the
divided difference of a product

n
h[x()a X1y:eey xn]= Z f[xO’ Xiyeooy xj] g(x]', xi+11 ceey xn]-
ji=0

An extension of equation (5.15) provides a method of solution of
the rational interpolation problem of Exercise 4.9. It depends on
the assumption, which is not always true, that the required and
some intermediate rational functions are well defined by inter-
polation conditions. For asx<b we let r(j,k Lx)=
p(j, k, 1, x)/q(j, k, I, x) be the value at x of the rational function
that satisfies the equations

r(i, k, Lx)=f(x:), i=4j+1,...,j+k+],

where {p(j,k,,x);a<x<b} and {q(j, k, I, x); a<x b} are
polynomials in 2, and %, respectively. The extension of expres-
sion (5.15) is that both r(j, k +1, I, x) and r(j, k, [ + 1, x) have the
form

x—x)p(i+1,k I, x)+c(xjsks1+1—x) p(J, k, I, x)
(x=x)q(G+1, kL x)+c(Xjsir141=x) q(j, k, 1, x)’

where c is a constant, whose value is chosen to give the required
degree of the numerator or denominator. Let x; equal i for i =0,
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1, 2, 3, 4, and let f have the values f(0)=0, f(1)=1, f(2)=3,
f(3)=4 and f(4)=4. First calculate the polynomials
{r(j,2,0,x),0<x=<4;j=0,1,2}, and then obtain the rational
function {r(0, 2, 2, x); 0<x <4} that interpolates the data by
applying the given extension of equation (5.15) three times.
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The uniform convergence of polynomial
approximations

6.1 The Weierstrass theorem
In Chapter 4 the approximation of the function

fx)=1/1+x%, -5=<x=<5, (6.1)
by polynomials of various degrees was considered. Each polynomial was
calculated by Lagrange interpolation, and we found that, for equally
spaced interpolation points, increasing the degree of the polynomial
makes the accuracy of the approximation worse. For the Chebyshev
interpolation points, however, Table 4.4 suggests that the calculated
polynomial approximations converge uniformly to the function (6.1). Itis
interesting to ask whether there are functions in %[a, b] that are so
awkward that, even if Chebyshev interpolation points are used, the
Lagrange interpolation method for polynomials of higher and higher
degree gives a sequence of approximations that fails to converge uni-
formly. It is proved in Chapter 17 that such awkward functions do exist.

Suppose, however, that instead of defining each polynomial by
Lagrange interpolation, we use some other method of calculation. Can
we then generate a sequence of polynomial approximations to any
function fe €[a, b] such that uniform convergence is obtained. It is
shown in Section 6.3 that the Bernstein approximation method is suit-
able. Hence we obtain a constructive proof of the following well-known
theorem.

Theorem 6.1 (Weierstrass)
For any f e %[a, b] and for any ¢ >0, there exists an algebraic
polynomial of the form

p(x)=co+cix+...+c.x", asx<y), (6.2)
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such that the bound
If—plo=<e (6.3)
is satisfied.

Proof. The work of the next two sections provides a proof of this
theorem. 0O

6.2 Monotone operators

Our method of proof of Theorem 6.1 depends on an interesting
and remarkable property of monotone operators, which is explained in
this section. The operator L from ¥[a, b] to €[a, b] is defined to be
monotone if it satisfies the following condition. Let f and g be any two
functions in €[a, b1, such that the inequality

fx)=gx), asxsb, (6.4)
is obtained. Then the functions Lf and Lg must satisfy the condition
(Lf)(x) = (Lg)(x), asx<b. (6.5)

We note that, if L is a linear operator, then the monotonicity condition is
equivalent to the following simpler form. For all non-negative functions f
in €[a, b], the function Lf must be non-negative also.

Monotone operators are useful to us because, given an infinite
sequence of linear monotone operators, {L;; i =0, 1, 2, .. .} say, each one
being from ¥%[a, b] to €[a, b], there is a very simple test to discover
whether or not the sequence of functions {L;f;i =0, 1, 2,...} converges
uniformly to f for all f in €[a, b]. This test is the subject of our next
theorem, and it is applied in Section 6.3 to the Bernstein operators in
order to establish the Weierstrass theorem.

Theorem 6.2

Let{L;;i=0,1,2,...} beasequence of linear monotone opera-
tors from €[a, b] to €[a, b]. Then, if the sequence {Lf;i=0,1,2,...}
converges uniformly to f for the functions

f)=x*  asxs<b, (6.6)

where k=0, 1 or 2, then the sequence {Lf;i=0,1,2,...} converges
uniformly to f for all f in €[a, b].

Proof. The method of proof of the theorem is indicated in Figure 6.1.
We let £ be any fixed point of [a, b], we let g, be a quadratic function that
is wholly above f, and we let q, be a quadratic function that is wholly below
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f, where these functions are such that the difference gq.(£) — qi(£) is small.
The operator L, is applied to the functions q,, f and g;. Because, by
hypothesis, the sequence {Lf;i=0,1,2,...} converges to f when f is a
quadratic function, we can ensure that L,q, and L,q, are very close to g,
and ¢ respectively by choosing a large value of n. Moreover, the
monotonicity of the operator L, ensures that the function L,f is bounded
below by L,q, and is bounded above by L,q,. Hence (L.f)(£¢) must be
close to f(£). Thus the limit

lim (L.f)(£) =£(§) (6.7)

n->o0

is proved for any fixed ¢ in [a, b]. The details of the method of proof of
equation (6.7), which are given below, establish the uniform convergence
condition

lim [[f - L.fll =0, (6.8)

n—->a0

which is stronger than the pointwise result (6.7).
Given f € €[a, b], we let £ be any positive number, and we choose § >0
such that, if |x; — x| <8, then the bound

[f(x1) —flxa)| <e, (6.9)

is obtained. Next we let ¢ be any fixed point of [a, b], and we note that § is

Figure 6.1. The proof of the monotone operator theorem.

9
L,q,

anl
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independent of & The quadratic functions q, and q, are defined by the
equations

qu(x) =€) + & +2|fllo(x — £)*/8°
qi(x) =f(€)— & = 2/fllo(x — €)%/ 8>

It follows from condition (6.9) that the inequality
qu(x)=f(x) (6.11)

holds when |x — £| < 8. Moreover, this inequality is also obtained when
|x — &|> & because of the definition of ||f|l.. Similarly the condition

}, asx<b. (6.10)

qlx)sf(x), asxs<p, (6.12)
is satisfied also. Therefore the monotonicity of the operators gives the
bounds

(Laq)(x) <= (Laf)(x) < (Lnqu)(x), asx<b, (6.13)

for all non-negative integers n.

In order to ensure that n is large enough to prove the theorem, we
express the functions g, and q, as linear combinations of the polynomials
Do, 1 and p,, which are defined by the equation

pk(x)=xk, asxs<bh. (6.14)
The definitions (6.10) give expressions of the form

qu=co(&)po+c1(&)pr + Cz(f)PZ}’ (6.15)

4= c3(&)po+ca(é)p1+cs(é)p2

and there exists a number M, that depends on 8, £ and f but not on £, such
that the bounds

lci(&)| <M, i=0,1,...,5, (6.16)
are obtained. By hypothesis, we can let N be an integer such that the
conditions

"pk_ank”OOSe/M’ k=0’ 1’ 2, (6'17)

hold for all n = N. It is important to note that N is also independent of ¢,
Inequality (6.17) is useful to us because, by combining it with expressions
(6.15) and (6.16), and by using both the linearity of the operator L,, and
the triangle inequality for norms, we deduce the bounds

”qu—'anu||°0s3€} (618)

lg1— Lugilleo <3e)’



The Bernstein operator 65

Expressions (6.13), (6.18) and (6.10) are applied in sequence to give
the bound

(Laf)(€) =< (Lnqu)(£)
<qu(é)+3e
=f(£)+4e. (6.19)
Similarly, by making use of q; instead of q,, we deduce the inequality
(Lf)E)=f(£)—4e. (6.20)
We write expressions (6.19) and (6.20) in the form
(&) - (Lf)(&)|<de, n=N. (6.21)

Because N and ¢ are independent of ¢, it follows that the stronger
condition

If—Loflo<4e, n=N, (6.22)
also holds. We recall that our proof has established the existence of N for

any positive e. Therefore the required limit (6.8) is obtained for any f in
%[a,b]. O

6.3 The Bernstein operator

The Bernstein operator B, is from €[a, b] to the subspace 2, of
polynomials of degree », and it is defined for all positive integral values of
n. In the case when the range [a, b] is the interval [0, 1], it is specified by
the equation

n

n! e
(an)(x)=k§0mxk(l—x) “f(k/n), O0<x=<l1.
(6.23)

In order to simplify notation, we assume for the rest of this chapter that
the range of the variable is 0 <x <1.

The Bernstein approximation (6.23) is similar to the Lagrange poly-
nomial approximation (4.7) in two ways. Both approximation operators
are linear, and in both cases the polynomial approximation that is chosen
from 2, depends just on the value of f at (n + 1) discrete points of [a, b].

However, unlike Lagrange interpolation, the approximation B,f may
not equal f when f is in ?,.. For example, suppose that f is the polynomial
in @, that takes the value one at x = k/n and that is zero at the points
{x=j/n; j=0,1,...,n; j#k}. Then (B.f)(x) is a multiple of x (1-
x)"~¥, which is positive at the points {x =j/n; j=1,2,...,n—1}. The
main advantage of Bernstein approximation over Lagrange interpolation
is given in the next theorem.
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Theorem 6.3
For all functions f in €[0, 1], the sequence {B,f; n=1,2,3,...}
converges uniformly to f, where B, is defined by equation (6.23).

Proof. The definition (6.23) shows that B, is a linear operator. It shows
also that, if f(x) is non-negative for 0=x =<1, then (B,f)(x) is non-
negative for 0<x < 1. Hence B, is both linear and monotone. It follows
from Theorem 6.2 that we need only establish that the limit

lim ||B.f~fllo=0 (6.24)

n-»co

is obtained when f is a quadratic polynomial. Therefore, for j =0, 1, 2,
we consider the error of the Bernstein approximation to the function

flx)=x’, O0sx=<1. (6.25)

For j=0, we find for all n that B,f is equal to f by the binomial
theorem. When j = 1, the definition of B, gives the equation
n n!

k
_ k _ n—k ™
(B ))= % i 2 (=0

_ (n—1)! kg \n—k

= k—Dim—g* 470

S el ) L PSRV o
_xkz’ok!(n—l—k)!x 1-x) . (6.26)

Hence again B,f is equal to f by the binomial theorem. To continue the
proof we make use of the identity
2

" ! kR n—1 , 1
kgok'(nn—k)'xk(l_x) k(Z) - n x2+;x, (6.27)

which is straightforward to establish. For the case when j =2 in equation
(6.25), it gives the value

1
=— 6.2
w (6.28)

and it is important to note that the right-hand side tends to zero as » tends
to infinity. Hence the limit (6.24) is achieved for all fe %,, which
completes the proof of the theorem. [

It follows from this theorem that, for any f € €[0, 1] and for any £ >0,
there exists n such that the inequality

If = Bufllo< e (6.29)

IB.f — fllo = max 2

O=x=l

-1
x2+—x —-X
n
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holds. Hence condition (6.3) can be satisfied by letting p = B,f, which
proves the Weierstrass theorem in the case when [q, b] is [0, 1].

The general case, when [a, b] may be different from [0, 1], does not
introduce any extra difficulties if one thinks geometrically. Imagine a
function f from ¥€[a, b], that we wish to approximate to accuracy e,
plotted on graph paper. We may redefine the units on the x-axis by a
linear transformation, so that the range of interest becomes [0, 1], and we
leave the plotted graph of f unchanged. We apply the Bernstein operator
(6.23) to the plotted function of the new variable, choosing n to be so
large that the approximation is accurate to . We then draw the graph
of the calculated approximation, and we must find that no error in
the y-direction exceeds ¢. There are now two plotted curves. We leave
them unchanged and revert to the original labelling on the x-axis.
Hence we find an approximating function that completes the proof of
Theorem 3.1.

The Bernstein operator is seldom applied in practice, because the rate
of convergence of B,f to f is usually too slow to be useful. For example,
equation (6.28) shows that, in order to approximate the function f(x) = x?
on [0, 1] to accuracy 1074, it is necessary to let n =2500. However,
equation (6.23) has an important application to automatic design. Here
one takes advantage of the fact that the function values {f(k/n); k=
0,1,..., n} that occur on the right-hand side of the equation define B,f.
Moreover, for any polynomial p € ?,, there exist function values such
that B,f is equal to p. Hence the numbers {f(k/n); k=0,1,...,n}
provide a parameterization of the elements of 2,. It is advantageous in
design to try different polynomials by altering these parameters, because
the changes to B,f that occur when the parameters are adjusted
separately are smooth peaked functions that one can easily become
accustomed to in interactive computing.

6.4 The derivatives of the Bernstein approximations

The Bernstein operator possesses another property which is as
remarkable as the uniform convergence result that is given in Theorem
6.3. It is that, if f is in €“’[0, 1], which means that f has a continuous kth
derivative, then, not only does B,f converge uniformly to f, but also the
derivatives of B, f converge uniformly to the derivatives of f, for all orders

of derivative up to and including k. We prove this result in the case when
k=1.
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Theorem 6.4
Let f be a continuously differentiable function in €[0, 1]. Then
the limit

lim ||[f' = (Baf)lo =0 (6.30)

n—->o0o

is obtained, where B, is the Bernstein operator.

Proof. By applying Theorem 6.3 to the function f’, we see that the
sequence {B,(f"); n=1,2,3,...} converges uniformly to f'. It is there-
fore sufficient to prove that the limit

lim |B.(f)—(Bn+1f) =0 (6.31)

n—-»>oo

is obtained. One of the subscripts is chosen to be # + 1 in order to help the
algebra that follows.

Values of the function (B..1f) can be found by differentiating the
right-hand side of the definition (6.23). This is done below, and then the
calculated expression is rearranged by using the divided difference nota-
tion of Chapter 5, followed by an application of Theorem 5.1. Hence we
obtain the equation

: _n+1 (n+ 1
(Br+1f) (x) = kgl (k=1DNn+1-k)!

" (n+1) ey
_kz;'ok!(n—k)!x (1=x) f(n+1)

- Lo 0 GH) )

X _x)n+1—kf(%)

k=0 n+1 n+1
AT R et
=kéomﬁ_!‘k—),xk(l —x)" (&), (6.32)
where & is in the interval
nf—ls k$:ii, k=0,1,...,n (6.33)

By using the definition (6.23) again, it follows that the modulus of the
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value of the function [B,(f') —(B,+if)'] at the point x is bounded by the
expression

n

kg()#'k), Ha- o r(5)-reo]
f‘( ) f&) <w( Jlr 1) (6.34)

where w is the modulus of continuity of the function f'. The last inequality
is obtained from the fact that k/n, like &, is in the interval [k/(rn +1),
(k +1)/(n +1)]. Because this last inequality is independent of x, we have
established the condition

1
B (f) = (Busif) llw\w( - 1) (6.35)

Therefore the limit (6.31) is proved. 0O

It is worth noting that the middle line of equation (6.32) implies that, if
the function f increases strictly monotonically, then the polynomial B, ..f
also increases strictly monotonically. The Bernstein method is excellent
for providing a polynomial approximation that preserves any smooth
qualitative properties of the function that is being approximated. It is also
useful for obtaining a differentiable approximation to a non-differenti-
able function, and for some other smoothing applications.

= max
k=0,1,...,n

6 Exercises

6.1 For any fe €[a, b], let Xf be the linear polynomial that inter-
polates f(xo) and f(x,), where x, and x; are fixed points of [a, 5]
such that xo < x;. Prove that the operator X is monotone if and
only if xo=a and x, = b.

6.2 By using the identity
kK*=(k—1)(k=2)+3(k—1)+1,

prove that the Bernstein approximation to the function {f(x) =
x”; 0=<x =<1} is the polynomial

—1)(n - -1 1
p(X)=(n )(2n 2)x3'+3(nz )x2+—2-x, Osx=<1.
n n n

Note that the method of calculation can be generalized to show
that, if f € ?, and if n > r, then the approximation B, f is also in %,.
6.3 Let p = B¢f, where B, f is the Bernstein approximation (6.23) toa
function f in €[0, 1]. Express the function values {p(j/6); j =
0,1,...,6} as linear combinations of the numbers {f(;/6);
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j=0,1,..., 6} Hence show that, if p is the polynomial in P¢ that
satisfies the conditions p(%) =1and {p(j/6)=0;j=0,1,2,4,5,
6}, then f takes the values f(0)=f(1)=0, @ =f(§) =20/3,
fG)=f(3)=-308/15, and f(3) = 30.

Let n and r be positive integers, where n =r, let f be a function in
€"'[0, 1], and let p, = B,f be the Bernstein polynomial (6.23).
By expressing the derivative p(,,') (0) as a linear combination of the
function values {f(k/n); k=0, 1, ..., r}, prove that the equation

PP (0) = f7g)

n'(n—r)!
is satisfied, where ¢ is in the interval [0, r/n]. Deduce that p¢(0)
tends to £(0) as n tends to infinity.
Prove that the error at x =3 of the Bernstein approximation B,f
to the function {f(x) = |x —3|; 0= x < 1} is of order of magnitude
n2.
Consider the function

1
Guic(x) =k!(%;)—!xk(1 —x)"%, 0=x<l,

that occurs in the definition of the approximation (6.23).
Investigate its properties, giving particular attention to the case
when # islarge. You should find that ¢, has one peak at x = k/n,
and that the width of the peak becomes narrower as n tends to
infinity. Let £ and n be any two fixed points of [0, 1], where £ is
rational, and let the ratio ¢, (n)/@.(£) be calculated for an
infinite sequence of pairs (k, n) such that £ = k/n. Prove that the
ratio tends to zero.

Let L, be a linear monotone operator from %[0, 1] to €[0, 1],
where L,f depends only on the function values {f(k/n); k =
0,1,...,n}, and let L, have the property that, if fe ¢*[0, 1],
then the bound

If = Laflleo < elf"e0

is satisfied, where the number ¢ is independent of f. By consider-
ing a quadratic function that is positive on most of the range
[0, 1], show that ¢ is not less than 1/8n>. Further, show that the
value ¢ =1/8n” can be achieved by letting L,f be a piecewise
linear function.
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By applying the technique that is used to prove Theorem 6.2,
show that, if fe ‘6(2)[0, 1], then the error of the approximation
(6.23) satisfies the bound

If = Bafllo<[1/8n11If"llo.

Note that this bound holds as an equation when f is the function
{fr)=x*0=x=<1}.

By extending the proof of Theorem 6.4 show that, if fe
€0, 1], then the limit

lim [[f" = (Baf)llo =0

n—->o00

is obtained.

Let{f(x, y); 0=x =<1; 0=y =1} be a continuous function of two
variables, and let the function B,f be obtained by applying the
Bernstein approximation method to each of the variables of f.
Therefore (B, f)(x, y) has the value

non (n!)?

. : Pk

]1_ n—j k 1_ n—k (L,_)’
Zo Ko it ket (n iyt ¥ ARy A=y
where 0<x =<1 and 0=y < 1. Prove that the infinite sequence
{B.f;n=0,1,2,...} converges uniformly to f.
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The theory of minimax approximation

7.1 Introduction to minimax approximation

We recall from Chapter 1 that the best minimax approximation
from a set & to a function f in €[a, b] is the element of o that minimizes
the expression

If = pllo= max |f(x)-p(x)l, pest (7.1)

In this chapter we study the conditions that are satisfied by a best
approximation, when & is a linear space. We note that they take a
particularly simple form if & is the space 2, of algebraic polynomials of
degree at most n. In fact this form is obtained in the more general case
when & satisfies the ‘Haar condition’, which is defined in Section 7.3. In
Section 7.4 some further useful properties of best minimax approxi-
mations are proved in the case when the Haar condition is obtained,
including the result that the best approximation is unique. The Haar
condition also provides an excellent method for calculating best approx-
imations, called the exchange algorithm, which is described in Chapter 8
and analysed in Chapter 9.

The theory that is developed for the case when & is any finite-
dimensional linear space comes from asking the following question. Let
p* be a trial approximation from & to f. Can we find a change to p* that
reduces the maximum error of the trial approximation? In other words,
we seek an element p in & such that the inequality

If = (p*+6p)lew <IIf = P*[lc (7.2)

is satisfied for some value of the scalar parameter 8. Figure 7.1 gives an
example to explain this point of view.
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In the figure the function f, which is shown in each of the four parts, is to
be approximated by a straight line, so & is the space %,. Three trial
approximaticns, namely p?, p5 and p3, are shown. The vertical lines in
the figure indicate where the error function of each approximation takes
its maximum value. We see that the straight line p¥ is not optimal,
because the maximum error is reduced if the line is raised. The straight
line p3 is not optimal either, because the maximum error can be reduced

Figure 7.1. Minimax approximation by a straight line.
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by rotating the line in a counter-clockwise direction. The straight line p%,
however, is the best approximation from %, to f. We find in Section 7.3
that the characteristic property of a best straight line approximation is
that the maximum error is achieved at three points of [a, b] with alternat-
ing sign.

Figure 7.1 suggests that, to discover if a trial approximation is optimal,
one only need consider the extreme values of the error function {f(x)—
p*(x); a = x <b}. This remark is made rigorous in the next section. It
follows that we can find a function, g say, to add to the function of Figure
7.1, such that the best approximation is unchanged, but the best
approximation from %; to g is not the zero function. This remark is
important, because it shows that in general a best minimax operator from
%[a, b] to « is not a linear operator. Therefore the algorithms for
calculating best approximations are iterative procedures.

7.2 The reduction of the error of a trial approximation

We let p* be a trial approximation from & to a function f in
%la, b], and we try to improve the approximation by satisfying condition
(7.2). The set of points at which the error function

e*(x)=f(x)-p*(x), asx<b, (7.3)

takes its extreme values is important, and we call it %\ This set is
characterized by the condition

le*x) =lle*lo,  x€Zm (7.4)

We suppose first that p* is not optimal. We let (p*+6p) be a best
approximation. Hence the reduction (7.2) is obtained, and the points in
%\ satisfy the inequality

le*(x)—op(x)|<le*(x)l, xe€Zm. (1.5)

We assume without loss of generality that 6 is positive. Therefore
expression (7.5) shows that, if x is in Zy, then the sign of e*(x) is the same
as the sign of p(x). It follows that p* is a best minimax approximation
from & to f if there is no function p in & that satisfies the condition

[f&x)=p*(0)]p(x)>0,  xeZm (7.6)

In the remainder of this section the converse result is proved, namely that,
if inequality (7.6) holds for some p in &, then there exists a positive value
of @ that gives the reduction (7.2).

Because of the way in which the exchange algorithm works, we
generalize the problem of minimizing ||f—p|lw, to the problem of
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minimizing the expression
max|f(x)-p(x), ped, (7.7)

where & is any closed subset of [a, &), which may be [a, b]itself, but in the
exchange algorithm the set Z is composed of a finite number of points.
The next theorem allows & to be general.

Theorem 7.1

Let &/ be a linear subspace of €[a, b], let f be any function in
%la, b], let & be any closed subset of [a, b], let p* be any element of &,
and let Zy be the set of points of & at which the error {|f(x) —p*{(x)|; x €
%} takes its maximum value. Then p* is an element of & that minimizes
expression (7.7) if and only if there is no function p in & that satisfies
condition (7.6).

Proof. The remarks made in the first paragraph of this section prove the
‘if’ part of the theorem, when % is the whole interval [a, b]. It is
straightforward to extend these remarks to the case when Z is a subset of
[a, b]. Therefore, it remains to show that, if condition (7.6) is obtained,
then the inequality

max |e*(x)—6p(x)]<magz_( le*(x)| (7.8)

holds for some value of 8, where e* is the error function (7.3).

We let 6 be positive, and we must ensure that it is not too large. For
example, if we improve the approximation pT in Figure 7.1 by raising the
straight line approximation, then we must be careful not to raise it too far.
In order to avoid detailed consideration of the size of p when we find a
suitable value of §, we assume without loss of generality that the condition

lp(x)|=<1, asx<bh, (7.9)
holds. We have to give particular care to any values of x for which the

signs of e*(x) and p(x) are opposite. Therefore the set %, is defined to
contain the elements x that satisfy the condition

p(x)e*(x)=<0, xeZ. (7.10)

Because this set is closed, and because %, and %\ have no points in
common, the number

d =max le*(x)| (7.11)

satisfies the bound
d<ma&)§ le*(x)]. (7.12)
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If &, is empty, we define d to be zero. We prove that inequality (7.8) is
obtained when 6 has the positive value

6 =3[max [e*(x)| - d1. (7.13)

Because the set & is closed, we may let ¢ be an element of & that
satisfies the equation

le*(§) — p(£)| = max |e*(x) - 6p(x)]. (7.14)
If £ is in %, the bound
max |e*(x) — p (x)| = |e*(€)| +|6p (&) <d +6 (7.15)

is obtained, where the last term depends on expressions (7.11) and (7.9).
Hence condition (7.8) follows from inequality (7.12) and equation (7.13).
Alternatively, when £ is not in &, the signs of the terms e*(¢) and p(£) are
the same, which gives the strict inequality

le*(¢)— 6p (&) <max [|e*()], |6p(&)]]. (7.16)
Again it follows that condition (7.8) is satisfied. The proof of the theorem
is complete. 0
This theorem justifies the remark, made in Section 7.1, that, to find out
if a trial approximation is optimal, one only need consider the extreme
values of the error function. Specifically, one should ask if condition (7.6)
holds for some function p in &.

7.3 The characterization theorem and the Haar condition

If the set o of approximating functions is the space %, of
algebraic polynomials of degree at most n, then it is rather easy to test
whether condition (7.6) can be.obtained. We make use of the fact that a
function in 2, has at most n sign changes. Therefore, if the error function
[f(x)— p*(x)] changes sign more than n times as x ranges over %y, then
p* is a best approximation. Conversely, if the number of sign changes
does not exceed n, then we can choose the zeros of a polynomial in 2, so
that condition (7.6) is satisfied. This result is usually called the minimax
characterization theorem, and it is stated formally below.

It is useful to express the theorem in a form that applies to a class of
functions that includes polynomials as a special case. The usual way of
defining this class is to identify the properties of polynomials that are used
in the proof of the characterization theorem. They are the following two
conditions:

(1) If an element of 2, has more than » zeros, then it is identically
zZero.
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2) Let{{;7=1,2,...,k} be any set of distinct points in the open
interval (a, b), where k < n. There exists an element of 2, that
changes sign at these points, and that has no other zeros.
Moreover, there is a function in 2, that has no zeros in [a, b1.

The following two properties of polynomials are required later:

3) If a function in %, that is not identically zero, has j zeros, and if k
of these zeros are interior points of [a, b] at which the function
does not change sign, then the number (j+k) is not greater
than n.

4) Let{¢;j=0,1,..., n}be any set of distinct points in [a, 5], and
let {¢;;i=0,1,...,n} be any basis of ?,. Then the (n+1) X
(n+1) matrix whose elements have the values {&:(&);
i=0,1,...,n;7=0,1,..., n}is non-singular.

An (n + 1)-dimensional linear subspace & of €¢[a, b] is said to satisfy
the ‘Haar condition’ if these four statements remain true when 2, is
replaced by the set /. Equivalently, any basis of & is called a ‘Chebyshev
set’. Spaces that satisfy the Haar condition are studied in Appendix A. It
is proved that properties (1), (3) and (4) are equivalent, and that these
properties imply condition (2). It is usual to define the Haar condition in
terms of the first property. Thus & satisfies the Haar condition if and only
if, for every non-zero p in &, the number of roots of the equation
{p(x)=0; a<x<b}is less than the dimension of .

Theorem 7.2 (Characterization Theorem)

Let & be an (n +1)-dimensional linear subspace of %[a, b] that
satisfies the Haar condition, and let f be any function in €[a, b]. Then p*
is the best minimax approximation from & to f, if and only if there exist

(n+2) points {¢¥;i=0,1,...,n+1}, such that the conditions
as¢s<EF<.. . <EE L <b, (7.17)
lFEH)-p*EDN =If—p*ley  i=0,1,...,n+1, (7.18)

and

fEED) —p*(Ef) ==[f(EN) -p* (D)),  i=0,1,...,n,
(7.19)
are obtained.

Proof. We let Z be the interval [a, b] in Theorem 7.1. The present
theorem is proved in the way that is described in the first paragraph of this
section, by making use of the properties (1) and (2) that are stated above,
which hold when & satisfies the Haar condition. 0
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One important application of this theorem is to prove the minimum
property of Chebyshev polynomials. We recall from equation (4.26) that
the Chebyshev polynomial T, is the polynomial of degree n that is
defined on the interval [—1, 1] by the equation

T,.(x)=cos (n8), x =cos 8, Os8=<m. (7.20)

The minimum property is sufficiently useful to be stated as a theorem.

Theorem 7.3

Let the range of x be [—1, 1], and let n be any positive integer.
The polynomial ¢)""'T, is the member of P,, whose co-norm is least,
subject to the condition that the coefficient of x” is equal to one.

Proof. One way of identifying the required polynomial is to seek the

values of the coefficients {c;;i=0,1,...,n—1} that minimize the
expression
n-1 X
max x"+ Y cx']. (7.21)
—Isx= i=0

We see that this approach is equivalent to finding the best approximation
from 2, _; to the function {x"; —1 =< x < 1}. It follows from Theorem 7.2
that 3)" ' T, is the required polynomial, if the coefficient of x" is one, and

if there exist points {£;;i=0,1,...,n}in[-1, 1], arranged in ascending
order, such that the equations
T.&)=CD""Tlo,  i=0,1,...,n, (7.22)

hold. The recurrence relation (4.25) implies that the coefficient of x" is
correct. Moreover, the definition (7.20) shows that equation (7.22) is
satisfied if we let each & have the value cos [(n —i)7/n]. The theorem is
proved. 0

The main reason for letting Z be any closed subset of €¢[a, b] in the
statement of Theorem 7.1, is that the exchange algorithm requires the
case when Z contains just (n + 2) points. In descriptions of the exchange
algorithm it is usual to call such a set of points a ‘reference’. We use this
term also, and we let {£;i=0,1,...,n+1} be the points of the
reference. We assume that always these points are in ascending
order

asé<é&H<...<&a<bh. (7.23)

The following corollary of Theorem 7.1 is used on every iteration of the
exchange algorithm.
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Theorem 7.4
Let & be an (n + 1)-dimensional linear subspace of €¢[a, b] that
satisfies the Haar condition, let{¢;; i =0, 1, ..., n + 1} be areference, and

let f be any function in €[a, b]. Then p* is the function in & that
minimizes the expression

max |f(&)-p&)l, pedd, (7.24)

i=0,1,...,n
if and only if the equations

f(§i+1)_p*(§i+1) = _[f(&)_P*(fx)]’ i= Os 11 BRI () (725)

are satisfied.

Proof. We follow the method of proof of Theorem 7.2, except that we
let & be the point set {&;i=0,1,...,n+1}, instead of the interval
[a,b]. 0O

The function p* that minimizes expression (7.24) may be calculated
from the equations (7.25). It is usual to let k& be the value of [ f(&)—
p*(£0)], and to choose a basis of o, {¢,; /=0, 1, ..., n}say. It follows that
the coefficients of the function

p*(x)= _flo Aigi(x),  a<x<b, (7.26)
=
satisfy the equations
f(&) —éo Agi(&)=(-D'n, i=0,1,...,n+1, (7.27)
which is a linear system in the unknowns {A;;j=0,1,...,n} and h.

Because Theorem 7.4 shows that these equations have a solution for all
functions f in €[a, b], the matrix of the system is non-singular. Hence
only one element of &/ minimizes expression (7.24). A more general and
more useful method of proving uniqueness is given in the next section.

7.4 Uniqueness and bounds on the minimax error

Suppose that the conditions of Theorem 7.2 hold, that p* and ¢*
are both best minimax approximations from & to f, and that conditions
(7.17), (7.18) and (7.19) are satisfied. We let r* be the function (g*—p*),
and we consider the numbers

r*E =€ —p*(ENI-1fEH) ~a*(¢N)],
i=0,1,...,n+1.  (7.28)

Because | f — ¥l and ||f — p *|l are equal, it follows from equation (7.18)
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that either r*(£¥) is zero, or its sign is the same as the sign of [f(¢F)—
p*(¢F)]. Hence equation (7.19) provides information about the signs of
the terms of the sequence {r*(¢F);i=0,1,..., n+1}. It can be deduced
from this information that r* is identically zero. Hence the best minimax
approximation from & to f is unique. The method of proving that r* is
identically zero is a general one that has several applications. Therefore it
is stated in the following theorem.

Theorem 7.5
Let r be afunctionin €[a, b],andlet{&;i=0,1,...,n+1}bea
reference, such that the conditions

(-1'r(&)=0, i=0,1,...,n+1, (7.29)
are satisfied. Then r has at least (n + 1) zeros in [q, b], provided that any

double zero is counted twice, where a double zero is a zero that is strictly
inside [a, b], at which r does not change sign.

Proof. Let # and # be the sets
I={i:r(&)#0, i=0,1,...,n+1}}
F={j:r&)=0, j=0,1,...,n+1})
and let n(¥#) and n(¥) be the number of elements in each set. The
theorem is trivial if n(#) is zero or one. Otherwise we consider the
number of zeros in the interval [&, & ], where k and [ are both in %, and
where no other element of # is in the range [k, /]. Condition (7.29)
implies that the numbers r(&.) and r(&) have the same sign if (/ — k) is
even, and they have opposite signs if (! — k) is odd. Hence the number of
zeros of r in the interval [£, &] is at least one more than the number of
points of the set {; j€ #} that are in this interval, provided that any
double zero is counted twice. Because the number of pairs [&, &] that
have this property is [n(#) — 1], it follows that the total number of zeros of
r in [a, b] is at least [n(F) +n(¥)—1], which is the required result. 0O
Hence we obtain the uniqueness theorem for best approximation in the
co-norm.

(7.30)

Theorem 7.6

Let & be a linear subspace of €[a, b] that satisfies the Haar
condition. Then, for any f in é[a, b], there is just one best minimax
approximation from & to f.

Proof. The remarks in the first paragraph of this section and Theorem
7.5 imply that, if p* and q* are both best approximations, then the
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function (p* —g*) has at least (n +1) zeros in [a, b], provided that any
double zero is counted twice. It follows from property (3) of Section 7.3,
which is obtained when the Haar condition is satisfied, that the functions
p* and g* are the same. [

Another interesting property of the Haar condition, which is the
subject of Exercise 7.9, is that, if o/ is any finite-dimensional linear
subspace of €[a, b] that does not satisfy the Haar condition, then there
are functions f in %[a, b] that have several best approximations in /.

Theorem 7.5 is also useful for obtaining lower bounds on the least
value of expression (7.1). Suppose that an iterative method for calculating
a best approximation produces a trial approximation p*, and that the
conditions (7.17), (7.18) and (7.19) are almost satisfied. Then we usually
have available a reference {£&;;i=0, 1, ..., n+1}, such that the signs of
the terms {f(&)—p*(&);i=0,1,...,n+1} alternate. In this case the
following theorem applies.

Theorem 7.7
Let the conditions of Theorem 7.2 hold, let p* be any element of
A,andlet{£&;i=0,1,...,n+1}be areference, such that the condition
sign [f(&i+1) —p™(&+1)]= —sign [f(&) —p™(&)],
i=0,1,...,n, (7.31)

is satisfied. Then the inequalities
. N ¥ < mi N
,omin If(&)—p (§.)|<x:1elgi Jmax If(&)—p(&)l

----- =0,1,...,n+1
<min |f - plle

<lf-p*lo (7.32)
are obtained. Moreover, the first inequality is strict unless all the numbers
{If(&)—-p*&);i=0,1,...,n+1} are equal.

Proof. The third inequality of expression (7.32) holds because p* is in s,
and the second one holds because the reference is a subset of [a, b]. In
order to prove the first inequality, we suppose that there exists a function
q* in o that satisfies the condition

omin (&) —p* @)= _max [f(&)—q*(&)l. (7.33)

0,1,..., n+1

If g* is equal to p*, then expression (7.33) shows that the numbers
{if(&)—p*&)|;i=0,1,...,n+1}are all the same. Thus the first part of
condition (7.32) can hold as an equation. Alternatively, let us suppose
that p* is not equal to g*, but that inequality (7.33) is satisfied. As in the
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first paragraph of this section, we let #* be the function (g* — p*). Because
condition (7.33) implies that the numbers (7.28) have the same sign
properties as before, we deduce from Theorem 7.5 and from the Haar
condition that the functions p* and q* are the same, which is a contradic-
tion. The theorem is proved. [

It is useful to note that, if p* is the best minimax approximation from s/
to f, and if the reference in the statement of the last theorem is the set of
points {£¥;i=0, 1, ..., n+1}that occurs in conditions (7.17), (7.18) and
(7.19), then all the inequalities of expression (7.32) are satisfied as
equations.

7 Exercises

7.1 For any f in €[a, b], let X (f) be the best minimax approximation
in 2, to f. Construct an example to show that the operator X is
not linear.

7.2 Let &f be an (n +1)-dimensional linear subspace of ¢[a, b], let
{¢i;i=0,1,...,n}be abasis of &, let p* be a best approxima-
tion from & to a function f in €[a, b], and let Z\; be the set that is
defined by equations (7.3) and (7.4). Prove that, if &\ contains
just the discrete points {£;;j=1,2,...,r}, and if H is the (n +
1) X r-dimensional matrix whose elements have the values
{6:(¢);i=0,1,...,n;j=1,2,...,r}, then the rank of H is less
than r.

7.3 Let & be a finite-dimensional linear subspace of €[a, b], let p*
be a trial approximation from & to a function f in €[a, b], and let
Zwm be the set that is defined by equations (7.3) and (7.4). Prove
that p* is a best approximation from & to f, if there exist points
{¢:;i=1,2,...,r} in %y and non-zero multipliers {o;;j=
1,2,...,r}, such that, for all functions ¢ in &, the equation

T o(&)=0

holds, and such that the sign conditions

a'l[f(gl)_p*(fl)]B(L j=1’2’-'-9r’
are satisfied.

7.4 Let n be a positive integer, and let &/ be the linear space of
dimension (2n+1) that is spanned by the trigonometric
functions {cos (jx),—mr+e<xs<w-¢;j=0,1,...,n} and
{sin(jx), —mr+esxsm—-¢;j=1,2,...,n}, where ¢ is a
constant from the interval [0, 7). Prove that & satisfies the Haar
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condition if ¢ is positive. By considering the case when ¢ is zero,
show that conditions (1) and (2) of Section 7.3 are not
equivalent.

Calculate the best approximation to the function {f(x) = |x +3|;
—1=x =1} by a quadratic polynomial.

Let the conditions of Theorem 7.6 be satisfied. Prove the
theorem by showing that, if g* and r* are best approximations
from & to a function f in €[a, b], and if £ is any solution of the
equation |f(¢) —p*(&)|=|f —p*||lw, where p* is the approxima-
tion 3(q* + r*), then g*(&) is equal to r*(¢).

Let of be the space P, let f be the function {f(x) = x*;0<sx=<1)},
and let the points {&;i=0,1,2,3} have the values & =0.0,
£,=0.3, £=0.8 and &3 =1.0. Calculate the polynomial p* that
minimizes expression (7.24). Hence the first line of expression
(7.32) is satisfied as an equation. Calculate all the terms
of inequality (7.32), using Theorem 7.3 to obtain the least
maximum error d* =min {||f —pllw; p € #}. You should find
that expression (7.32) gives close upper and lower bounds
on d*.

Show that the three-dimensional linear space & that is spanned
by the functions {¢o(x)=1;—tm<sx<im}, {di(x)=
cos 2x); —smr<x=<3m} and {p2(x)=sin 3x); —imr<x<im}
satisfies the Haar condition. It is sufficient to prove that property
(4) of Section 7.3 is obtained. Show also that there is no function
in & that is zero at the left-hand end of the range, —&m, and that
has no other zeros. It is most unusual for a space that satisfies the
Haar condition to have this property.

Let &/ be an (n + 1)-dimensional linear subspace of €[a, b] that
does not satisfy the Haar condition. By using condition (4) of
Section 7.3 and Exercise 7.3, show that there exists f in €[a, b]
and a best approximation p* from & to f, such that the set
Im={x:|f(x)—p*(x)|=|lf —p*|lo} contains fewer than (1 +2)
points. Let j be a non-zero function in & that is zero at the points
of ¥m. By modifying f if necessary, deduce from Exercise 7.3
that it is possible for (p* + 6p) to be a best approximation from </
to f for a range of values of the number 6, which proves that not
every element of €[a, b] has a best minimax approximation in <.
In a discrete minimax calculation the numbers {f;;i=
1,2,...,m}and{¢;;i=1,2,...,m;j=0,1,..., n}are given,
and one requires the values of the parameters
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{A;;j=0,1,..., n}that minimize the expression
max (fi— ¥ il
i=1,2,..., m =0

Investigate the relevance of the theory of this chapter to this
calculation. Hence show that the least value of the expression

max [|2—4A1—5X3],[3—5X,—6A|, |4 —61;—8A,|]

is equal to Z



8

The exchange algorithm

8.1 Summary of the exchange algorithm

Let f be a function in €[a, b], and let o be an (n +1)-dimen-
sional linear subspace of €[a, b] that satisfies the Haar condition. The
exchange algorithm calculates the element of & that minimizes the
maximum error

If =pllo= max |f(x)—p(x), pes (8.1)

asx<=s

Instead of trying to reduce the error of each trial approximation, the
algorithm adjusts a reference {£&;;i =0, 1, ..., n+1},so that it converges
to a point set {&F;i=0,1,...,n+1}, that satisfies the conditions of
Theorem 7.2. The adjustments are made by an iterative procedure.

In order to begin the calculation, an initial reference is chosen. It can be
any set of points that satisfies the condition

asé<gG <. . <Eash, (8.2)

but a particular choice that is suitable when & is the space &, is given in
Section 8.4. At the start of each iteration a reference is available that is
different from the references of all previous iterations. The calculations of
each iteration are as follows.

We let {&;i=0,1,...,n+1} be the reference at the start of an
iteration. First the function p in & that minimizes the expression
max |f(&)-p(&)l, pe 4, (8.3)
i=0,1,..., n+1

is calculated. Theorem 7.4 shows that the coefficients of p may be found
by solving the linear system of equations

f(fn)_l’(f:)=(_1)lh, i=0, 1;-'-,n+1a (8-4)
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where, as in equation (7.27), k is also defined by the linear system. It
follows from Theorem 7.7 that the bounds

| <lf - p o =<IIf =Pl (8.5)
are satisfied, where p* is the required best approximation from &/ to f. In
order to make use of the right-hand bound, and in order to obtain a
suitable change to the reference, the error function

e(x)=f(x)—p(x), asx<b, (8.6)
is considered.

A typical error function in the case n = 3 is shown in Figure 8.1. We see
that equation (8.4) is satisfied, and that consequently ¢ has at least n
turning points. The positions of the extrema, which are called 1, 1, and
713 in the figure, are estimated by evaluating the error function at several
points of [a, b]. It is necessary in practice to obtain these points automa-
tically in an efficient way. Suitable methods are based on local quadratic
fits to the error function, but we assume that the abscissae of the extrema
can be found exactly. We let n be a point that satisfies the equation

Ifm) = p(| =l = pllo- (8.7)
The calculation finishes if the difference

8 =|f(n)—p(n)|-|n| (8.8)
is sufficiently small, because inequality (8.5) implies the bound

If = plloo <lf = p*|lo + 8. (8.9)

Otherwise the reference is changed in order to begin another iteration. In
the ‘one-point exchange algorithm’ the new reference, {£7; i=0,
1,...,n+1} say, contains n and (n+1) of the points {£&;i=0,1,...,
n +1}, which are specified in the next section. The most important

Figure 8.1. An error function of the exchange algorithm.
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property of the change of reference is that the quantity ||, which is called
the levelled reference error, increases strictly monotonically from itera-
tion to iteration.

Because it is convenient to regard the levelled reference error as a
function of the reference, we use the notation

h(fO’ 61" . "£n+1)=|h|- » (8.10)
It is helpful to take the point of view that the purpose of the change of
reference is to increase the value of i (&, &1, . .., &,+1). Because expres-

sion (8.8) is small only if the levelled reference error is close to the bound
If-p*lo of inequality (8.5), it is advantageous to make
h(&o, &1, ..., &+1) as large as possible. Thus the exchange algorithm is a
method of solving a maximization problem, where the variables are the
points of the reference. The structure of h(&o, &1, . . . , £n+1), however, is
such that it is inefficient to use one of the superlinearly convergent
algorithms that are available in subroutine libraries for general maxi-
mization calculations.

8.2 Adjustment of the reference

As in the previous section, we consider an iteration of the
exchange algorithm that calculates a function p in & by solving the
equations (8.4), and that changes the reference from {¢;i=0,1,...,
n+1} to {&; i=0,1,..., n+1}. The method of choosing the new
reference depends on Theorem 7.7, for it states conditions that imply the
increase

h(g;; §T"--’§:+l)>h(§09 517"-’§n+1) (8'11)

in the levelled reference error. The theorem shows that it is sufficient if
the conditions

sign [f(f;:l ) ‘P(f?ﬂ )]
= —sign [f(£&)—p(&)), i=0,1,...,n, (8.12)
and
lf(f:r)_P(ff)i?IhL i=0’1’--':n+1’ (8-13)
are satisfied, provided that at least one of the numbers {|f(£7)—p(&7)|;
i=0,1,...,n+1}isgreater than |4|. Hence, several ways of obtaining an
increase in the levelled reference error are suggested by Figure 8.1.
One method is to let each point of the new reference be an extremum of
the error function (8.6). In this case the error curve of Figure 8.1 gives the

reference {£o, 11, M2, M3, &4}, and we note that conditions (8.12) and
(8.13) are obtained. Methods that can change every reference point on
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every iteration are usually more efficient than the one-point exchange
algorithm, in the sense that fewer iterations are required to reduce the
number (8.8) to less than a prescribed tolerance. We give our attention,
however, to the one-point method, because it is interesting to discover
the way in which it achieves a fast rate of convergence. An advantage of
the one-point method is that the work of solving the equations (8.4) may
be reduced, by using techniques for updating matrix factorizations.

In the one-point exchange algorithm, we let £, be the point that leaves
the old reference to make room for n. For example, in Figure 8.1, because
71 is the solution of equation (8.7), we let g =1, in order that the new
reference is the set {£o, 11, &2, &3, €4} No other choice of g allows condi-
tion (8.12) to be satisfied. Provided that || is positive, it is true generally
that condition (8.12) and the value of n determine the point that leaves
the reference uniquely. The case when |k/| is zero can occur only on the
first iteration, and then any value of g gives the increase (8.11).

When |h| is positive, and when 7 is inside the interval [£o, &,+1], the
value of q is such that the signs of [ f(n) —p(n)]and [ f(&,) —p(&,)] are the
same, and no point of the old reference is between &, and . When n < &,
then £, is either &y or &,.1. We let g be zero if the signs of [ f(n) — p(n)]and
[f(&0) — p(&o)] are the same, otherwise it is necessary tolet g be (n +1). A
similar rule determines the value of ¢ when 7 is greater than &,.;.

The description of the one-point exchange algorithm is now complete.
An example of its use is given in the next section, and some of its
convergence properties are studied in Chapter 9.

8.3 An example of the iterations of the exchange algorithm

In order to show the convergence properties of the one-point
exchange algorithm, this section describes the numerical results that are
obtained when & is the two-dimensional linear space of functions of the
form

p(x)=Aox+A1x%,  Osx<m/2, (8.14)
when f is the function
f(x)=sin x, Osx<mw/2, (8.15)

and when the reference of the first iteration contains the points {0.5, 1.0,
m/2}. Because p(0) is equal to f(0) for all values of the coefficients Ao and
A1, the first point of the reference is positive throughout the calculation.
Because the only extrema of the error {f(x)—p(x); 0<x < =/2} occur
near &, and &, the point /2 never leaves the reference. Hence the error
function shown in Figure 8.2 is typical, and we let 1o and 7; be the
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abscissae of its turning points. Therefore, if another iteration is required,
its reference is either {no, &1, &} or {&, n1, &), where the one that is
chosen depends on which is the larger of the numbers |e(n0)| and |e(n,)).

Tables 8.1 and 8.2 give the levelled reference errors and the extrema
that occur on the first five iterations. We note that the levelled reference
errors increase strictly monotonically and that the values of |f —pllw
decrease monotonically. Both these sequences seem to be converging

Figure 8.2. An error function of the example of Section 8.3.
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Table 8.1. The references of the example of Section 8.3
Iteration &, & & h(éo, &1, £2)
1 0.500 000 1.000 000 1.570 796 0.013 998 30
2 0.298 938 1.000 000 1.570 796 0.016 978 02
3 0.298 938 1.104 968 1.570 796 0.017 48278
4 0.283 880 1.104 968 1.570 796 0.017 501 65
5 0.283 880 1.106 124 1.570796 0.017 50172

Table 8.2. The extrema of the error function of the example of
Section 8.3

Iteration 7o e(no) m e(m)

1 0.298 938 —-0.019 659 29 1.133 035 0.016 193 66
2 0.279792 —-0.017 03999 1.104 968 0.018391 16
3 0.283 880 —-0.017 521 06 1.106 316 0.017 48303
4 0.283 733 -0.017 501 66 1.106 124 0.017 501 83
5 0.283 733 —-0.017 50172 1.106 124 0.017 50172
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rapidly to the same limit. Hence inequality (8.5) provides excellent
bounds on the least maximum error. For example, after only three
iterations, we find that the bounds

0.017 482 78 <||f — p*|| < 0.017 521 06 (8.16)

are satisfied. Further, the maximum error of the approximation that is
calculated on the fifth iteration agrees with the least maximum error to
eight decimal places. It is highly satisfactory to obtain this accuracy in so
few iterations.

Another interesting feature of the tables is that the abscissae no and 7,
of the extrema of the error function are rather insensitive to the changes
that are made to the points of the reference. It is proved in the next
chapter that this property holds generally, and that it provides the fast
rate of convergence.

We note also that the set & of the example does not satisfy the Haar
condition, because many members of &/ have two zeros in the range
[0, 7r/2]. One of these zeros is always at x = 0. Hence the Haar condition
is obtained on the range [a, 7/2], where « is any fixed positive number
that is less than 7/2. It does not matter in this example that the Haar
condition is not obtained. In general, however, before applying the
exchange algorithm, one should check that & satisfies the Haar condi-
tion, because it is important to the remark that equation (8.4) defines the
function p that minimizes expression (8.3).

8.4 Applications of Chebyshev polynomials to minimax

approximation

A very nice property of the exchange algorithm, which is preved
in Chapter 9, is that, if the Haar condition holds, then convergence is
obtained from any initial reference. However, some initial references are
better than others, if one wishes to avoid the calculation of approxima-
tions whose errors are much larger than necessary. The problem of
choosing a good initial reference is similar to the problem of choosing
good interpolation points, which was considered in Chapter 4. When « is
the space 2,, a suitable initial reference can be obtained from the
properties of Chebyshev polynomials. Specifically, if the range of x is
[—1, 1], we let the points of the initial reference have the values

&=cos[(n+1-im/(n+1)], i=0,1,...,n+1, (8.17)

because this choice has the following property.
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Theorem 8.1

Let fe 4[—1, 1], and let p € 2, be the approximation to f that is
calculated by an iteration of the exchange algorithm, where the reference
contains the points (8.17). If f is a polynomial of degree (n + 1), then p is
the best minimax approximation from 2, to f.

Proof. Equation (8.17) and the definition of the Chebyshev polynomial
T,+1 imply the values

T,(&)=(-D"""", i=0,1,...,n+1. (8.18)
Because (f—p) is in @,.,, it follows from equation (8.4) that the error
function (f — p) is a multiple of T,.;. Therefore, by the Characterization
Theorem 7.2, p is the best approximation from #, to f. 0O

Theorem 8.1 is useful, not only when f is in ?, ., but also when f is
infinitely differentiable, and its Taylor series

fx)= Eo;%f(”(O), ~1sx<l1, (8.19)

is rapidly convergent. In this case it happens often that the error of the
best approximation from %, to f is dominated by the error that comes
from the term x""'f"*Y(0)/(n+1)!. Theorem 8.1 shows that the
reference (8.17) makes this contribution to the error as small as possible.
Moreover, by regarding the calculation of p in Theorem 8.1 as a linear
operator from €[ —1, 1] to 2,, and by finding the norm of this operator, it
follows from Theorem 3.1 that the ratio of | f — p|| to the least maximum
error is bounded by a small multiple of Inn, for all functions f in
¢[—-1,1].

The reference points (8.17) are appropriate only for the interval
[—1, 1]. For the general range [a, b}, it is helpful to recall the discussion,
given in Section 6.3, of suitable changes to the Bernstein operator when
[0, 1] is replaced by [a, b]. We again think of [a, ] as an interval on the
x-axis of the graph of the function {f(x); a < x < b}, and now we apply a
linear transformation to the variable, so that this interval can be
relabelled as[ — 1, 1]. The points (8.17) are suitable for the new range of x.
If we express them in terms of the original variable we have the values

(n+1- i)n']
(n+l1) r
i=0,1,...,n+1, (8.20)

&=3a+b)+3(b—a) cos[

which is therefore a suitable reference for the general range [a, b], when
& is the space 2,.
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Another application of Chebyshev polynomials to minimax approxi-
mation is that they provide a technique that is called ‘telescoping’. In
order to describe it, we suppose that we have an approximation

+1

px)=Co+Cix+...+Ch1x", —1=sx=1, (8.21)
from 2, ., to afunction f in €[ — 1, 1], but that there is a possibility that an
approximation from ?, may be sufficiently accurate. For instance, we
may have the bound

lr-pli=<e, (8.22)

but we may be able to accept any approximation p that satisfies the
condition

If - pll<e, (8.23)
where ¢ is greater than £. It follows from the triangle inequality for norms
that p is an adequate approximation if the bound

lp—pll<e—é (8.24)
is obtained. This inequality is useful because it gives some freedom in the
approximating function that does not depend on f£. In particular we ask
whether it allows p to be in ?,. Theorem 7.3 shows that the answer is
affirmative if and only if the condition

len il @ Turill<e —& (8.25)

holds. Therefore, because the norm of T, is one, it is appropriate to test
the inequality

|€ns1] <2"( — ). (8.26)
If it is satisfied, then p may be replaced by the approximation

P=P—Cnr1@) " Tos1, (8.27)
which is in 2,. Hence we obtain the bound

If —pl<&+@)"|Ensal, (8.28)

which may allow the procedure to be repeated to give a sufficiently
accurate approximation in 2, _;.

8.5 Minimax approximation en a discrete point set

It happens sometimes that it is not possible or not convenient to
calculate the function f in €[a, b], that is to be approximated, at any point
of the range [a, b]. Instead f may be known on a set of points {x;; i =
1,2,..., m}, that are in ascending order

a<x;<x2<...<xn<b. (8.29)
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In this case the function p in & that minimizes the discrete maximum
error

=Ilnzax |f(x.) _P(Xi)i, ped, (8.30)

may be required. If & is a linear subspace of €[a, b] that satisfies the Haar
condition, and if m is greater than the dimension of &/, then the exchange
algorithm is an excellent procedure for calculating this approximation.
We let each reference be a subset of {x;;i=1,2,...,m}. On each
iteration the equations (8.4) are solved to define the trial approximation

p. Instead of expression (8.5), the bounds

lal< max |f(x)—p*(x)l< max |f(x)-p(x)| (8.31)
hold, where p* is still the required approximation. Now the point that is
brought into the reference is an element of the set {x;; i=1,2,...,m}
that satisfies the equation

If(m)—p(n)|= _max [f(x) = p(x:), (8.32)

instead of equation (8.7). The procedure for changing the reference is the
same as before.

One advantage of the calculation in the discrete case is that it is much
easier to prove convergence.

Theorem 8.2
Let &/ be a finite-dimensional subspace of €[a, b] that satisfies
the Haar condition. Let {x;;i=1,2,..., m} be a set of distinct points

from [a, b], where m is not less than the dimension of . For any f in
%la, b}, let the one-point exchange algorithm be applied to calculate the
element of & that minimizes expression (8.30). Then the required
approximation to f is obtained in a finite number of iterations.

Proof. The calculation ends if both parts of expression (8.31) are
satisfied as equations. Otherwise the procedure for changing the
reference causes the levelled reference errors to increase strictly mono-
tonically. The number of different levelled reference errors is at most the
number of different references, but this number is finite. Therefore the
calculation of the algorithm is a finite process. U

It would not be sensible to obtain from the theorem an upper bound on
the number of iterations of the algorithm, because the bound would be
very pessimistic. Instead, the main value of the theorem is to show that
the exchange algorithm terminates in an important special case, provided
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that one takes suitable precautions against the effects of computer
rounding errors.

Because there is a need sometimes to solve minimax approximation
calculations when & does not satisfy the Haar condition, it is useful to
note that, in the discrete case, the calculation can be expressed as a linear

programming problem. Welet{¢;;j=0, 1, ..., n}beabasis of &, and we
express a general element of & in the form
p= _ZO A (8.33)
iz

The least value of expression (8.30) is the smallest real number @ that
satisfies the conditions

—0Sf(x,-)— z A,¢,~(xi)$0, i=1,2,...,m, (834)

j=0
for some values of the coefficients {A;;j=0,1,..., n}. Therefore the
variables of the linear programming calculation are 6 and {A;; j=
0,1,...,n}, the objective function is 6, and the constraints are the
conditions (8.34). The final values of the variables {A;; j =0, 1, ..., n}are

the coeflicients of the function in &/ that minimizes expression (8.30).

Basically the one-point exchange algorithm is a standard linear pro-
gramming procedure for solving the dual version of the linear program-
ming calculation that has just been mentioned. However, the Haar
condition is useful, because it allows the point that leaves the reference to
be found from the sign properties of the current error function, which
gives a geometric point of view of the algorithm. Several advantages are
lost if one supposes instead that minimax approximation is a special case
of linear programming. In particular it is less easy to make use of the fact
that the functions f and p are in %[a, b], which is important to the
convergence theory of the next chapter.

8 Exercises

8.1 Let the exchange algorithm be applied to calculate the best
approximation from %, to a function f in 4[a, b]. Prove that the
levelled reference error (8.10) is the modulus of the divided
difference f[&o, &1, .. ., £,+1] multiplied by a number that is
independent of f. In particular, show that when n = 1 the levelled
reference error is the expression

3(&— E0)(&2— EIféo, &1, £2]-

8.2 The exchange algorithm is applied to calculate the best approx-
imation from; to a convex function in €[a, b]. (The function f is
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8.8
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convex if, for any xo and x; in [a, b] and any 6 in [0, 1], the
inequality

f(6x0+[1—6]x1) < 6f(x0) +(1—60)f(x1)

is satisfied.) Show that, if the initial reference includes the points
&o=a and &, = b, then at most two iterations are required.
Show that the best approximation from %, to the function
{f(x)=144/(x +2); 0<x <6} is the quadratic {p*(x)=69—
20x +2x%; 0<x <6}, and that the extreme values of the error
function occur at the points ¢§ =0, ¢¥ =1, £5 =4 and ¢ =6.
Let the exchange algorithm be used to calculate p*, and let the
reference points of an iteration have the values £,=0, &1 =1+a,
& =44 B, £&3=6. Prove that, if @ and B are so small that one can
neglect terms of order a?, aB and 32, then the function {p(x);
0 =< x < 6} that satisfies equation (8.4) is equal to p*.

Let the iterations of the one-point exchange algorithm calculate
the sequence of approximations {px; k=1,2,3,...} from a
linear space & to afunction f in €[a, b]. Construct an example to
show that the errors {|f —pio; k=1,2,3,...} do not always
decrease monotonically.

Let n be a non-negative integer. Show that the definition of the
approximation p to f in Theorem 8.1 can be regarded as a linear
operator from 4[—1, 1] to 2,. Show also that, when n =2, the
co-norm of this operator has the value 3.

A polynomial approximation {p(x); —1=<x =< 1} to the function
{fx)=In(1+3x); —1sx<1} is required that satisfies the
condition ||f —pll=0.01. One method of calculation is to take
sufficient terms in the Taylor series expansion of f about x =0,
and then to reduce the degree of the polynomial by the tele-
scoping procedure that is described in Section 8.4. Show that this
method gives a polynomial of degree three.

Apply the discrete version of the one-point exchange algorithm
to calculate the best approximation from %; to the following
seven function values: f(0)=0.3, f(1)=4.2, f(2)=0.1, f(3)=
3.4,f(4)=5.7,f(5)=4.9, and f(6) = 5.7. Let the initial reference
be the set of points {0, 3, 6}.

Let &f be a linear subspace of €[a, b] that satisfies the Haar
condition, and let the one-point exchange algorithm be applied
to calculate the best approximation from & to a function f in
%la, b]. Let p, and pi.1 be the approximations to f that are
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calculated by any two consecutive iterations of the algorithm,
and let £ be any point that is in the references of both iterations.
Prove that the differences [ f(£) — pi (£€)] and [ f(£) — pr+1(€)] have
the same sign.

Find an extension to the one-point exchange algorithm for the
following calculation. Let &¢ be an (n +1)-dimensional linear
subspace of 4[a, b] that satisfies the Haar condition, let {{;; i =
1,2,..., 1} be fixed points in [a, b]where 1 <!/<n,and let f be a
function in €[a, b]. Calculate the elenient of & that minimizes
the error {||f — pllw; p € o} subject to the interpolation conditions
{p)=f();, i=1,2,...,1}. One difficulty in the extension is
finding a suitable rule for the change of reference. It is helpful to
preserve the sign properties that are the subject of Exercise 8.8.
Investigate the following extension to the exchange algorithm for
the case when & is an (n + 1)-dimensional subspace of %[aq, b]
that need not satisfy the Haar condition. Let each reference
contain (n+3) points. Given the reference {£&;i=0,1,...,
n +2}, let p, be the function in & that minimizes the expression

max If&)—p&)l, ped

i=0,1,..., n

Let £, be the point such that p, also minimizes this expression
when the range of i excludes the value i = gq. The reference for
the next iteration is obtained by replacing £, by a number 7 that
satisfies the equation |f(n) — p«(n)| =|If — pi/lo. Because bounds
of the form (8.5) are still valid, the procedure continues until the
bounds show that sufficient accuracy is obtained.
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The convergence of the exchange algorithm

9.1 The increase in the levelled reference error
The method of proof of Theorem 8.2 depends so strongly on the
fact that the number of different references is finite in the discrete case,
that it is not useful for analysing the convergence properties of the
one-point exchange algorithm that is described in Sections 8.1 and 8.2,
where the purpose of the calculation is to obtain the element of &/ that
minimizes the maximum value of the error function on the interval
a<x=<bh. We begin the analysis of the continuous case by finding an
expression for the increase in the levelled reference error. This work gives
an alternative proof of part of Theorem 7.7.
The levelled reference error is defined by the equations (8.4), but these
equations also include the unknown coefficients of the approximation p.

In order to remove this dependence, we let {¢;;j =0, 1, ..., n} be a basis
of o, and we eliminate the coefficients {A;;j=0,1,...,n} from the
equations

f(fi)__ZO)‘jd’j(fi):(_l)ih: i=0,1,...,n+1. 9.1)

i=

Because there are (n +2) points in a reference, there exist multipliers
{o:;i=0,1,..., n+1}, not all zero, that satisfy the conditions

n+1

I od()=0, j=0,1,....n. 9.2)
Hence 4 is defined by the equation

n+1 i n+1

Zo (_1)l0'ih = Z aif(gi)' (9-3)

i= i=0
We require the properties of the numbers {o; i =0, 1,..., n + 1} thatare

given in the next theorem.
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Theorem 9.1

Let &f be an (n + 1)-dimensional linear subspace of €[a, b] that
satisfies the Haar condition, let {¢;;i=0,1, ..., n +1} be a set of points
from [a, b] that are in ascending order

a<fH<E< <€ <b, (9.4)
andlet{o;;i=0,1,...,n+1}be aset of real multipliers, that are not all

zero, and that satisfy the equation

n+1

.QUW@9=Q (9.5)

for all functions p in /. Then every multiplier is non-zero, and their signs
alternate.

Proof. Let k be an integer in [0, n]. Because of the fourth property of
linear spaces that satisfy the Haar condition, given in Section 7.3, we may
let p be the element of &f that is defined by the interpolation conditions

p(&)=0, i=0,1,...,n+1, i#k  i#k+1, (9.6)
and

p(&)=1. 9.7
It follows from condition (1) of Section 7.3 that equation (9.6) gives all the
zeros of the function p. Hence p(&.1) is positive. Because the choice of p
and equation (9.5) imply the identity

okt oks1p(€+1) =0, (9.8)
it follows that either o and o are both zero, or they are both non-zero
and their signs are opposite. This statement holds for k=0, 1,...,n.

Therefore the theorem is true. 0O
We deduce from the theorem and from equation (9.3) that the levelled
reference error has the value

n+1 n+1
h(§0’ gly-- §n+1)_ = o'lf(fl)l/ Z |0'1

n+1
-|T etrer-p@)| /T 0k 09
where the last line depends on equation (9.5). Suitable values of the
multipliers {o;; i =0, 1, ..., n + 1} may be obtained from the co-factors

of the matrix of the equations (9.2). We make the definition
g; = (_1)' det [q)(£O) gl, v ey fi—ly §i+1, veey fn+1)]’
i=0,1,...,n+1, (9.10)
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where ®({o, {1, ..., ¢,) is the square matrix whose elements are the
numbers {¢;(£;);i=0,1,...,n;7=0,1,..., n}. The fourth property of
Section 7.3 states that each o; is non-zero. Thus the first line of equation
(9.9) expresses the levelled reference error in a way that is independent
of p.

In order to relate h(&s, &1, ..., Ens1) tO h(&o, &1, . . ., Envt), Where we
are using the notation of Section 8.1, we let {o; ;i=0,1,...,n+1} be
the numbers that are obtained by replacing the old reference points by the
new reference points in the definition (9.10). Therefore equation (9.9)
gives the value

n+1
T o [f(&) -p(e)]
h(€, €1, ..y En) =———5 , (9.11)
L o]

i=0
where p is any element of &f. We let p be the approximation that is defined
by equation (8.4), and we recall that the new reference satisfies the sign
conditions (8.12). It follows from Theorem 9.1 that the numerator of
expression (9.11) has the value

n+1
Z o [F(&) —p (D] (9.12)

Now, in the one-point exchange algorithm, |f(£&;)—p(&7)| is equal to
h(&o, &1, .. ., €n41), unless & is the point 7 that satisfies equation (8.7), in
which case |f(¢7) —p(&])|is equal to ||f — p||. We let &/ be the point of the
new reference that is equal to n. Hence the new levelled reference error is
the expression

h(§0+’ fr, sees §:+1)
n+1
Mo 61,60 T, o717l

i*r

= . (9.13)

n+1 .
L |oil
i=0

This result provides the alternative proof of the statement that the
levelled reference errors increase, if the calculation of the exchange
algorithm continues because the right-hand side of expression (8.5) is
greater than the left-hand side.

9.2 Proof of convergence
It is straightforward to deduce from equation (9.13) that the
functions p in &, that are calculated by the iterations of the exchange
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algorithm, converge to the best minimax approximation from & to f,
provided that each |o; | is bounded away from zero. This condition is
satisfied, but in order to prove it we require the technical result that is
given in the next theorem.

Theorem 9.2

Let of be an (n + 1)-dimensional subspace of ¢[a, b]that satisfies
the Haar condition, and, for any f in €[a, b], let the one-point exchange
algorithm be applied to calculate the best approximation from &« to f.
Then, for any initial reference {£;i=0,1,...,n+1}, there exists a
positive number §, such that on each iteration the points of the reference
satisfy the bounds

Em—&=6, i=0,1,...,n (9.14)

Proof. The method that is used to change the reference ensures that the
points of each reference are distinct. Therefore it is sufficient to rule out
the possibility that, for a subsequence of references, two points tend to
become coincident. We suppose that this happens and deduce a
contradiction. Because all references are in a closed and bounded subset
of "%, the hypothesis implies that there is a subsequence of the
subsequence that converges to a set {£;;i =0, 1, ..., n+ 1} that contains
at most (n + 1) distinct points.

Let || be the levelled reference error of the kth iteration. Although
|h1| may be zero, it follows from inequality (8.11) that |h,] is positive, and
that the sequence {|h|; kK =1, 2, 3, ...} increases strictly monotonically.
The contradiction that is obtained from the set {&;i=0,1,...,n+1}is
that a large value of k exists, such that || is less than |A,|.

Because the Haar condition implies that there is a function in & that
interpolates f at any (n + 1) points of [a, b], we may let p be a function in
& that satisfies the equations

p&)=f&), i=0,1,...,n+1. (9.15)

It is important to note that 5 does not depend on the iteration number.
Because f and p are both in €[a, b], there exists a positive number & such
that the inequality

|(f = P)(x2) = (f = P)(x1)| < | s (9.16)

holds, where x; and x; are any two points of [a, b] that satisfy the bound

lx1—xa| <e. (9.17)
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We let k be the number of an iteration whose reference satisfies the
conditions

|&—&|l<e, i=0,1,...,n+1. (9.18)

Therefore, we may let x; =¢; and x,= 5_, in expression (9.16), which,
because of equation (9.15), gives the inequality

lf(&)-p&)<lha), i=0,1,...,n+1. (9.19)
It follows that the bound

min _max _|f(&)—p(&) <|ha (9.20)

pesd i=0,1,..., n+1

is obtained. The required contradiction is a consequence of the fact that
the left-hand side of this expression is the definition of |h,|. O

In order to prove that |o; | is bounded away from zero, we let & be the
number that is mentioned in the statement of Theorem 9.2, and we let
% ={z} be the subset of vectors in &"*' whose components, {{;;i=

0,1,..., n} say, satisfy the conditions

a<{o<U<...<(.<b, 9.21)
and

L-Gia=8,  i=1,2,...,n (9.22)

Because & is compact, and because the functions in & are continuous, the
expression

|det ¢(£0, {11 ey {n)l, z EfZ, (9.23)

achieves its minimum value, m say, where @ is defined immediately after
equation (9.10). It follows from the fourth property of Section 7.3 and
from Theorem 9.2, that the inequality

lo:|=m >0, i=0,1,...,n+1, (9.24)
is satisfied on every iteration. Moreover, the definition (9.10) implies a
constant upper bound of the form

loll<M, i=0,1,....,n+1. (9.25)

We are now ready to use equation (9.13) to deduce the convergence of
the exchange algorithm.

Theorem 9.3

Let the conditions of Theorem 9.2 be satisfied, and let p, be the
function in & that is calculated by the kth iteration of the exchange
algorithm. Then the sequence {p,; k =1, 2, 3, ...} converges to the best
minimax approximation from & to f, p* say.
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Proof. Expressions (9.13), (9.24) and (9.25) imply the relation
(n+ DM ||+ mlf—pell

s 9.26
i (n+1)M+m (26
Subtracting || from each side gives the bound
m
icaa| = e Wi DMem [lf = pell = Al (9.27)

The sequence {|A];k=1,2,3,...} increases monotonically and is
bounded above by the condition

|acl <If=p*I=<|f—pull. (9.28)

Therefore the left-hand side of expression (9.27) tends to zero. Because
inequality (9.28) shows that [|| f — p« || — |4«|] is non-negative, it follows that
the right-hand side of expression (9.27) also tends to zero. Thus, using
inequality (9.28) once more, we find the limit

lim [If —pifl =1If —p*. (9.29)

Hence the functions {pi; k =1, 2, 3, . . .} are bounded, and therefore they
remain in a compact subset of of. Therefore the sequence {pi; k =
1,2, 3,...} has at least one limit point. Equation (9.29) shows that each
limit point is a best approximation, while Theorem 7.6 states that the best
approximation is unique. It follows, by using compactness again, that the
sequence {pr; k=1,2,3,...} converges to p*. 0

9.3 Properties of the point that is brought into the reference
There are many examples in numerical analysis of procedures
that always converge, but whose rate of convergence is so slow that the
procedure is hardly ever useful. The calculation of Section 8.3, however,
shows that the exchange algorithm can perform very well. The work of
the next two sections explains the excellent convergence properties of the
one-point exchange algorithm, assuming some differentiability and
regularity properties that are often achieved in practice.
We continue to let p* be the best approximation to f in €[a, b]from an
(n +1)-dimensional linear space & that satisfies the Haar condition. We
assume that the maximum value of the modulus of the error function

e*(x)=f(x)—p*(x), asx=<b}, (9.30)
occurs at only (# +2) points of [a, b], namely {¢};i=0,1,...,n+1}. We

assume that all functions are twice continuously differentiable. If £3 is at
a, we require the first derivative e*'(a) to be non-zero, and, if £%,, is at b,
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we require e*'(b) to be non-zero. For all other points in the set {¢f; i =

0,1,...,n+1}, we require the second derivative e*'(¢}) to be non-
zero.
We let{¢x;i=0,1,...,n+1},|hand p. be the reference points, the

levelled reference error and the calculated approximation of the kth
iteration of the exchange algorithm. Therefore the equations

If(gik)_pk(gik)l=‘hk’, i=0,1,...,n+1, (931)

are satisfied. Theorem 9.3 shows that, as k tends to infinity, p, and |A;|
tend to p* and ||f—p*| respectively, and Theorem 9.2 states that the
points of each reference stay apart. It follows from the first assumption of
the previous paragraph and from equation (9.31) that the sequence of
references [{éx;i=0,1,...,n+1}; k=1,2,3,...] converges to the set
{¢¥,i=0,1,..., n+1}. The following theorem gives some properties of
the way in which each reference is changed. These properties are used in
Section 9.4 to bound the rate of convergence of the sequence of approx-
imations {px; k=1,2,3,...}.

Theorem 9.4

Given the assumptions and using the notation that are stated in
the previous two paragraphs, there exists an integer K and a constant ¢
such that the following conditions are obtained for all k = K. Let £;,41 =
71 be the point that is brought into the reference by the kth iteration of the
exchange algorithm. If £} is one of the end points of the interval [a, b],
then &,.+1 is equal to fj. Otherwise the bound

€5 — &n]<cllp*—pell (9.32)

is satisfied.

Proof. Because the sequence of references converges to {£F;i=
0,1,...,n+1}, we may choose K so that, for all k =K, the point that
leaves the reference of the kth iteration to make room for £, .1 = n is the
point &,. Further, if ¢*'(a) is non-zero, we may also require K to satisfy
the condition that, for all k = K, there are no stationary points of the error
function {e,(x) = f(x)—pr(x); a < x < b} in a small fixed neighbourhood
of a. Hence, if £} = a, then the point £,,., is equal to £ for sufficiently
large k. A similar result holds if £¥ = b. In all other cases &qk+1 is the
abscissa of an extreme point of the error function e, that is close to f’;
when k is large. It remains to prove that in this case condition (9.32) is
obtained.
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The conditions of the theorem imply that there exist positive constants
e and d such that, if £ is one of the points {¢/;i=0,1,...,n+1} at
which e* is stationary, then the inequality
le*"(x)| =d, Er—esxsé&l+e, (9.33)
holds. We increase K if necessary so that, for k = K, the point £, x+1 is
always in the interval [¢ —¢, £} + ¢]. Therefore, because e*'(¢7) is zero,
expression (9.33) gives the bound
le* (&gu+1)| = d|€F — £icaal. (9.34)

The definitions of £,,.1, e* and e, imply that the left-hand side of this
inequality has the value

le*’(qu+1)_e;c(§qk+1)l = IP*'(qun)—P;c(qun)‘- (9.35)
Hence the condition
€5 — &ien| <1/ D)p* - picl (9.36)

is satisfied. Because & is a finite-dimensional linear space, there exists a
constant D such that the inequality

lp'l<Dlpll, pes, (9.37)

holds. It follows from condition (9.36) that the theorem is true, where c is
the number D/d. O

In order to apply the theorem, it is necessary to relate the difference
(p™ — pi) to the positions of the reference points {£,;i=0,1,...,n+1}.
The following result is suitable.

Theorem 9.5
There exists a constant ¢ such that the inequality
lp*—pell<é _ max le*(&f)—e* ()l (9.38)

is satisfied, where the notation is defined earlier in this section.

Proof. Welet{¢;;j=0,1,...,n}be abasis of &, we express p* and p;
in the form
p*x)= Y Afi(x), a<x<b
=0
g , (9.39)
pr(x)= 'ZoAi¢i(x)’ as<x<b
iz

and we recall that the numbers {A;;j=0,1,..., n}and A, are defined by
the equations

flE) = T AdyE) =Dy i=0,1..,n+1.  (9.40)
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The matrix of this system is bounded away from singularity for all values
of k, because, due to the definition (9.10), the modulus of the determinant
of the matrix has the value

n+1 R n+1
I ) (—1)'cr,-| = 3 lo=(n+2)m, (9.41)

where the last two steps depend on Theorem 9.1 and inequality (9.24).
Therefore, if we define the numbers {a;;i=0,1, ..., n +1} by the equa-
tions

ai— Y N=AB)G(Ew) = (1) (he—h%),  i=0,1,...,n+1,
i=0

(9.42)

where h* is the minimax error of the approximation p* that satisfies the
conditions

fEH-p*EH=(Dr*,  i=0,1,...,n+1, (9.43)
and if we take the point of view that the system (9.42) is used to express

the differences {A;,—AF;j=0,1,...,n} and (. —h*) in terms of the
numbers {a;; i =0, 1, ..., n+1}, it follows that the bound

max [\ -Af|<d_ max il (9.44)

is satisfied for some constant d. Equations (9.39), (9.40), (9.42) and (9.43)
imply that a; has the vaiue

a; = f(&a) —p*(&u) — (_1)%*
=e*(§ik)_e*(§?‘): i=0’ 1"' 'an+1: (9-45)
and expression (9.39) gives the bound

Ip* —pilko= I |A; = ATl (9.46)
i

Therefore, inequality (9.38) is a consequence of condition (9.44), where ¢
has the value

¢=d 1 ¢l (9.47)

The theorem is proved. 0O

9.4 Second-order convergence

In order to prove that the one-point exchange algorithm has a
second-order rate of convergence, we note that Theorem 9.4 and the
form of e* imply that, for k =K, the difference |e*(£X)—e*(&1+1)| is
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bounded above by a multiple of || p* — pi|*. Thus, for sufficiently large k,
each iteration reduces one of the terms that occurs on the right-hand side
of inequality (9.38). Because each iteration changes only one reference
point, as many as (n + 2) iterations may be necessary to make a substantial
improvement to the calculated approximations. Even then a better
approximation need not be obtained, because of the remote possibility
that at the beginning of the sequence of iterations the calculated approx-
imation is equal to p*, but this situation is not recognized because the
reference is wrong. Therefore it is not possible to prove that the sequence
{lp*—p«ll; k=1,2,3,...}converges to zero in a regular way. Instead, the
following theorem gives a useful property of the changes that are made to
the references.

Theorem 9.6

Let the conditions of Theorem 9.4 be satisfied. There exists an
integer K and a constant 8 such that the sequence {px; k=K, K +1, .. .}
converges monotonically to zero, and such that the inequality

pk+n+2gﬁpi’ k BKy (9'48)
is satisfied, where p; is the expression
pe=__max [e*(£F)—e*(&w)l. (9.49)

Proof. The discussion that is given immediately before Theorem 9.4
shows that the sequence {p,; k=K, K +1,...} converges to zero. In
order to prove that the sequence is monotonic, we let K, ¢ and ¢ have the
values that are given in Theorems 9.4 and 9.5, and we increase K if
necessary so that the bound

() pille* =<2, k=K, (9.50)
is obtained. The definition (9.49) implies the relation
pr+1<max [pg,je*(£5) —e*(&e1)l]s (9.51)

where &, .+1 is still the point that is brought into the reference by the kth
iteration of the exchange algorithm. Therefore, if £ is an end point of the
interval [a, b], the condition p,.; <p; is an immediate consequence of
Theorem 9.4. Otherwise, we use the Taylor series expansion of the
function {e*(x); a<x=<b} about the point x =¢F to deduce the
inequality

le*(£%) — e*(&u+ )| <3(&¥ — &) lle* o

<3¢7p* — pillle* "l
<3(ce)’pille* ]l
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Therefore the sequence {ox; k=K,K+1,...} does decrease mono-
tonically.

In order to establish inequality (9.48), we let k be an integer that is not
less than K, and we let g(j) be the index of the point that leaves the
reference {&;;i=0,1,...,n+1} on the jth iteration. Because the set
{q(i);j=k, k+1,...,k+n+2} contains (n +3) terms, and because at
most (n +2) of these terms are different, we let r and s be integers that
satisfy the conditions k <r<s<sk+n+2 and q(r) = q(s) = ¢, say, and we
reduce s if necessary so that the integer ¢+ does not occur in the set
{a());j=r+1,r+2,...,s—1}. The point ¢ is not equal to a or b,
because, if it were, then Theorem 9.4 would imply that the sth iteration
would fail to change the reference.

We consider the difference (&,.+1— &), which is the change to a
reference point on the sth iteration. Because & is equal to &1, expres-
sions (9.32), (9.38) and (9.49) give the bound

€541~ &sl < cllp* = psll+lp* — p.ll]
<cé(ps +pr)
< 2¢Cpx. (9.53)
We make use of the fact that &, is the abscissa of an extremum of the
error function {e;(x) =f(x) —ps(x); a <x < b} to deduce the inequality
|es(§rs+1)_es(§rs)|s%B—Ift:+l_§ls|2’ (9.54)

where S is a constant upper bound on the norms {|l¢] {l; j = K'}. Because
of the sign conditions that are satisfied when the exchange algorithm
adjusts a reference, the equation

les(fts+1)_es(£rs)l~="esHOO_IhSI (955)
holds, and we recall that ||e,|l is an upper bound on the least maximum
error |le*||lo. Therefore, expressions (9.53), (9.54) and (9.55) imply the
relation

le*lleo— || < 28 (céoe)*. (9.56)

The final part of the proof depends on the value of |A,| that can be
obtained from equation (9.9), when p is the polynomial p*. By increasing
K if necessary, so thatforalls =K andfori=0,1,..., n+1, thesigns of
e*(&,) and e*(£}F) are the same, we find the value

il =% lodle*@)l/ %, o

=Y lalle* - le*en) - e* @)/ % loi

<|le*lo— psm/[(n + 1)M +m)], 9.57)
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where the second line depends on the properties of e*, and where the last
line depends on the definition (9.49) and on the bounds (9.24) and (9.25).
Because expressions (9.56) and (9.57) imply the inequality

ps <2[(n + 1)M +m1B(cépc)*/m, (9.58)

and because the sequence {p,; k =K, K +1, ...} decreases monotonic-
ally, the theorem is proved. 0O

Theorems 9.5 and 9.6 show that the differences {|p* — pi|; k =K, K +
1,...} are less than the corresponding terms of the sequence {¢px; k =
K, K +1, ...}, which converges to zero monotonically at an (n + 2)-step
quadratic rate. This is about the strongest result that can be expected
from an algorithm that changes only one reference point on each itera-
tion, and it explains the rate of convergence that is achieved.

9 Exercises

9.1 Let the exchange algorithm be used to calculate the best approx-
imation to the function {f(x) =x*;0<x<1}bya multiple of the
function {p(x) = x; 0< x < 1}. Let £, be any interior point of the
interval [0, 1] and let &;;, = 1, where {&ox, £14} is the reference of
the kth iteration. Prove that &, =1 for all values of k, and that
the sequence {&; k=1,2,3,...} converges to the limit £ =
J2-1ata quadratic rate, which means that there is a constant ¢
such that the condition

|Eorcs1—E¥|<cléo — €,  k=1,2,3,...,
is satisfied.

9.2 Let f be a function in €"*"[a, b], let o be the space ?,, and let
h(&, &1, . .., &+1) be the levelled reference error that is defined
in Section 8.1. Deduce from Theorem 4.2 that there exists a
constant ¢ such that the bound

is obtained, which provides an easy proof of Theorem 9.2 in this
special case.

9.3 Deduce from the proof of Theorem 9.3 that there exists a
constant 6 in the open interval (0, 1) such that the inequality

(f = p*| = e +1l1< 00 = p*[| = |1
holds on every iteration of the one-point exchange algorithm.

9.4 Let &« be a finite-dimensional linear subspace of €¢[a, b] that
satisfies the Haar condition, and let f be any function in €[a, b].
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Prove that there exists a positive number ¢ such that the
inequality

If =Pl —1lf ~P*lo=cllp — P*|lw

is satisfied for all p in &, where p* is the best approximation from
A tof.

Section 8.2 mentions several procedures for changing the
reference of the exchange algorithm on each iteration. Let the
version be used that adjusts every reference point to a local
extremum of the error function {f(x) —p(x); a < x < b}, subject
to the conditions (8.12) and (8.13), and where one of the points
of the new reference is a solution n of equation (8.7). Prove that,
if the conditions of Theorem 9.4 are satisfied, then this version of
the exchange algorithm gives the quadratic rate of convergence

lp*—peall<ulp*—pd?,  k=1,2,3,...,

where u is a constant.

Let & be an (n + 1)-dimensional linear subspace of €[a, b], and
let f be a function in €[a, b]. Let [{&x;i=0,1,...,n+1}; k=
1,2, 3,...] be an infinite sequence of references such that the
numbers

bl =min _max [f&)-pll, k=1,2,3,...,
increase strictly monotonically. By considering the case when &
is the two-dimensional space that is spanned by the functions
{po(x)=x;0<x=<2} and {¢$:(x)=¢";0<x =<2}, and when f is
the function {f(x)=x% 0<x <2}, show that, if & does not
satisfy the Haar condition, then the differences [{&. 11 — & i =
0,1,...,n};k=1,2,3,...] may not be bounded away from
Zero.

In order to avoid consideration of the whole of the error function
{f(x)—p(x); a<x<b}, there is a version of the one-point
exchange algorithm in which the point that leaves the reference is
specified at the beginning of each iteration. Let this point be &,.
The new reference point is found usually by searching from &, in
the direction that causes the error |f(x)— p(x)| to increase, until
an extreme value of the error function is found. Let the condi-
tions of Theorem 9.2 be satisfied, except that this version of the
exchange algorithm is used. Let & and f be such that each error
function has exactly n extrema in the open interval (a, b). Let
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é=a and &,,,=0>b throughout the calculation, and let the
sequence of values of g be a cyclic sequence of the integers
{1,2,..., n}. Hence each new reference point is used for exactly
n iterations. Prove that the calculated approximations converge
to the best minimax approximation from & to f.

Let the conditions of Theorem 9.4 be satisfied. If an optimization
algorithm is applied to maximize the levelled reference error
h(&, &1, ... ,€6.41), then the second derivatives of
h(&, &1, ..., &+1) with respect to the reference points are
important, excluding any reference points that become fixed at a
or b. By letting p =p* in equation (9.9), in order to express
h(&o, &1, ..., &41) in terms of the differences {f(&)—p*(&);i=
0,1,...,n+1}, prove that the important off-diagonal terms of
the second derivative matrix all tend to zero.

In practice it is inefficient to try to calculate extrema of functions
exactly. Therefore investigate some useful ways of relaxing the
condition (8.7) on the point that is brought into the reference by
each iteration of the one-point exchange algorithm. It is advan-
tageous if the proposed methods preserve the convergence
theorems of this chapter.

Let the conditions of Theorem 9.4 be satisfied, except that in a
neighbourhood of one interior reference point, £ say, the error
function of the best approximaticn satisfies the equation

le*(x)| = le*(€F)| - |x —&F ",
where a is a constant in the range (0,2), and where the
singularity is due entirely to the function f. Investigate the effect

of the singularity on the rate of convergence of the one-point
exchange algorithm.
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Rational approximation by the exchange
algorithm

10.1 Best minimax rational approximation

It is noted in Chapter 3 that polynomials are not suitable for
approximating a function of the form shown in Figure 1.1, because no
polynomial that is slowly varying when |x| is large can include naturally a
sharp peak near the centre of the range of the variable. However, it is easy
to obtain this kind of behaviour by letting the approximating function
have the form

r(x) =pm{x)/qn(x), asx<b, (10.1)
where p,,(x) and g, (x) are polynomials of degrees m and n respectively.
If in the case of Figure 1.1 it is known that the slope of the function to be
approximated tends to a constant non-zero value when x becomes large,
then it is appropriate tolet m =n + 1.

We use the notation {a;;i=0,1,...,m}and {b;;i=0, 1,...,n} for
the coefficients of p,.(x) and q.(x). Thus the function (10.1) is the
expression
_aotawx+...+anx"
S S — g

Because r(x) remains unchanged if p(x) and q(x) are replaced by cp(x)
and cq(x), where ¢ is any non-zero constant, the parameters of r
provide (m +n +1) degrees of freedom. It is therefore appropriate to
compare the approximation (10.2) with a polynomial approximation
from 2, ... For example, if f is the exponential function{e*; —1<x <1},
then the least maximum error of an approximation from %, is 0.000 547,
but the least maximum error of a rational approximation whenm =n =2
is only 0.000 087. This gain in accuracy is remarkable, because the
exponential function is not particularly well suited to approximation by a

asx<). (10.2)
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rational function. In many other cases much greater improvements are
achieved.

We let ... be the set of rational functions of the form (10.2). Because
it is not a linear space, the calculation of rational approximations is harder
than the calculation of polynomial approximations. There is, however, a
useful extension of the exchange algorithm that does not require much
extra work. As in the polynomial case, a sequence of approximations is
found, that is expected to converge to the rational function that minimizes
the greatest value of the error function. References are still used, each
reference being a set of points {&; i =0,1,..., m+n+ 1} that satisfies
the conditions

as&H<E<. . <Epin1=b. (10.3)

For each trial reference the approximating function, r, say, that mini-
mizes the expression

max IF(&)—r&),  resdmm, (10.4)

i=0,1,..., m+n
is calculated, where k is the iteration number, and where .., is the
subset of ., whose elements satisfy the condition that they are
bounded in [a, b]. In the one-point exchange algorithm, one point of the
reference is replaced by a solution n of the equation

If(m) = ne(m)| = IIf = el (10.5)
where the point that leaves the reference is selected in the way that is
described in Chapter 8. Then another iteration is begun.

The following theorem gives the equations that are used for the
calculation of 7.

Theorem 10.1

Let &, be the set of rational functions of the form (10.2), whose
denominators have no zeros in [a, b], let{£&;i=0,1,...,m+n+1}bea
reference that satisfies the conditions (10.3), and let fbe in €[a, b]. If . is
in .sz_im,,, and if the equations

&+ (—D'he=f(&), i=0,1,...,m+n+1, (10.6)
hold for some constant hy, then 7, is the element of .., that minimizes
expression (10.4).

Proof. Because expression (10.4) has the value |k, | when r is equal to 7,
it is sufficient to show that, if 7 is a function in &,., that satisfies the

condition
max " If(&)—F(&)l=<|hl, (10.7)

i=0,1,..., m+n
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then 7 is equal to r,. Expressions (10.6) and (10.7) imply that each of the
terms {[f(&)—r(&)]-[f(&)—F(&)]; i=0, 1,...,m+n+1} is either
zero or has the sign of (— 1)'h,. It follows from Theorem 7.5 that the
function (7 —r,) has at least (m + n + 1) zeros in [a, b]. However, we may
express this function as the ratio of two polynomials, where the degree of
the numerator is at most (m +n). Therefore 7 is equal to r,. O

If the conditions of Theorem 10.1 hold, and if #* is a best approxima-
tion from ,.. to f, then it follows from Theorem 10.1 and from the
definition of a best approximation that the bounds

il < Ilf = <l — il (10.8)
are satisfied. Thus, again the exchange algorithm provides upper and
lower bounds on the least maximum error. Expression (10.8) shows also
that 7, is the required approximation if ||f—r|| is equal to |A.|, which
provides a sufficient condition for a best approximation that is analogous
to the Characterization Theorem 7.2.

Because only one chapter of this book is given to the study of rational
approximations, we leave many interesting questions open. For example,
we do not even prove that for each f in €[a, b] there is a best approxima-
tion from &,,.,.. In fact a best approximation always exists, and it is unique
except for common factors that may occur in its numerator and
denominator. These factors may depend on x. For example, if f is the
constant function whose value is one, then expression (10.1) is a best
rational approximation from &,,,, provided that the polynomials p,, and
g» are the same and have no roots in [a, b].

Section 10.2 considers the calculation of r, and h, by solving the
equations (10.6). In Section 10.3 the convergence of the exchange
algorithm is studied, and we find that the algorithm may fail. Therefore a
more reliable method for calculating best rational approximations is
mentioned briefly at the end of the chapter.

10.2 The best approximation on a reference

We let the coefficients of the required approximation r, be
{a;;j=0,1,...,m}and {b;;j=0,1,..., n} as in expression (10.2). We
ensure that 7, is in .., by satisfying the condition

bo+bix+...+bx">0, asx<bh. (10.9)
Therefore the system (10.6) is equivalent to the equations

% agl =11~ (-1l 3 el

i=0,1,...,m+n+1. (10.10)
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They are not linear because not only the coefficients of 7, but also the
value of h; are to be determined.

The usual way of solving these equations begins by eliminating the
coefficients {a;; j =0, 1, ..., m} by making use of the identities

m+n+1 [ m+n+1

i§0 & jl=_10 (&—&)

j#i
which are a consequence of equation (4.11). Thus expression (10.10)
provides the equations

=0, [=0,1,...,m+n, (10.11)

m+n+1

36— (- 1)hk][z bel"|

m+n+1 1
X[IHO - &)] 0, [=0,1,...,n, (10.12)

j#i
which we write in matrix form
Ab-hBb=0, (10.13)
where b is the vector whose components are the coefficients {b;;
j=0,1,...,n},and where A and B are square matrices whose elements
have the values

A '=m+2n:+1 f(f')f“l[miffl 1 ] (10 14)
lj i=0 t/st SZO (fs_fi) .
and
=m+n+1 B ; I_"H m+n+1 1
By 'Z.O (-1)'& [ sgq (fs_&)], (10.15)

for/=0,1,...,nandj=0,1,...,n
A non-zero vector b satisfies equation (10.13) if and only if the matrix
(A — hB) is singular. Therefore the only values of k; that are allowed by
the system (10.6) are solutions of the generalized eigenvalue problem
det(A —h;B)=0. (10.16)

Expressions (10.14) and (10.15) show that the matrices A and B are
symmetric. Moreover the following condition is obtained.

Theorem 10.2
The matrix B is positive definite.

Proof. We let ¢ be any vector in 2"*" that is not identically zero. It is
sufficient to prove that the inequality

¢'Be>0 (10.17)
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is satisfied. We let u be the polynomial
ux)= Y cx’, asx<b, (10.18)
i=0

and we note that not all of the numbers {u(¢&);i=0,1,...,m+n+1}are
zero, even if m =0.
The definition of B and expression (10.3) give the equation

n n m+n+1 L. m+n+1 1
T igpj+l
B = i - 1 i
¢ ¢ ,;0 I-=0CIC’ ,‘;o ( ) g sl;IO (fs _gi)

s#i

m+n+1 m+n+1

3 (cghagh 11

™M=

1
i=0 =0 lfs_"fil

m+n+1 2m+n+1 1
= ,-;o [u(&)] Sl;lo |§s_§il.

s#i

(10.19)

Therefore the theorem is true. 0O ,

The theorem implies that the matrix B has a square root BZ, which is
real, symmetric and non-singular. Therefore we may express equation
(10.16) in the form

det (B2AB i~ h, 1) =0. (10.20)

Because the matrix B _%AB 3 is symmetric, it follows that all values of A,
that satisfy condition (10.16) are real, and the number of different roots
of this equation is at most (n + 1). For each of these roots a non-zero
vector b can be found that satisfies equation (10.13), and then the
coefficients {a;;j=0, 1,..., m} are defined uniquely by the system
(10.10).

Several different rational approximations may be generated in this
way, but only one of them can satisfy inequality (10.9). To prove this
statement we let r, and 7 be two approximations that are obtained from
the solutions &, and & of equation (10.16). It follows from the equations
(10.6), and from the similar equations that define 7, that the numbers
{n(&)—F(&);i=0,1,..., m+n+1}are all zero or their signs alternate.
Therefore, if both r, and 7 have no singularities in [a, b], then the
difference (r, —F) has at least (m +n + 1) zeros. Hence r is equal to 7.

In order to reduce the time that is spent by the exchange algorithm on
calculating approximations that fail to satisfy condition (10.9), it is helpful
to carry forward from the previous iteration the number A, _;, because
usually it is a good initial estimate of the required root of equation
(10.16). One of the exercises at the end of this chapter shows that the
required root is not necessarily the one of least modulus.
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10.3 Some convergence properties of the exchange algorithm

Many of the convergence properties of the exchange algorithm in
the rational case are similar to the ones that are obtained when & is a
linear space that satisfies the Haar condition. In particular our next
theorem shows that the levelled reference errors {|h|; k=1,2,3,...}
increase strictly monotonically.

Theorem 10.3

Let the approximation 7, and the number h, satisfy the condi-
tions of Theorem 10.1, where f is a function in €[a, b], let ¢, be the error
function

e(x)=f(x)—n(x), asx<), (10.21)
and let the points {¢];i=0,1,..., m+n+1} of the reference that is

calculated for the (k +1)th iteration satisfy the following three condi-
tions: (a) they are in ascending order

asEy<E1<...<Emins1<b; (10.22)
(b) the inequalities
lee (DN =h, i=0,1,...,m+n+1, (10.23)

hold and at least one of them is strict; and (c) the signs of the numbers
{ee(£7);i=0,1,..., m+n+1} alternate. Let the number h,., and the
approximation r,.; from A,.. be defined by the equations

rk+1(€?‘)+(_1)ihk+1=f(§?—), i=0,1,...,m+n+1.

(10.24)
Then the inequality

Arcs1] > | P (10.25)
is satisfied.

Proof. Suppose that condition (10.25) is not obtained. Then expressions
(10.23) and (10.24) imply the bounds

lex1(60)| <lex ()], i=0,1,...,m+n+1, (10.26)
where ey, is the error function
exs1(X)=f(x)—resalx), asx<b (10.27)

We consider the sequence {ex (&7 ) —ex+1(£7);i=0,1,...,m+n+1} 1t
follows from expression (10.26), from Theorem 7.5, and from the
definitions (10.21) and (10.27), that the function (r..1—r) has at least
(m+n+1) zeros in [a, b]. Therefore the functions r,,; and r, are the
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same. In particular, for i =0, 1,...,m+n+1, the error |e.(¢7 )| is equal
to |ex+1(¢7 )|. Hence, because one of the conditions (10.23) is satisfied as a
strict inequality, it follows from equation (10.24) that the increase (10.25)
is obtained. This conclusion contradicts the hypothesis that is made at the
beginning of the proof. Therefore the theorem is true. 0

This theorem allows us to extend Theorem 8.2 to the rational case,
provided that on each iteration a solution of the equations (10.6) can be
calculated that satisfies condition (10.9). Hence we find that, if the
interval a < x < b is replaced by a set of discrete points, then the strategy
of forcing the levelled reference error to increase on each iteration can
provide the best approximation. Usually satisfactory convergence is
obtained in the continuous case also.

However, we noted earlier that the exchange algorithm fails occasion-
ally. The form of the failure is that sometimes none of the values of 4, that
solve equation (10.16) gives an approximating function that satisfies
condition (10.9). Its cause is closely related to the fact that, if the function

r*(x)=p*(x)/q*(x), a<x<b, (10.28)

is the best approximation to a function f from %[a, b], then sometimes the
number of different values of x that satisfy the equation

[f(x) = r*x)| = |lf — | (10.29)

is less than (m + n + 2). This case occurs only if the best approximation is
‘defective’, which means that the actual degree of p* is less than m and
the actual degree of g* is less than n.

For example, suppose that m = n =2, and that the rational function

__a0+a1x
b0+b1x’

isbounded. Let f be a function in €[a, b]such that equation (10.29) holds
for only five values of x, {&;i=0, 1, 2, 3, 4} say, where the signs of the
numbers {f(&)—r*(&); i =0, 1, 2, 3, 4} alternate. We claim that r* is a
best approximation to f. To prove this statement we suppose that 7 is even
better. The method of proof of Theorem 10.1 implies that (r* —F) is the
ratio of two cubic polynomials that has four zeros. Hence 7 =r*, which
confirms that r* is a best approximation.

In order to show that the exchange algorithm can break down, we let
m =n =1, we let the reference contain the four points{—4, — 1, 1,4}, and
we choose a function f that has the values f(—4)=0, f(-1)=1, f(1)=1

r*(x) a<x<h, (10.30)
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and f(4) = 0. This data has been chosen because the function r in ¢, that
minimizes expression (10.4) is the constant function

r(x)=3, as<xs<b. (10.31)
Therefore the conditions (10.6) are not obtained. The solutions of
equation (10.16) are the values h, = —0.4 and h, =0.4. They give the
rational approximations (1.6—0.2x)/(2—x) and (1.6+0.2x)/(2+x),
which satisfy the equations (10.6). However, both approximations are
unacceptable because they contain singularities in the range of x.

Some computer programs that apply the exchange algorithm do not
abandon the calculation when this kind of difficulty occurs. Instead they
may try different references or they may reduce the values of m or n.
‘However, there may not be a computer program of this kind that treats all
cases successfully.

10.4 Methods based on linear programming

Many of the difficulties that occur sometimes, when the exchange
algorithm is used to calculate the best rational approximation to a
function f in 4[a, b], are due to the fact that the system of equations
(10.6) is not linear in the unknowns. However, if we let & be an estimate
of the least maximum error, then the problem of finding out whether the
estimate is too low or too high can be reduced to a set of linear conditions.
Specifically, there is an approximation of the form (10.2) that satisfies the
bound

f(x)—r(x)|<h, a<x<h, (10.32)
if and only if there exist values of the coefficients {a;; i =0, 1, ..., m}and
{b;;i=0,1,...,n}such that the inequalities

q(x)>0, a<x<bp, (10.33)

and

p(x)—f(x)q(x)shq(x)}’ xeX, (10.34)

f(x)q(x)—p(x) < hq(x)
are obtained, where X is the range of x, and where p and g are the
numerator and denominator of r. Because r is unchanged if p and g are
multiplied by a constant, we may replace expression (10.33) by the
condition

qx)=6, xeX, (10.35)

where § is any positive constant.
The notation X is used for the range of x, because, in order to apply
linear programming methods, it is usual to replace the range a <x < b by
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a set of discrete points. We suppose that this has been done. Then
calculating whether an approximation p/q satisfies conditions (10.34)
and (10.35) is a standard linear programming procedure. Many trial
values of A may be used, and they can be made to converge to the least
maximum error by a bracketing and bisection procedure. Whenever A
exceeds the least maximum error, the linear programming calculation
gives feasible coeflicients for p and g, provided that the discretization of X
in condition (10.35) does not cause inequality (10.33) to fail.

This procedure has the property that, even if 4 is much larger than
necessary, then it is usual for several of the conditions (10.34) to be
satisfied as equations. It would be better, however, if the maximum error
of the calculated approximation p/q were less than 4. A way of achieving
this useful property is to replace expression (10.34) by the conditions

p(x)—f(x)q(x)< hq(x)+5}

fx)g(x)—px)<hq(x)+e)’
where ¢ is an extra variable. Moreover, the overall scaling of p and q is
fixed by the equation

bo+bil +b02+. . . +bL" =1, (10.37)

where ¢ is any fixed point of X, the value { = 0 being a common choice.
For each trial value of 4 the variable £ is minimized, subject to the
conditions (10.36) and (10.37) on the variables {a;; i=0,1,...,m},
{b;;i=0,1,..., n}and g, which is still a linear programming calculation.

It is usual to omit condition (10.35) from this calculation, and to choose
h to be greater than the least maximum error. In this case the final value
of ¢ is negative. Hence condition (10.35) is unnecessary, because
expression (10.36) implies that q(x) is positive for all x € X. If the
calculated value of ¢ is zero, then usually p/q is the best approximation,
but very occasionally there are difficulties due to p(x) and q(x) both being
zero for a value of x in X. If ¢ is positive, then the conditions (10.34) and
(10.35) are inconsistent, so & is less than the least maximum error.
Equation (10.37) is important because, if it is left out, and if the
conditions (10.36) are satisfied for a negative value of ¢, then £ can be
made arbitrarily large and negative by scaling all the variables of the
linear programming calculation by a sufficiently large positive constant.
Hence the purpose of condition (10.37) is to ensure that ¢ is bounded
below.

The introduction of & gives an iterative method for adjusting 4. A high
value of A is required at the start of the first iteration. Then p, g and ¢ are
calculated by solving the linear programming problem that has just been

xeX, (10.36)
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described. The value of 4 is replaced by the maximum error of the current
approximation p/q. Then a new iteration is begun. It can be shown
that the calculated values of 4 converge to the least maximum
error from above. This method is called the ‘differential correction
algorithm’.

A simple device provides a large reduction in the number of iterations
that are required by this procedure. It is to replace the conditions (10.36)
of the linear programming calculation by the inequalities

p(x)—f(x)q(x)<hq(x)+ eé(x)}

fx)q(x)—p(x)<hq(x)+eq(x))’
where ¢(x) is a positive function that is an estimate of the denominator of
the best approximation. On the first iteration we let §(x) be the constant
function whose value is one, but on later iterations it is the denominator
of the approximation that gave the current value of A. Some fundamental
questions on the convergence of this method are still open in the case
when the range of x is the interval [a, b].

eX, (10.38)

10 Exercises

10.1  Let f be a function in €[a, b], and let r* =p*/q* and 7 = /g be
functions in .., that satisfy the condition ||f — llo <|If = r*|lco,
where g*(x) and g(x) are positive for all x in [a, b]. Let r be the
rational function {[p*(x)+6p(x)])/[q*(x)+6G(x)]; a<x<b},
where @ is a positive number. Prove that the inequality ||f — r|lo <
lf — r*|lw is satisfied. Allowing @ to change continuously gives a
set of rational approximations that is useful to some theoretical
work.

10.2  Let r* be an approximation from &,,, to a function f in €[a, b],
and let %y be the set of points {x:|f(x)—r*(x)|=|lf = r*|w;
a <x < b}. Prove that, if 7 is a function in ... that satisfies the
sign conditions

[fx)=r*(O)AF(x)—r*(x)]>0, xeZwm,

then there exists a positive number 6 such that the approxima-
tion r, defined in Exercise 10.1, gives the reduction ||f — |l <
IIf = r*||lo in the error function. Thus Theorem 7.1 can be exten-
ded to rational approximation.

10.3  Let f be a function in €[0, 6] that takes the values f(&,) = f(0) =
0.0, f(£)=f(2)=1.0, f(&)=f(5)=1.6, and f(&3)=/(6)=2.0.
Calculate and plot the two functions in the set &4, that satisfy the
equations (10.10).
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Prove that the function {r*(x)=3x; —1<x<1} is the best
approximation to {f(x)= x*; —1<x <1} from the set 1, but
that it is not the best approximation from the set A1

Prove that, if in the iteration that is described in the last
paragraph of this chapter, the function g is the denominator of a
best approximation, and 4 is any real number that is greater than
the least maximum error, then the iteration calculates directly a
function p/q that is a best approximation.

Let r* = p*/q* be a function in &,,, such that the only common
factors of p* and g* are constants, and let the defect d be the
smaller of the integers {m — (actual degree of p*), n —(actual
degree of g*)}. Prove that, if {£; i=1,2,..., k} is any set of
distinct points in (a, b), where k < m +n —d, then there exists a
function 7 in .., such that the only zeros of the function (7 —r*)
are simple zeros at the points {£;; i =1, 2,..., k}. Hence deduce
from Exercise 10.2 a characterization theorem for minimax
rational approximation that is analogous to Theorem 7.2.

Let f be a function that takes the values f(&)=/(0.0)=12,
f&)=f1)=8, f(£&2)=f(2)=-12, and f(£&)=f(3)=-7. Cal-
culate the two functions in the set &f;; that satisfy the equations
(10.10). Note that the function that does not have a singularity in
the interval [0, 3] is derived from the solution A, of equation
(10.16) that has the larger modulus.

Investigate the calculation of the function in &/;; that minimizes
expression (10.4), where the data have the form f(&) =f(—4) =
0, f(€1)=f(—=1)=1+¢e1, f(&2) =f(1)=1+¢3, and f(&)=f(4) =
€3, and where the moduli of the numbers {¢;;i =0, 1, 2, 3} are
very small.

Let f€ €[a, b], let X be a set of discrete points from [a, b], and
let r*=p*/q* be a best approximation from &,,, to f on X,
subject to the conditions {g*(x) >0; x € X} and g*(¢) = 1, where
{ is a point of X. Let the version of the differential correction
algorithm that depends on condition (10.36) be applied to cal-
culate r*, where A is chosen and adjusted in the way that is
described in Section 10.5. Prove that on each iteration the
calculated value of ¢ satisfies the bound

e < —(h —|If — r*|)) min g*(x).
xeX

Hence show that, if the normalization condition (10.37) keeps
the variables {b;;i=0,1,...,n} bounded throughout the
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calculation, then the sequence of values of /4 converges to
£ —r*|l

Prove that, if the points {¢;; i =0, 1, 2, 3} are in ascending order,
and if the function values {f(&); i =0, 1, 2, 3} increase strictly
monotonically, then one of the solutions 7, in the set &/, to the
equations (10.6) has no singularities in the range [£o, &3], and the
other solution has a singularity in the interval (¢4, &).
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Least squares approximation

11.1 The general form of a linear least squares calculation

Given a set & of approximating functions that is a subset of
%la, b], and given a fixed positive function {w(x); a < x < b}, which we
call a ‘weight function’, we define the element p* of & to be a best
weighted least squares approximation from & to f, if p* minimizes the
expression

b
j wElfx)-p(x)Pdx, ped. (11.1)

Often & is a finite-dimensional linear space. We study the conditions that
p* must satisfy in this case, and we find that there are some fast numerical
methods for calculating p*.

It is convenient to express the properties that are obtained by p* in
terms of scalar products. For each f and g in €[a, b], we let (£, g) be the
scalar product

f, g) =j w(x)f(x)g(x) dx, (11.2)

which satisfies all the conditions that are stated in the first paragraph of
Section 2.4. Therefore we introduce the norm

Ifl=(£,H%  fe%la,b], (11.3)

and, in accordance with the ideas of Chapter 1, we define the distance
from f to g to be |f—g|. Hence expression (11.1) is the square of the
distance

If-pl=(f=p.f-p)%,  pedt. (11.4)
Therefore the required approximation p* is a ‘best’ approximation from
A to f. It follows from Theorem 1.2 that, if &f is a finite-dimensional
linear space, then a best approximation exists. Further, because the
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method of proof of Theorem 2.7 shows that the norm (11.3) is strictly
convex, it follows from Theorem 2.4 that only one function in & mini-
mizes expression (11.1).

One of the main advantages of the scalar product notation is that the
theory that is developed applies, not only to continuous least squares
approximation problems, but also to discrete ones. Discrete calculations
occur, for example, when one requires an approximation to a function f in
%la, b], but, instead of being able to calculate f(x) forany x ina s<sx <b,
one can only measure the value of f(x), where the measuring process
includes a random error. Let the values of x at which the measurements
are taken be {x;;j=1,2,..., m}, let y; be the measured value of f(x;),
and let the variance of the measurement be 1/w;. If &, is the set of
approximating functions, and if the random errors have a normal dis-
tribution, then it is appropriate for statistical reasons to seek the function
p& in &£, that minimizes the weighted sum of squares

Z wily; —po(x)l’,  poe o (11.5)
=

It happens often that one minimizes this expression even when the
distribution of data errors is not normal, because the numerical methods
for calculating p§ are easy to apply when &/, is a linear space.

We wish to introduce scalar products in such a way that expression
(11.5) is analogous to the square of the distance (11.4). However, the
definition

(£,9)= T wfx)g() (1.6

is unacceptable, because in this case expression (11.3) fails to satisfy the
axioms of a norm, due to the fact that (f, f) is zero for some functions f
that are not identically zero. Instead we take note of the fact that the data
{y;;7=1,2,..., m} define a vector y in ™. For each p, in of,, we let
X (po) be the vector in ™ whose components have the values { po(x;); j =
1,2,..., m},and we let of be the set {X (po); po € Ao}, which is a subset of
AR™. Calculating the function p¢ in s, that minimizes expression (11.5) is
equivalent to obtaining the vector p* in & that gives the least value of the
sum of squares

_Zl Wi[Yi—pi]z’ ped, (11.7)

i=
where {p;;j=1,2,..., m} are the components of p. We can now let the
scalar product (i, v) have the value

(u,v)= i Wiljv; (11.8)
=1

j=
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1
for any vectors u and v in R™, and we let |u| be (4, u)2. Hence the
calculation of p* becomes a best approximation problem, where we
require to minimize the distance

ly-pl=(y-p,y-p)>, ped (11.9)

In the usual case when &, is a linear subspace of €[a, b], then &f is a
finite-dimensional linear subspace of #™. Hence Theorems 1.2 and 2.4
imply that a unique element of & minimizes expression (11.9).

Because expressions (11.4) and (11.9) are both distances in a Hilbert
space, and because some highly useful properties are satisfied when the
set of approximating functions is a linear space, we study the following
problem. Let &f be a finite-dimensional linear subspace of a Hilbert space
. For any f in 9%, calculate the best approximation from & to f.

11.2 The least squares characterization theorem

The following characterization theorem shows that the solution
to the problem that is stated in the last paragraph may be regarded as an
orthogonal projection onto the set of approximating functions, where the
elements f and g of a Hilbert space are defined to be orthogonal if the
scalar product (f, g) is zero.

Theorem 11.1

Let of be alinear subspace of a Hilbert space %, and let f be any
element of %. The point p* in & is the best approximation from & to f if
and only if the error e* = f — p* satisfies the orthogonality conditions

(e*, p)=0, ped. (11.10)

Proof. Suppose first that (e*, p) is non-zero for some p in &¢. Then the
square of the distance from (p*+ Ap) to f is the expression

If=p*—Apl? =|f—p*IF - 2A(e*, p) + A% pl7, (11.11)

where A is a real parameter. The value of A that minimizes expression
(11.11) is not equal to zero. Therefore p* is not the best approximation
from & to f.

Conversely, suppose that (e*, p) is zero for all p in &. Let g* be any
element of /. From the properties of scalar products we deduce the
equation

If—a*IP=Ilf —p*I?
=llg*I* = llp*I? - 2(f, ¢*) +2(f, p*)
=lg* —p*I+2(f—p*, p*—q%). (11.12)
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The last term is zero by hypothesis. Hence we obtain the bound
If = a*I*=1f-p*I +lq* - p*I
=(f-p*I%, (11.13)

which holds for all g* in &f. Therefore p* is the best approximation. [

Figure 11.1 presents a geometric view of this theorem. The point p* is
the best approximation from & to f. The point g* is any other point of .
The orthogonality condition is shown by the standard symbol for a
right-angle. Moreover, the first line of expression (11.13) states that
Pythagoras’s Theorem is obtained by the points of Figure 11.1, namely
the square of the distance from f to ¢* is equal to the square of the
distance from f to p* plus the square of the distance from g* to p*.

Expression (11.13) is useful in two other ways. It provides an alter-
native proof of the uniqueness of the best approximation, for it shows that
|f —q*| is larger than || f — p*| if ¢* is not equal to p*. Secondly, by letting
q™* be the zero element, we obtain the equation

A= lp* P +1lf - p*I”. (11.14)
Some interesting consequences of this equation are found later.

11.3 Methods of calculation

In order to calculate a best least squares approximation from a
linear space &/, we choose a set of functions, {¢;; =0, 1, ..., n} say, that
span &. Often a set of basis functions is present in the definition of &/. We
continue to let p* be the best approximation. Therefore we require the
values of the coefficients {c*;j=0,1,...,n}in the expression

pr=X i d: (11.15)
i

Figure 11.1. A geometric view of the least squares characterization
theorem.

S

q* /E p*
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We suppose that the elements {¢;;7 =0, 1, ..., n} are linearly indepen-
dent, which is equivalent to supposing that the dimension of & is (n +1),
in order that the problem of determining these coefficients has a unique
solution. Because every element of & is a linear combination of the basis
elements, it follows from Theorem 11.1 that expression (11.15) is the best
approximation from & to f if and only if the conditions

(q&,;f— Y c}"qﬁ,-)=0, i=0,1,...,n, (11.16)
i=0
are satisfied. They can be written in the form
L (@ )t =(,f), i=0,1,...,n (11.17)
iz

Thus we obtain a square system of linear equations in the required
coeflicients, that are called the ‘normal equations’ of the least squares
calculation.

The normal equations may also be derived by expressing a general
element of &« in the form

p= 2 cit; (11.18)
i=0
where{c;;i=0,1,..., n}is aset of real parameters. Their values have to

be chosen to minimize the expression

(F=pf-P)=(LN=2 L @ N+ T T ccldy ). (11.19)

i=0j=

Therefore, for i=0,1,...,n, the derivative of this expression with
respect to ¢; must be zero. These conditions are just the normal equations.
We note that the matrix of the system (11.17) is symmetric. Further, if

{z;;i=0,1,..., n}is a set of real parameters, the identity
r X zizi(di &) =( Yz L Z/¢j) (11.20)
i=0j=0 i=0 j=0

holds. Because the right-hand side is the square of ||} z;¢|, it is zero only
if all the parameters are zero. Hence the matrix of the system (11.17) is
positive definite. Therefore there are many good numerical procedures
for solving the normal equations. The technique of calculating the
required coefficients {cf;j=0,1,...,n} from the normal equations
suggests itself. Often this is an excellent method, but sometimes it causes
unnecessary loss of accuracy.

For example, suppose that we have to approximate a function f in
€[1, 3] by a linear function

p¥(x)=c& +cfx, 1sx<3, (11.21)
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and that we are given measured values of f on the point set {x; =i;/=
1,2, 3}. Let the databe y; =2.0 =£(1.0), y.=2.8 =f(2.0), and y; = 42=
f(3.0), where the variances of the measurements are 1/M, 0.1 and 0.1
respectively. In order to demonstrate the way in which accuracy can be
lost, we let M be much larger than ten. The normal equations are the
system

(M+20 M +50 )(c%)_(-zM+70 ) (11.22)
M+50 M+130/\ct 2M +182)° '
which has the solution
* =
c: 0.96 M/ (M +2) } (11.23)
¢T =(1.04M +2.8)/(M +2)

We note that there is no cancellation in expression (11.23), even if M is
large. In this case the values of c§ and cf are such that the difference
[p*(1.0)—y,] is small, and the remaining degree of freedom in the
coeflicients is fixed by the other two measurements of f. However, to take
an extreme case, suppose that M has the value 10°, and that we try to
obtain c§ and ¢ from the system (11.22), on a computer whose relative
accuracy is only six decimals. When the matrix elements of the normal
equations are formed, their values are dominated so strongly by M that
the important information in the measurements y, and y; is lost. Hence it
is not possible to obtain accurate values of c& and ¢¥ from the calculated
normal equations by any numerical procedure.

One reason for the loss of precision is that high relative accuracy in the
matrix elements of the normal equations need not provide similar
accuracy in the required solution {c};j=0, 1, ..., n}. However, similar
accuracy is always obtained if the system (11.17) is diagonal. Therefore
many successful methods for solving linear least squares problems are
based on choosing the functions {¢;;j =0, 1, ..., n} so that the condi-
tions

((ﬁ,‘, ¢]) = 0, l ;éj. (11.24)

are satisfied, in order that the matrix of the normal equations is diagonal.
In this case we say that the basis functions are orthogonal. When & is the
space 2, of algebraic polynomials, a useful technique for generating
orthogonal basis functions is by means of a three-term recurrence rela-
tion, which is described in the next section.
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In the example that gives the system (11.22), « is a subspace of R3, and
its basis vectors have the components

1 1
¢o=1{1| and ¢1=|2]. (11.25)
1 3

One way of making the basis vectors orthogonal is to replace ¢, by the
vector

é1=¢1—ado, (11.26)
where « has the value (M + 50)/(M +20). In this case the coeflicients of
the required least squares approximation

p*=Coo+C101 (11.27)
satisfy the diagonal normal equations
M+20 0 Co 2M+70
50M+100 || _ |~ |s2m+140) (11.28)
M+20 [\° M +20

which gives the values
Co=(2M +70)/(M +20) }
¢1=(1.04M +2.8)/(M+2)}

Of course this calculation is equivalent to the earlier one in exact
arithmetic. However, if we let M =10° again, and if the calculation is
carried out on a six-decimal floating point computer, then we avoid the
serious loss of accuracy that occurred before.

In general the use of orthogonal basis functions is recommended,
because it happens frequently that information is lost when the normal
equations are constructed. The form of the best least squares approxima-
tion when the basis functions are orthogonal is sufficiently important to be
stated as a theorem.

(11.29)

Theorem 11.2

Let & be a linear subspace of a Hilbert space % that is spanned
by the basis functions {¢;; i =0, 1, .. ., n}. If the orthogonality condition
(11.24) is satisfied, then, for any f in %, the best approximation from & to
f is the function

% = (¢j’ f)
P= L s

é;. (11.30)
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Proof. Equations (11.17) and (11.24) imply that the coefficients of the
required approximation (11.15) have the values

cF=@uDll6I,  i=0,1,...,n, (11.31)

which proves the theorem. 0O

Often the space & is defined by a sequence of independent basis
functions{¢;; i =0, 1, ..., n}, say. For example, if & is the space 2, then
¢; may be the function {¢;(x) = x';a<x<b}.Fori=0,1,...,n, welet
&; be the linear space that is spanned by the functions {¢;;j =0, 1, ..., i},
in order to describe a general method for choosing an orthogonal basis
of .

We let ¢ be the function . For i =1 we let ¢; be any member of &/
that is not in &/;_;, and we let ¢ be the best approximation from &f;_; to
¥;. We define ¢; by the equation

¢i=l/7i_¢ﬁk- (11.32)

Because Theorem 11.1 states that ¢; is orthogonal to all elements of &;_;,
the condition

(i, #)=0, j<i, (11.33)
is satisfied. Hence the functions {¢;;i =0, 1, ..., n}, that are obtained
from this construction, are an orthogonal basis of .

This construction is particularly useful if we are given an element f and
an infinite sequence of functions {¢;; i =0, 1, 2, ...} in a Hilbert space %,
and we wish to make the error ||f — p|| less than a prescribed accuracy 8,
where p is a linear combination of the first (n + 1) terms of the sequence,
and where the value of n is not known in advance, because it is to be the
smallest integer that is allowed by the required accuracy. The main
advantage of the construction is that the definition of the orthogonal
functions {¢;;i=0,1,2,...} does not depend on n. Hence the
coefficients (11.31) are also independent of n. For i=0,1,2,..., we
define pf to be the function

(@5 f)

pf = Z T & (11.34)

i=o [l&;]
Because Theorem 11.2 shows that this function is the best approximation
to f from the linear space ; that is spanned by the functions {¢;; j =

0,1,...,i}, we require n to be the least integer that satisfies the
condition

If-pkll<s. (11.35)



The recurrence relation for orthogonal polynomials 131

In fact it is not necessary to calculate each of the approximations
(11.34), because equation (11.14) implies that expression (11.35) is
equivalent to the inequality

I I*= 1A ~8 (11.36)

Therefore we have only to choose n so that | p| is sufficiently large.
Because the orthogonality conditions and the definition (11.34) imply the
equation

oI = =X (@ N/l (11.37)
i=
it follows that the required value of n can be calculated by summing the
terms {(¢;, f)2/|l¢,||2' i=0,1,2,...}, until the bound

((b]’
P 6

is satisfied.

2 /Ilfllz—é (11.38)

11.4 The recurrence relation for orthogonal polynomials

An important special case of least squares approximation is when
the set of approximating functions & is the linear space %, of all
polynomials of degree at most #. In the case of approximation on a point
set, where the scalar product has the value (11.6), we take the point of
view that ‘polynomial’ means the vector that is obtained by evaluating the
polynomial at the discrete points {x;; j =1, 2, ..., m}. This point of view
is tenable when the number of different discrete points is greater than #,
so we assume that this condition is satisfied, in order that the work of this
section is relevant to both continuous and discrete least squares approx-
imations.

Orthogonal polynomials can be constructed by the method that is
described immediately after Theorem 11.2, where the basis functions are
{:(x)=x";i=0,1,...,n}. A version of this construction, that comes
from a particular choice of the function ¢; in equation (11.32), is highly
useful in practice, because it gives the following three-term recurrence
relation.

Theorem 11.3
Let ¢o be the constant function

do(x)=1, as<x<bh. (11.39)
For j =0, let a; be the scalar

a; = (¢, x¢))/ b, (11.40)
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where x¢; is the polynomial {x¢;(x); a <x <b}. Let ¢, be the linear
function

d1(x) = (x —ag)dolx), asx<b. (11.41)
For j=1, let B; be the scalar

B; =6l /b1l (11.42)
and let ¢;.1 be defined by the three-term recurrence relation

di1(x) = (x —a;)p;(x) — Bid;-1(x), asx<b. (11.43)

Then, for each j, the function ¢; is a polynomial of degree j, the coefficient
of x’ being unity. Moreover, the polynomials {¢;;j=0,1,2,...} are
orthogonal.

Proof. The first statement of the theorem is an immediate consequence
of the definitions (11.39), (11.41) and (11.43). To establish the ortho-
gonality conditions, we show that the definitions (11.41) and (11.43) are
equivalent to the construction (11.32) where ; is the polynomial x¢;_.
Because we proceed by induction, we assume that the functions {¢;; i =
0,1,...,j}, defined in the statement of the theorem, are orthogonal.
Therefore, by applying Theorem 11.2 to equation (11.32), it follows that
the polynomial
bye1(x) = 3 () - ¥ e
iZo &l
is orthogonal to {¢:; i =0, 1, ..., j}. The definition of a, shows that this
equation is equivalent to expression (11.41) when j = 0. Hence it remains
to prove that the functions (11.43) and (11.44) are the same when j = 1.
Therefore we consider the terms under the summation sign of expres-
sion (11.44). When i =j we find the term a;¢;(x), which is present in
equation (11.43). When i <j —2, we make use of the relation

(¢i’ x¢j) = (x¢i, ¢i)
=0, (11.45)

which holds because ¢; is orthogonal to every polynomial in %;_;. Hence
it is correct that ¢;(x) is absent from equation (11.43) for i <j—2. The
remaining term of the sum depends on the identity

(-1, xd;) = (xdj-1, ;)
=(¢j, ¢;) + (xd;_1— P}, &;)
=&, (11.46)
which holds because (x¢;—1—¢@;) is in P;_;. It follows that equation

¢i(x), asxs<b, (11.44)
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(11.43) contains the correct multiple of ¢;_1, which completes the proof
that expressions (11.43) and (11.44) are equivalent. 0

When this theorem is applied in practice, to obtain the best polynomial
approximation to an element f of a Hilbert space, it is usual to calculate
the coefficient

cf =@ Nl (11.47)
immediately after ¢; is determined. At the end of the fitting procedure, it
is sufficient to provide the values of the parameters {c};j=0,1,...,n},

{ej;j=0,1,...,n—=1} and {B;;j=1,2,...,n—1}. Therefore the
storage space that holds ¢;_, may be re-used by ¢;,; when formula
(11.43) is applied, which is important sometimes in discrete calculations
that have very many data. After the polynomial approximation is found,
it may be necessary to calculate its value at several general points of the
range a < x < b. For each value of x, the numbers {¢;(x);j=0,1,...,n}
are obtained in sequence from the three-term recurrence relation, and
then p*(x) is determined by the equation

pH()= I ceilx). (1148)

11 Exercises

11.1  Let o be a finite-dimensional linear subspace of a Hilbert space
%, and, for any f in R, let X (f) be the best approximation in & to
f, with respect to the 2-norm that is induced by the scalar
product. Prove that X is a linear operator, that it is a projection,
and that | X|,=1.

11.2  Let fe 4[5, 5], and let o be the linear space of dimension
seven that contains all even polynomials in 2;,. Show that there
are many elements of &/ that minimize the expression

'=§—5 [f(N-p()FP, ped,

but that there is only one optimal set of function values {p(j);
j=-5,-4,...,5}

11.3  Let f be the function {f(x) = x*; 0<x <1}, and let {p*(x) = c¥ +
cfx;0<x<1} be the linear polynomial that minimizes the
integral

[ fw-pwFax  pea.

Calculate the coefficients c& and c¢f from the normal equations
(11.17), and verify that p* satisfies equation (11.14).



11.4

11.5

11.6

11.7
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Suppose that one has to use a computer to calculate the
coefficients ¢, and c; that minimize the sum of squares of
residuals of the inconsistent linear equations

(1+e)co+2c1=5+2¢

2co+(@+e)c1=10—¢
eco=3¢
ec1=¢.

Suppose also that the constant ¢ is so small that € %is less than the
relative accuracy of the computer arithmetic. Show that, if the
normal equations are formed, then the matrix of the system can
be exactly singular, but, if one makes the substitution co=
¢o—2c; in order to work with ¢ and ¢, instead of with ¢¢ and ¢;,
then it is possible to achieve moderate accuracy.

Use the three-term recurrence relation of Theorem 11.3 to
calculate the polynomials {¢.€P,;k=0,1,2,3} that are
orthogonal on the point set {0, 1, 3}, which means that they
satisfy the conditions

$i(0)¢:(0) +¢;(1)dic(1) +#;(3)p(3) =0,  j#k.

You should find that the cubic polynomial ¢; is zero on the point
set {0, 1, 3}.

For any f in 4[a, b], let X(f) be the linear polynomial that
minimizes the expression

b
j [f)-p(x)Pdx, peP..

Prove that, if the co-norm is used in €[ a, b], then the norm of the
operator X has the value || X|lo =3.

For i=0,1,2,3, let ¢; be the function that is obtained by
drawing straight lines between the function values {¢:(j)=
8;37=0,1,2,3}. Thus{¢:; i =0, 1, 2, 3} is a basis of the space of
linear splines that is called #(1, 0, 1, 2, 3) in Section 3.4. Let f be
the piecewise constant function {f(x)=1,0=sx<1; f(x)=0,
1 <x=3}. Use the normal equations (11.17) to calculate the
coefficients {c};i=0, 1, 2, 3} that minimize the integral

J: [re0- éo C?“d’i(x)]2 dx.

Plot the function {} c¥¢:(x); 0=<x <3}.
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11.9

11.10
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Let f be the function {f(x) =2x —1; 0 < x < 1}. Find the smallest
value of n such that a function of the form

p(x)= Y c cos (kmx), 0Osx=l1,
k=0
satisfies the condition
1
[t -poF ax <107
0

Given the values To(x) and Ti(x) of the first two Chebyshev
polynomials, the recurrence relation

Tk+l(x)=2ka(x)—Tk-l(x)9 k=15 29 3’--'7

is applied to calculate T, (x) where n is large. Show that, if To(x)
and T,(x) are exact, but if every arithmetic operation can cause
an absolute error of =7, then the error in T,(x) when x =1 is at
most 3nn(n —1). Investigate whether larger errors can occur for
any other value of x in the interval [—1, 1].

Let &, and &, be finite-dimensional linear subspaces of a
Hilbert space %, and let X; and X, be the linear projection
operators from % to &/, and &, respectively, that give the best
approximations in these spaces with respect to the norm of the
Hilbert space. For any f; in 9, let the sequence {fi;
k=1,2,3,...}bedefined by the equation {fr+1 = Xo(X1fi); k =
1,2,3,...}. Prove that the sequence converges to the best
approximation to f; in the intersection of the spaces &/; and &/,.
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Properties of orthogonal polynomials

12.1 Elementary properties

Orthogonal polynomials have several uses in addition to the
method of calculating least squares approximations that has just been
described. For example, we find in Section 12.2 that they are important to
the construction of some efficient formulae for the numerical calculation
of integrals. First, however, some of their elementary properties are
established. Unless it is stated otherwise, it is assumed that each ortho-
gonal polynomial is defined on the range a < x < b. However, by taking
the point of view that is mentioned at the beginning of Section 11.4, it
follows that some of the results of this chapter are also valid in the case
when the range of x is a set of discrete points.

Theorem 12.1

Let # be a Hilbert space that contains the subspace %, of
algebraic polynomials of degree n. Let{¢;; i =0, 1, ..., n} be asequence
of non-zero polynomials, where each ¢; is in #;, and where the ortho-
gonality conditions

(¢i: ¢i)=0’ l;éj’ (12.1)

hold (Theorem 11.3 shows that these conditions can be satisfied). Then
the functions {¢;; i =0, 1, ..., n} are linearly independent. Moreover, if
Y is any polynomial in &, that is orthogonal to the elements of 2, _;,
where k is any integer from [1, n], then the equation

Ui (x) = cdre(x), asxsb, (12.2)

is obtained for some constant c.
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Proof. To prove the first part of the theorem, we have to show that, if the
scalars {A;;i=0,1,..., n}satisfy the equation

i Aip; =0, (12.3)
iZo

where 0 is the zero function, then they are all equal to zero. Because
expression (12.3) implies the equations

i Ai((ﬁi, ¢,) = 0, j= 0, 1, P (B (124)
i=0

and because (¢;, ¢;) is positive if ¢; is a non-zero function, it follows from
the orthogonality conditions (12.1) that the coefficients {A;; j=
0,1,..., n}are zero, which is the first required result.

This result is useful to the second part of the theorem, because it shows
that the functions{¢;;i =0, 1, ..., k} are a basis of ?;. Therefore we may
express Y in the form

k
U= X wids (12.5)
which gives the equations

k
(‘bf’ wk) = 'EO f"i(‘b}" ¢i)a j=01 17 ceey k-1. (126)

Hence condition (12.1) and the orthogonality properties of ¢, imply that
the parameters {u;; =0, 1,..., k —1} are zero. It follows from expres-
sion (12.5) that equation (12.2) is satisfied, where c is equal to u,. O

Another elementary property of orthogonal polynomials, that is
required in the next section, is as follows.

Theorem 12.2
Let ¢, be a non-zero polynomial that is in %, and that is

orthogonal to the elements of %?,_,. Then ¢, has exactly k real and
distinct zeros in the open interval a <x <b.

Proof. Let r be the number of sign changes of the function {¢.(x);
a < x < b}. There is a non-zero polynomial in ?,, ¢, say, such that the
inequality

&i(x).(x)=0, asx<b, (12.7)

holds, the product ¢ (x)¢,(x) being zero if and only if x is a zero of ¢y. It
follows from the definition (11.2) of the scalar product that (¢, ¢,) is
positive. Therefore, because of the orthogonality properties of ¢y, r is not
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less than k. Hence ¢, has at least k distinct zeros in the open interval
a < x < b. The number of zeros cannot exceed k because ¢y is a non-zero
element of ?,. Therefore the theorem is true. 0

The extension of this result to the discrete case is not difficult, but it is
different from the other extensions that have been made in a fundamental
way. In all other theorems it does not matter if the approximating
function is known only on the set {x;;j =1, 2, ..., m}, where the scalar
product has the value (11.6), but now we use the fact that polynomials are
defined for all values of the variable x. In the statement of the discrete
version of Theorem 12.2 we require kK <m, and we let [a, b] be any
interval that contains the points {x;;j=1,2,..., m}. The proof of the
theorem is unchanged, and ¢, is still constructed so that inequality (12.7)
holds for all x in{a, b]. It follows that the k real roots of the polynomial ¢,
are usually not in the point set {x;;j=1,2,..., m}, but they are in the
shortest interval that contains the data points.

Theorem 12.1 shows that all functions ¢, that satisfy the conditions of
Theorem 12.2 are the same, except for a scaling factor. Therefore, the
roots of ¢, depend only on the integer k and the definition of the scalar
product.

12.2 Gaussian quadrature
Many formulae for approximating definite integrals have the

form
b k

[ wwrw s~ ¥ af, (12.8)
where {w(x); a <x =< b} is a fixed positive weight function, where f is in
G[a, b], where {c;; i =0, 1, ..., k}is a set of real coefficients, and where
the abscissae are in ascending order

as<xo<xi1<...<x<b. (12.9)
Hence the integral is estimated from (k + 1) point evaluations of f. One of
the most useful methods for choosing the parameters {c;; i =0, 1,..., k}
and {x;;i=0,1,...,k}is to force the condition that equation (12.8) is
exact when f is in a suitable linear subspace & of ¢[a, b].

For example, if the points {x;; i =0, 1, ..., k} are given, then we may

obtain the coefficients {c;;i =0, 1, ..., k} by letting &/ be the space ;.
We recall from Chapter 4 that, when f is in 2y, it can be expressed in the
form

f0)= ¥ Lf),  a<x<b, (12.10)
i=0
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where {l;(x); a < x < b} is the cardinal function (4.3). It follows from the
properties of cardinal functions that the two sides of expression (12.8) are
equal when ¢; has the value

b
c,-=I w(x)(x) dx, i=0,1,...,k. (12.11)

Any other choice of ¢; causes an error in the approximation (12.8) when f
is the cardinal polynomial {/;(x); a <x < b}.

Gaussian quadrature formulae extend this idea, for their parameter
values {x;;i=0,1,...,k} and {c;;i=0,1,...,k} are such that the
approximation (12.8) is exact when f is in P, ;. The abscissae {x;; i =
0,1,...,k} may be calculated by satisfying a system of non-linear
equations, but the purpose of this section is to show that they are the zeros
of an orthogonal polynomial.

Theorem 12.3

Let the points {x;;i=0,1,..., k} in the quadrature formula
(12.8) be the zeros of a polynomial ¢ of degree (k + 1) that satisfies the
orthogonality conditions

b
f Wb ()p(x)dx =0,  ped, (12.12)

where {w(x); a <x =<b} is any integrable function. Let the coefficients
{¢;;i=0,1,..., k} have the values (12.11), where /; is defined by equa-
tion (4.3). Then the approximation (12.8) is exact when f is any poly-
nomial in Py 1.

Proof. 1If f is in P,p.1, it may be expressed in the form
f(x)=px)Pr+1(x) +q(x), a<x<b, (12.13)

where ¢ +1 is given in the statement of the theorem, and where p and q
are in 2,. Because ¢y is orthogonal to p, we have the equation

b b
J w(x)f(x) dx =I w(x)q(x) dx. (12.14)
Because the abscissae {x;; i =0, 1, ..., k} are zeros of ¢, the identity
k k
L cf(x)= X cqlx) (12.15)

is satisfied. Because q is in 2,, it follows from the definition of the
coefficients {c;; i =0, 1, ..., k} that the right-hand sides of expressions
(12.14) and (12.15) are equal. Therefore the left-hand sides are equal,
which is the required result. 0
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When formula (12.8) is applied, it is usual for some errors to be present
in the function values {f(x;);i=0, 1,..., k}, due, for example, to the
rounding errors of computer arithmetic. It is therefore advantageous if
the sum

llell = f |ci (12.16)

is small. However, in order that equation (12.8) is exact when f is a
constant function, it is necessary to satisfy the equation

b 3
I wkx)dx= Y c. 12.17)
a i=0

Therefore expression (12.16) is least if and only if the coefficients
{c;;i=0,1,..., k}all have the same sign. Our next theorem shows that
Gaussian quadrature formulae give this useful property.

Theorem 12.4

If the approximation (12.8) is exact for all functions f in P,y .1,
and if w is positive, then each of the coefficients {c;; i =0,1,...,k} is
positive.

Proof. 1f we let f be the polynomial
f@)=[L®Y, asx<b, (12.18)

where /; is the cardinal function (4.3), then the left-hand side of expres-
sion (12.8) is positive, and the right-hand side is equal to ¢;. Because f is in
P +1, it follows that ¢; is positive. 0

Gaussian quadrature formulae are not very convenient for adaptive
numerical integration procedures, where the user specifies the accuracy
that he requires in the calculated estimate of his integral. In these
procedures the error of each approximation to the integral is estimated
automatically, and the method of integration is refined until it seems that
the required accuracy is achieved. In Gaussian quadrature formulae the
positions of the abscissae {x;;i=0,1,..., k} make it difficult to use
previously calculated values of the integrand after each refinement
process. Despite this disadvantage, Gaussian methods are found in many
automatic integration algorithms. Moreover, if the integrand takes so
long to calculate that one has to manage with not more than about four
terms in the sum (12.8), then frequently a Gaussian formula is the best
one to apply. Thus there is another reason for continuing the study of
orthogonal polynomials.
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12.3 The characterization of orthogonal polynomials

The recurrence relation of Theorem 11.3 is not always the most
convenient method for calculating orthogonal polynomials. Some other
highly useful techniques come from the following characterization
theorem.

Theorem 12.5
Let {w(x); a < x < b} be any continuous function. The function

dx+1 in €[a, b] satisfies the orthogonality conditions
b

f W) bea()p(x) dx =0,  pe®, (12.19)

if and only if there exists a (k + 1)-times differentiable function {u(x); a <
x < b} that satisfies the equations

wx) e (x)=u*Px), a=sx<b, (12.20)
and

ua)=u®b)=0, i=0,1,...,k (12.21)

Proof. If equations (12.20) and (12.21) hold, then integration by parts
gives the identity

b b
f w(x)¢k+1(x)p(x>dx=(—1>"”j u()p“O(x)dx.  (12.22)

Therefore, because of the term p**"(x), the orthogonality condition
(12.19) is obtained when p is in 2.

Conversely, when equation (12.19) is satisfied, we let u be defined
by expression (12.20), where the constants of integration are chosen to
give the values

ua)=0, i=0,1,...,k (12.23)
Expression (12.20) is substituted in the integral (12.19). For each integer j
in [0, k], we let p = p; be the polynomial

pi(x)=(b-x), as<x<b, (12.24)

and we apply integration by parts (j+ 1) times to the left-hand side of
expression (12.19). Thus we obtain the equation

[(=Du*Px)p? (x)1%

b
+(=1)"? j u*Px)p¥*P(x) dx = 0. (12.25)

Because p}”” is zero, it follows that u*™"(b) is zero for j=0,1,...,k,

which completes the proof of the theorem. [
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In order to apply this theorem to generate orthogonal polynomials, it is
necessary to identify a function u, satisfying the conditions (12.21), such
that the function ¢..1, defined by equation (12.20), is a polynomial of
degree (k +1). There is no automatic method of identification, but in
many important cases the required function u is easy to recognize. For
example, if we satisfy the equations (12.21) by letting u be the function

ux)=x—-a)"'x-b)**", asx<p, (12.26)

then it follows that ¢y . is in 2, ., when the weight function w is constant.
In other words the polynomials

d . ‘
¢,-(x)=ﬁ[(x—a)’(x—b)’], j=0,1,2,..., (12.27)
satisfy the orthogonality conditions
b
[ ewawar=0, iz (12.28)

Many of the families of orthogonal polynomials that have been given
special names can be obtained from Theorem 12.5. Each family is
characterized by a weight function {w(x); a <x < b}. For example, if a
and B are real constants that are both greater than minus one, then the

polynomials {¢;;j =0, 1, 2, ...} that satisfy the orthogonality conditions
1

I(1—x)°(1+x)8¢,-(x)¢,~(x)dx=0, i%], (12.29)
-1

are called Jacobi polynomials. In this case we require the function (12.20)

to be a polynomial of degree (k + 1) multiplied by the weight function

{(1-x)*(1+x)?; —1=<x =<1}. Therefore we let u be the function
ux)=(1-x)*"*T1+x)P*, —1=sx=1. (12.30)

Because condition (12.21) is satisfied, it follows that the Jacobi poly-
nomials are defined by the equation

8= (1= 1) (142 S [(1 )1+ 2)°7)

j=0,1,2,..., (12.31)
which is called Rodrigue’s formula.

In the special case when the range of x is[—1, 1]and whena =8 =0,
the Jacobi polynomials are called the Legendre polynomials. If instead,
for this range of x, we let a =8 = —3, then we obtain the Chebyshev
polynomials, that we met for the first time in Chapter 4. Further attention
is given to the Chebyshev polynomials in the next section, because they
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provide least squares approximation operators that are important to the
work of Chapter 17.

We may allow the range of x to be infinite in Theorem 12.5, provided
that the integral (12.19) is well defined. For example, because it is
necessary sometimes to integrate functions that decay exponentially,
there is a need for Gaussian quadrature formulae of the type

I e f(x)dxxi cif (x)). (12.32)

Therefore, in order to make use of Theorem 12.3, we seek polynomials
{$;e ?;;j=0,1,2,...} that satisfy the conditions

I e “pi(x)di(x)dx =0, i #], (12.33)

0

which are called Laguerre polynomials. If u is the function
u(x)=ex“*!,  0=x<oo, (12.34)

in Theorem 12.5, then the conditions (12.21) are obtained, and the
function ¢y.,, defined by equation (12.20), is in %..1. Hence the
Laguerre polynomials have the values

d .
¢,~(x)=e"@(e *x'), i=0,1,2,.... (12.35)
Similarly, the Hermite polynomials
. d .
¢,-(x)=ex E(e x ), f=0,1,2,..., (12.36)

obey the orthogonality conditions

I e ¢i(x)p;(x) dx =0, P #]. (12.37)

It is possible to deduce from each of the expressions (12.31), (12.35)
and (12.36) that each family of orthogonal polynomials satisfies a three
term recurrence relation. Thus, in these three cases, algebraic expressions
can be found for the coefficients {¢;; j=0,1,2,...} and {8;;j=
1,2, 3,...} that occur in Theorem 11.3.

12.4 The operator R,

The operator R, is a linear projection from ¢[—1, 1] to #,. For
each fin €[ —1, 1], R,f is defined to be the element of 2, that minimizes
the expression

1
J(l—xz)_%[f(x)—p(x)]zdx, pe®, (12.38)
-1
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Therefore Theorem 11.2 shows that R,f is the function

(¢ f)
R.f= Z é; (12.39)
o el ™
where the scalar product has the value
1
=] A=)t dx (12.40)
-1
provided that the polynomials {¢;€ ?;;7=0,1,...,n} are mutually

orthogonal. Three properties of R, that are proved later are that its norm
is quite small, it is closely related to Fourier approximation, and, if f is in
P.+1, then R,f is the best minimax approximation from 2, to f. The
calculation of R,f is helped by the fact that the functions {¢;;j=
0,1,...,n} in equation (12.39) are Chebyshev polynomials, which is
established in the next theorem.

Theorem 12.6
The Chebyshev polynomials

T;(x) =cos (j6), X =cos 6, (12.41)
satisfy the orthogonality conditions

1
j (=) 3T Te(x)dx =0, j#k. (12.42)
-1

Proof. By letting x =cos @ in the integral (12.42), it follows that the
integral has the value

J'" cos (j@) cos (k@) d@

=3 r{cos [(j+k)8]+cos [(j—k)6T} d6
0
~0,  jrk (12.43)

which is the required result. O

It is now straightforward to deduce that R,f is the best minimax
approximation from &, to f when f is a polynomial of degree (n +1). In
this case the error function (f — R,f) is in 2,1 and, by Theorem 11.1, itis
orthogonal to all elements of ?,. Hence, by Theorem 12.1, it is a multiple
of a polynomial that is independent of f. Theorem 12.6 shows that we may
let this fixed polynomial be T,.;. Therefore the approximation R,f
satisfies the characterization condition, given in Theorem 7.2, for the best
minimax approximation from %, to f.
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When we claimed that the norm of the operator R, is quite small, we
did not have in mind the operator norm that is induced by the definition

Ifl= (% fel-11], (12.44)

where the scalar product has the value (12.40). This case is rather
uninteresting, because equation (11.14) and the fact that R, is a pro-
jection imply that ||R,| is one. Instead, the following theorem gives the
value of |[R,| that is induced by the maximum norm
flo= max |f(x)l, fe¥[-1,1]. (12.45)
1

—l=sx=

Theorem 12.7
The norm of the operator R, has the value

1 “sin[(n+%)o]’
o= L[ iRl b
IR ) sin (36) o
1 jm
Zy= 4
T2n+1 17,21] (2n+l)’ (12.46)

with respect to the co-norm (12.45).

Proof. Not all of the steps of the proof are given explicitly, because the
details are rather tedious. First we let the functions {¢;; j =0, 1, ..., n}in
the definition (12.39) be the Chebyshev polynomials {T;;j =0, 1,..., n}.
We make the change of variable x = cos @ in the integrals that occur, and
we calculate the denominators of expression (12.39) analytically. Thus,
for all values of ¢ in [0, 7], we obtain the equation

T

(R, f)(cos 1) =-— Z' J cos (j6)f(cos @) d@ cos (jt)

6=0

=Zj'" f(cos 8) 3 cos (j6)cos (jr)d6,  (12.47)
™ Jo=0 i=0

where the prime on the summation sign indicates that the first term is
halved. The required value of ||R,,|| is the least upper bound on expression
(12.47) subject to the conditions 0<¢ < and ||f|~<1. By taking the
supremum over f, we deduce the value

T

Zn’ cos (j8) cos (jt)| d6. (12.48)

i=0

2
IR = max =
t T

6=0

We express the product cos (j#) cos (jt) in terms of cos[j(6+¢)] and
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cos[j(8 —¢)], and we extend the range of integration. Hence we obtain
the bound

Ianllsmax—l I { Zn’ cos [j(0+t)],
t 2 O=—m =0
+| 5 cos[j6 }da. (12.49)
i=o0

By periodicity the right-hand side of this inequality is independent of ¢
Therefore, because expressions (12.48) and (12.49) are equal when ¢t =0,
we have the identity

o™

2
IR== |
T Jo=0

The first part of expression (12.46) now follows from the elementary
equation

Z cos (j@)| de. (12.50)

j=0

S cos (j8) = b sin [(n +1)8]/sin (56). (12.51)
j=0

We see that this result implies that the zeros of the integrand (12.50)
occur when 6 has the values

O = km/(n+3), k=0,1,...,n. (12.52)

We let 8,1 = 7, in order to obtain from equation (12.50) the expression

0k+1 n

||R,.u=3 i (—1)"J' Y cos (j@) dé. (12.53)
T k=0

- ji=0
Thus, by analytic integration, by exchanging the orders of summation,

and by giving special attention to the contribution from j =0, the equa-
tion

IRAIl=

> +1+,§::1 f( 1)“[sin (j§)] e+

1 k+1 . (]kﬂ')
= + Yy — -1 12.54
2n+1 ,-§1 jm kz=:1 (=1)"" sin n+3 ( )

is satisfied. By expressing the sine terms of this equation as imaginary
parts of exponential functions, one can deduce the identity
S (—1)%*si f’“’)=l ( Im ) 12.55
g m(n+% 2tan 2n+1/ (12.55)
Therefore the last line of expression (12.46) is implied by equation
(12.54). O
Some values of ||R,|| were calculated from equation (12.46). They are
given in Table 12.1. They are so similar to the norms that are listed in the
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last column of Table 4.5, that the norms do not provide a good reason for
preferring the operator R, to an interpolation method for calculating a
polynomial approximation to a function f. The main reason for our
interest in the values of |R,|| is given in Chapter 17.

12.1

12.2

12.3

12.4

12 Exercises

Let {¢;€P?;;j=0,1,2,...} be a sequence of orthogonal poly-
nomials, and let {&; k=1,2,...,j} be the zeros of ¢; By
considering equation (11.43) when {x=¢x; k=1,2,...,j},
prove by induction that, for all positive integers j, there is a zero
of ¢; in each of the intervals {(&14 &+1x+1); K=1,2,...,7}
Calculate the coefficients wg, wi, xo and x; that make the

approximation
1

L xf(x) dx = wof (x0) + wif(x1)

exact when f is any cubic polynomial. Verify your solution by
letting f be a general cubic polynomial.

Let f be a function in €°**?[a, b], and let the approximation
(12.8) be a Gaussian quadrature formula. Therefore the error of
the approximation is unchanged if a polynomial p of degree
(2k +1) is subtracted from £. By letting p be the function in P2 44
that satisfies the conditions {p(x;)=f(x;); i=0,1,...,k} and
{p'x)=f'(x:); i=0,1,...,k}, and by using an extension of
Theorem 4.2, prove that the error has the value

b
[ W T e-mpaxf™ @)k +2),
a j=0

where ¢ is a point of [a, b).

Use equation (12.36) to generate the first six Hermite poly-
nomials, and verify that they satisfy a three-term recurrence
relation of the form that is given in Theorem 11.3.

Table 12.1. Some values of |R.|

n Rl n IR
2 1.6422 12 2.2940
4 1.8801 14 23542
6 2.0290 16  2.4065
8 21377 18 2.4529
10 22234 20 2.4945




12.5

12.6

12.7

12.8
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Let p be a function in %, and let n be an integer in the range
[0, k —1]. Let the telescoping procedure of Section 8.4 be ap-
plied (k —n) times to derive from p a polynomial p in 2,.. Prove
that p is the function R,p, where the operator R, is defined in
Section 12.4.

For any f in 4[—1,1], let L.f be the polynomial in &, that
interpolates f at the Chebyshev points (4.27). Given that the
largest value of the sum

Y |h(x), —1sx<1,
k=0

occurs when x = —1 and 1, where [, is the cardinal function (4.3),
deduce that the co-norm of the operator L, has the value

B " (j+Dm
ILnllo = +1,20 [2(n+1)]‘

Let {¢;€P;;7=0,1,2,...} be a sequence of polynomials that
are orthogonal with respect to a positive integrable weight
function {w(x); asx<b}, and let {&; k=1,2,...,j} be the
zeros of ¢;. Deduce from the theory of Gaussian quadrature that,
if p is in &, then the inequality

b b
[ tporwedx<[ we)dx max (p(giT

a a 1sk=j+1
is satisfied. For any function f in €[a, b], let p; be the best
minimax approximation from %; to f, let Lf be the element of %,
that interpolates f at the zeros of ¢;+1, and let p be the poly-
nomial (p¥ —L,f). Thus, using the triangle inequality

If=Liflo<lf-pfl+lpl,
obtain the ‘Erdos Turan theorem’

b
}Lfg J [f(x)—(L;)x)Pw(x)dx =0.

Let [a, ] be the interval [—1, 1], and let w be the function
{w(x)=x% —-1<x=<1}. Prove that, if k is even, then the
function

dk+l

¢k+l(x)__ k+1 [(1— k+1(1+x2)]’ —1SxS1,

is in 2.1, and satisfies the orthogonality condition (12.19). Find
a similar definition of a polynomial ¢ that satisfies equation
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12.10
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(12.19) when k is odd. Check that your definition is correct when
k =3.
Prove that the Legendre polynomials

d .
¢,-(x)=a[(x2—1)’], -1=sx=<1, j=0,1,2,...,

satisfy the three-term recurrence relation

bjs1(x) = (4 +2)x¢;(x) — 41 (x),  —1sx<L.

A good method of solution comes from expressing each term in
the form

d!
dx’!
The middle term has this form, because the Leibniz formula for
calculating the jth derivative of a product gives the identity
7' (d ., ',
— i -1y }= ixX)+j—= -1)].
T S e 1 = a0+ [P D)

Prove that the Legendre polynomials, defined in Exercise 12.9,
satisfy the equation

(x> =1} (x) =jxd;(x)—2j*p;_1(x), —1<x<1.

A convenient expression for the term (x*- 1)¢;(x) can be
obtained by regarding the right-hand side of the definition

[(x*-1)""" x quadratic polynomial].

j+1

d .
dinal0) =g (P = 1))

as the (j+1)th derivative of the product (x*>—1)x(x*—1)".
Investigate extensions of the formulae of this exercise and the
previous one to the Jacobi polynomials that are defined in
Section 12.3.
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Approximation to periodic functions

13.1 Trigonometric polynomials

In many branches of science and engineering, periodic functions
occur naturally, and there is a need to estimate periodic functions from
measured data. Because the variable x may be scaled if necessary, we
assume that the functions f that occur are in the space 4., which is the set
of all continuous functions from ®' to ®' that satisfy the periodicity
condition

flx+2m)=f(x), —o<x<o0. (13.1)

In approximation calculations the set & of approximating functions is
composed usually of functions of the form

Q(X)=%ao+ Y [a; cos (jx)+b; sin (jx)], —00< x <00,
j=1

(13.2)
where {a;;7=0,1,...,n}and {b;;j=1,2, ..., n}arereal parameters. If
n is fixed, then o is a linear subspace of %5, of dimension (2n + 1), which
we denote by 2,. It is called the space of trigonometric polynomials of
degree n. The actual degree of the trigonometric polynomial (13.2) is the
greatest integer j such that at least one of the coefficients a; and b; is
non-zero.

It is important to note that, if j and k are non-negative integers whose
sum is not greater than #n, then the function {cos’ x sin* x; —00 < x <00} is
in 2,. Thus, if p is in 2,, and g is in 2,, then the product function
{p(x)q(x); —0<x <oo}isin 2,,.,. We note also that the zero function is
the only element of 2,, that has more than 2n zeros in the interval [0, 277).

It is usual to calculate an approximation from 2, to f by a least squares
algorithm. The main methods that are used are studied in this chapter.
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First, however, it is proved that, by choosing n to be sufficiently large, it is
possible to approximate any continuous periodic function to arbitrarily
high accuracy by a trigonometric polynomial.

Theorem 13.1
For any f in 4,,. and for any £ >0, there exists a polynomial of
the form (13.2) that satisfies the condition

If—qllo=<e, (13.3)

where n is a finite integer.

Proof. The function f is the sum of the even and odd functions f; and f>
that are defined by the equations

fix) =3 f(x)+f(=x)], ——oo<x<oo}
folx) =3[f(x)—f(=x)], —0<x <00)’

We show that f; can be approximated to accuracy ¢ and that f, can be
approximated to accuracy 3¢. Thus inequality (13.3) is satisfied when q is
the sum of the two approximations.

In order to find a suitable approximation to f;, we let g; be the function

gi(cos x) = fi(x), Osx=m, (13.5)

(13.4)

which is in ¥[-1, 1]. Hence, by Theorem 6.1, there is an algebraic
polynomial p; that satisfies the condition

lg1()—pi(t)|<ke, —1=<t=<1. (13.6)
It follows that the inequality

|gi(cos x)—pi(cos x)|<je, O<x<m, (13.7)
holds. We define the function {gi(x); —00<x <} to be the trigo-
nometric polynomial { p;(cos x); —oc < x < c0}. Hence the required bound

Ifi—ailo<ze (13.8)
is a consequence of expressions (13.5) and (13.7), and the fact that f; and
q: are even functions in 6,

In order to obtain a suitable approximation to f, we note that the values
f2(0) and f,(7) are both zero. We let x, be the largest number in the
interval [0, 37] such that the inequality

If2(x)|<de,  O<x<ux,, (13.9)
is satisfied, and we let x; be the smallest number in [57, 7] that is allowed
by the condition

lfax)|<ie, xis<x<m (13.10)
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Further, f3 is the even function in 4., that takes the values
f2(x0)/sin xo, O<x <x,,
f3(x) =< fa(x)/sin x, Xo=<x<x, (13.11)
frxy)/sinx;, xisx<m,
on [0, 7). By applying to f3 the method that was used to approximate fi, it
follows that there is an even trigonometric polynomial, g; say, such that
the inequality
13— gsllo <3¢ (13.12)
holds. We show that the function {g.(x) =sin x qs(x); —0<x <00} is a

sufficiently accurate approximation to f,. When x is in [0, xo] we have the
bound

| f2(x) = q2(x)| = | f2(x) — sin x q3(x)]
<|fo(x)|+][sin x f3(x)| +sin x| f3(x) — g3(x)|
<7e, (13.13)
where the last line depends on the definitions of xo, f3 and g3. Similarly

this bound is satisfied when x is in [x1, 7]. Moreover, when x isin [xo, x1],
the inequality

| £2(x) — q2(x)| =sin x| fa(x) — g3 (x)|

<ie (13.14)
holds. Because these remarks give the condition
|f2(x) - qa(x)|<3e, O<x<m, (13.15)
the required bound
12— qallo<3e (13.16)

follows from the fact that f, and g, are both odd functions in é,,. The
theorem is proved. 0O

13.2 The Fourier series operator S,

S, is an operator from €, to 2,. For each f in €., the function
S,.f is defined to be the trigonometric polynomial that minimizes the least
squares distance function

=[] vw-awra],  qeo. (13.17)

Therefore S, is a linear projection. It has several interesting theoretical
properties. For example, it is proved in Chapter 17 that ||S, || is less than
or equal to the norm of any other linear projection from €, to 2, that
leaves functions in 2, unchanged. Moreover, almost all of the usual
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algorithms for calculating trigonometric approximations are derived
from S,.

In order to apply the results of Chapter 11 to S, we let (f, g) be the
scalar product

(f,g)= I_ f(x)g(x) dx, (13.18)

for all functions f and g in €,,, which is consistent with the distance
function (13.17). We note that the orthogonality conditions

™

I cos (jx)cos (kx)dx=0, j#k

3\

Iﬂ sin (jx) sin (kx) dx =0, J#k r (13.19)

w

I cos (jk) sin (kx)dx =0

are satisfied, where j and k are any non-negative integers, which give
the following expressions for the coefficients of the trigonometric
polynomial S, f.

Theorem 13.2
The trigonometric polynomial (13.2) minimizes the distance
function (13.17) if and only if the coefficients have the values

1 m
a,»=—I £(8) cos (j8)d6,  j=0,1,...,n, (13.20)
T
and
1 m
b,-=;j £(8)sin (jo)do,  j=1,2,...,n. (13.21)

Proof. The orthogonality conditions (13.19) and Theorem 11.2 imply
that the required coefficients satisfy the equations

3a0= (£, cos {0.})/(cos {0.}, cos {0.}), (13.22)

a;j=(f,cos{j}/(cos{j},cos{ji}), j=1,2,...,n (13.23)
and

b; = (f,sin {j.})/(sin {j.}, sin {j.}), i=1,2,...,n, (13.24)
where cos {j.} and sin {j.} are the functions {cos (jx); —c0 < x <o} and
{sin (jx); —co < x < oo} respectively. The values (13.20) and (13.21)
follow from the definition of the scalar product, where each denominator
is integrated analytically. [
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Because Theorem 13.1 implies that the least value of expression
(13.17) tends to zero as » tends to infinity, one expects the sequence of
trigonometric polynomials {S,.f; n =1, 2, 3, . . .} to converge uniformly to
f, except perhaps in some pathological cases. However, the convergence
properties are not shown well by Theorem 13.2. Therefore another
expression for S, is derived that shows explicitly the relation between S, f
and f.

Theorem 13.3
The value of S,f at the point x is the expression

1 (" sin[(n+3)6]
. == ——=—=f(x+0)de. 13.25
Su)=1 | S e +0) (13.29)
Proof. By substituting the values (13.20) and (13.21) in equation (13.2),
and by reversing the order of integration and summation, we deduce the
identity

(SuHx) == [ {5+ £ teos (o cos (o)
[ - i=1
+sin (jx) sin ( je)]}f(o) do

J_:{%+ ?51 cos [j(6 —x)]}f(e) do

L
4 i=
1

== I_,, [%+él cos (je)]f(x +6)dé

m

L 1
lJ' Mf(x+0)d0, (13.26)

mJ_, 2sin (36)
where in the fourth line we have changed the variable of integration by the
addition of the parameter x, and where the last line depends on equation
(12.51). This is the required result. 0O

It is interesting to consider equation (13.25) when n tends to infinity. If
a and B are any two fixed points of the range [—, 7], and if the interval
[a, B] does not contain zero, then the rapid periodic oscillations of the
function {sin [(n +3)0]; —7 < 6 < 7} cause the integral

f(x+86)
2 sin (36)
to tend to zero. It follows that (S,f)(x) tends to be dominated by the

behaviour of {f(x + 8); —7 < 6 <} when |6| is small. It therefore seems
plausible that the limit as n tends to infinity of expression (13.25) is

1 JB , L
— 1 sin[(n+32)8] de (13.27)
T Ja
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unchanged if f(x + @) is replaced by f(x). When this suggestion is valid,
then it is easy to deduce that {(S.f)(x); n =1, 2, 3, ...} converges to f(x),
but it is shown in Chapter 17 that there exist functions f in €,,, such that
the sequence of maximum errors {||f = S,.flo; n =1, 2, 3, .. .} fails to tend
to zero. In Chapter 16, however, it is proved that {S,f; n=1,2,3,...}
does converge uniformly to f, provided that some mild smoothness
conditions are satisfied.

We may use Theorem 13.3 to obtain the value of [|S,|l~. Expression
(13.25) shows that, if f is in %5, and if ||f]l is not greater than one, then
the least upper bound on |(S,f)(x)| has the value

J’ ,sm [(n +3)6]
_.| 2sin(36)

Because this expression is independent of x, it must be equal to ||S,,||.. It
follows from Theorem 12.7 that the equation

[Sallo =IRulley, n=1,2,3,..., (13.29)

is satisfied. Therefore Theorem 3.1 and Table 12.1 imply that when
n =20, for example, the error ||S20f — fllo is within the factor 3.4945 of
the least maximum error that can be achieved when f is approximated by
a trigonometric polynomial of degree twenty. Results of this kind help to
justify the attention that is given to the approximation operator S,,.

The coefficients (13.20) and (13.21) of the trigonometric polynomial
S..f have some useful properties. We see that a; and b; are independent of
n. We derive some other properties from the equation

If = Sa Iz +1S. AE =l AR (13.30)

which is a special case of equation (11.14). Because analytic integration
and the orthogonality conditions (13.19) imply that the 2-norm of the
function (13.2) has the value

| de. (13.28)

lqll. = [%wa%+ ™y (af +b?)] : (13.31)
i

it follows from equation (13.30) that the coefficients (13.20) and (13.21)
satisfy the condition

imag+m ¥ (a? +b,?)sj [f(x)F dx, (13.32)
j=1 -

which is known as ‘Bessel’s inequality’. Hence the sequences {q;;j =

0,1,2,...}and {b;;7=1,2,3,...} tend to zero. Further, the difference

between the two sides of expression (13.32) is a measure of the accuracy

of the approximation S, f to f, because equation (13.30) shows that the
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difference is equal to ||f —S.f||>. Theorem 13.1 and the definition of S,
imply that the sequence {|f—S.fl.; » =1,2,3,...} converges to zero.
Therefore inequality (13.32) becomes an equality in the limit as n tends
to infinity.

13.3 The discrete Fourier series operator

It happens often in practice that, instead of knowing the value of
f(x) for all x in [—7, 7], the function is given on only a discrete set of
points. Even when f(x) can be calculated for any x, it may be necessary to
make numerical approximations to the integrals (13.20) and (13.21).
Therefore, in this section, we consider the important problem of obtain-
ing an approximation from 2, to a function f in €,,, using only the
equally spaced function values

27k

f(i) k=0,1,...,N—-1. (13.33)
N

By periodicity the value of f(27k/N) is known for all integral values of k.

There is no loss of generality in supposing that f(0) is available, because, if

we are given the function values

f(%ﬂk+a), k=0,1,...,N-1, (13.34)
for some constant a, then the change of variable # = x — « can be made.
The data (13.34) are suitable for the approximation of the function
{f(6 +a); —c0< § <o}, which gives a trigonometric polynomial in 6.
Hence the approximation is also trigonometric polynomial in x.

The ‘discrete Fourier series approximation’ from 2,, to the function f is
obtained from the data (13.33). It has the form (13.2), where the
coefficients {a;; j=0,1,...,n} and {b;; j=1,2,..., n} are defined by
replacing the integrals of expressions (13.20) and (13.21) by estimates of
the form
1 (7 2 NV gk

L gle)do~1 ¥ g( = ) (13.35)

o =0

Hence the coeflicients have the values

2N 27k 2arjk .
aj—NkEOf(N)cos(N), i=0,1,...,n,  (13.36)

and

2 N2 2wk

==Y f(TV—) sin(z—glf), i=1,2,...,n (1337
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Section 13.4 describes a way of organizing the calculation of these
coeflicients, so that they can all be found in only of order N log, N
operations, provided that N is a power of two. The technique is so
successful that it is applied frequently for very large values of N and n.
The next theorem shows that the estimate (13.35) has some remarkably
strong properties.

Theorem 13.4

If g is the function {cos (j@); —o0 < § < o}, where j is any integer
that is not a positive or negative integral multiple of N, or if g is the
function {sin (j#); —00 < § <00}, where j is any integer, then the approx-
imation (13.35) is exact.

Proof. Itis clear that the estimate (13.35) is exact when g is a constant
function. In all other cases that are given in the statement of the theorem,
the left-hand side of the estimate is zero, and adding or subtracting a
multiple of N to the integer j does not alter the terms of the sum (13.35).
Hence it is sufficient to establish the equations

N-1 2 ;
zcos(L’k)=o, i=1,2,...,N—1, (13.38)
k=0 N

and
N-1 2 k
zsin(—’l)=o, i=1,2,...,N. (13.39)
k=0 N

Expression (13.38) holds, because, by substituting § =27j/N and n =N
in equation (12.51), we find the identity

%+NZ_1 cos (M) =3sin [(2N + 1)mj/N1/sin (mj/N)
k=0 N

=3 j=12,...,N-1. (13.40)
Expression (13.39) follows from the symmetry properties of the sine
function. 0O
Another method that suggests itself, for calculating an approximation
from 2, to a function f in 6, from the function values (13.33), is to
minimize the sum of squares

A e

In this case it is appropriate to define the scalar product

-5 ).
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between periodic functions that are defined on the point set
{27j/N;j integral}. Minimizing expression (13.41) determines the
coeflicients of g uniquely only if the number of coefficients does not
exceed the number of data. Therefore we assume that the inequality

n<iN (13.43)

is satisfied. Because expressions (13.38) and (13.39) imply the ortho-
gonality conditions

N1 27rjk) (27rlk) _ .
kgocos(N cos | = =0, j#l

NoU i 2k
5 sin( I )sin(L)=o, i*l ( (13.44)
k=0

N N

N1 2mjk\ . (2wlk

Z,eos () s () =
when the integers j and [ are in the interval [0, 3N —13], it is straightfor-
ward to obtain from Theorem 11.2 the function in 2, that minimizes
expression (13.41). We find that its coefficients have the values (13.36)
and (13.37). Therefore this method of calculating q is equivalent to the
discrete Fourier series method. Hence, if n <3N, then the discrete
Fourier series operator is a projection, and it maps functions in 2,, into

themselves. However, these projection properties are not obtained if
=3N.
/2 .

J?

13.4 Fast Fourier transforms

In this section we consider the calculation of the coefficients
(13.36) and (13.37), when N is a power of two, and when the value of # is
close to %N. If each sum is evaluated separately, then the number of
computer operations is of order N, but we can do better. For example,
consider the two coefficients a; and ain_;. Because the second coefficient
has the value

N-1 ;

ain-; =1%— b f(z”k) (=1)* cos (2—;’1"—‘) : (13.45)
it follows that, if we sum separately over the odd and the even values of k
in expression (13.36), then we can obtain both a; and ain_; using little
more work than the calculation of a; alone. The FFT (fast Fourier
transform) method is a development of this remark.

In order to describe it, we let a[m, a, /] and b[m, a, j] be the sums

alm, a, j]== Z f(@+ ) ( :;’k) (13.46)
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and
bm, a, ,]_3m21f( )sin (z%k) (13.47)

They are useful because only a small amount of work is required to obtain
a[2m,a,j] and b[2m, a,j] from the numbers a[m,a,j], alm, a+
w/m,jl, blm, a,j] and b[m,a+m/m,j], and because they are the
required coefficients when m = N and a =0. The value of a[2m, o, j] is
defined by the equation

al2m, a, ]]=—1—2m2 1f(——+a) ( ’;k)

L)

m k=o
1 m-—1 '

+— ¥ f(ﬂ+1+a) cos(ﬂ+ﬂ)
m k=0 m m m m

=3a[m, a, ]]+2cos(m)a[m a+m/m,j]

—3sin (%’)b[m, a+m/m,jl. (13.48)
Similarly the identity

b[2m, a, j1=3b[m, a, j1+ 3 sin (m>a[m,a+1r/m 7]

+%cos(1’)b[m, a+m/m, ] (13.49)
m

is satisfied, which is used to evaluate b[2m, a, j]. It is important to note
that the definitions (13.46) and (13.47) imply the equations

a[m, a,jl=a[m, a, m —j]
, }, (13.50)

b[m, a, j1=-b[m, a, m —j]

and that b[m, a, j] is zero when j = 3m.
The FFT method begins by setting the numbers

a1, @, 0]=2f(a), (13.51)
where the values of a are the numbers in the set {27k/N, k =
0,1,..., N —1}. Then an iterative process is applied, where each itera-

tion depends on the value of m, which initially has the value one. At the
beginning of each iteration the numbers {a[m, a,j]; 0<j<3m} and
{b[m, a, j];0<j<3im} are available, where the second set is empty
until m =4, and where the range of « is the set 27k/N;k=0,1,...,
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N/m —1}. The iteration uses equations (13.48), (13.49) and (13.50) to
calculate the coefficients {a[2m, @, j]; 0<j<m}and{b[2m, a,j];0<j <
m}, where the new range of « is the set 27k/N; k=0,1,...,N/2m —1}.
Because the term (a + 7/ m) occurs in the formulae (13.48) and (13.49),
all the data that are available at the beginning of the iteration are
necessary. All terms that are not available explicitly as data are either
zero or are obtained from equation (13.50). At the end of the iteration the
value of m is multiplied by two and is tested. If the new value is less than
N, then a new iteration is begun. Otherwise, when m = N, all the required
values of the coefficients are found. Because the number of computer
operations of each iteration of this process is of order N, the total work of
the FFT method is only of order N log, N.

The FFT method can be extended to the case when N has the value

N=rr...r, (13.52)

where the terms {r,; s =1, 2, .. ., t} are any integers that are greater than
one. Then ¢ iterations of a process are applied, each iteration being
similar to the one that is described in the previous paragraph. Initially the
parameters (13.51) are set as before, and m is equal to one. The later
values of m are defined by multiplying m by r, at the end of each iteration,
where s is the number of the iteration. At the start of the sth iteration,
the numbers {a[m, a,j];0<j<3m} and {b[m, a, jl;0<j<3im)} are
known, where, as before, the range of « is the set {27k/N; k=0,1,...,
N/m —1}. The iteration calculates the terms {a[r.m, a, j];0<j <irm)}
and {b[r;m,a, j1;0<j<3rsm}, where the new range of a is the
set 27k/N;k=0,1,...,N/(rym)—1}. Hence, after ¢t iterations, the
required coefficients are found.

In order to calculate a[rm, a, j]and b[rm, a, j], we replace m by rm in
the definitions (13.46) and (13.47). The sums over k are split into r parts,
where in each part the value of k (modulo r) is constant. Thus we find
expressions for a[rm, «, j1and b[rm, a, j], in terms of a[m, a + 27l/rm, |]
and b[m, a +27l/rm, j] where | takes the values /=0,1,...,(—1),
which are suitable for the change to the range of a that is made by the
iteration. Because the greatest new value of j is 37,m, it happens some-
times that j exceeds m. It is therefore important to note that the
definitions (13.46) and (13.47), not only provide the equations (13.50),
but also they give the identities

alm,a, j+ml=alm, a, i]}‘ (13.53)

blm,a,j+m]=b[m, a, j]
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It is helpful to work through a simple example, in order to verify that all
the formulae that are needed by the general FFT method have been
mentioned.

13.1

13.2

13.3

13.4

13 Exercises

Letj and n be positive integers such that j < 2n. Show that there
is a non-zero function in 2, that has zeros at any j distinct points
of the interval [0, 27). A convenient method is to express the
required function as the product of functions from 2,. Hence
develop a procedure, that is analogous to Lagrange inter-
polation, for calculating the function q in 2, that satisfies the
conditions {q(&)=f(&);i=0,1,...,2n} where the function
values {f(¢);i=0,1,...,2n} are given, and where the points
{&;i=0,1,...,2n} are all different and are all in [0, 27).
Further, prove that no non-zero element of 2,, has more than 2n
zeros in [0, 27).

Let f be the odd function in €, that satisfies the equation
fx)=1-@/m))(x—3m)*, O<x<m

Calculate the Fourier series approximation to f, and deduce the
identity

1+3)°+G)°+@+...=7°/960

from Bessel’s inequality.

Let n be a fixed positive integer, let S[n, N] be the linear
operator from €, to 2, thatis equivalent to the discrete Fourier

method of Section 13.3, and let f be any function in ¥,,. Prove
that the limit

lim [15Tn, N1f = 8. flke =0

is obtained, where S,, is the Fourier series operator that is defined
in Section 13.2.

Given the function values f(0) = 0.2, f(37) = 0.25, f(m) = 1.0 and
f(137m)=0.5, use the discrete Fourier method to obtain an
approximation to f of the form

q(x)=3ao+a, cos x + by sin x +a, cos (2x), —00 < x <00,
Let 4 be the function
G(x) =3ao+ a, cos x + by sin x +3a, cos (2x), —00 < x <00,

Explain why g interpolates the data but g does not.



13.5

13.6

13.7

13.8

13.9

13.10
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Let S[n, N]be the operator that is defined in Exercise 13.3, and
let D, be the operator from €, to 6>, such that, for any f in
%2, Dy f is the function

(Daf)(x)=f(x+A), —00 < x <00,

Prove that S[n, 2N] is the operator

S[n, 2N1=3{8[n, N1+ D_./nS[n, N1D./n}.
Relate this equation to the FFT method.

Apply the FFT method to calculate an approximation in 23 to
the data

£(0) =-0.112178 flm) =-0.321412
f(w/4) 1.079 659 f(57/4) =-0.528 113
f(a/2) 2.172 667 f(3m/2) =-0.562 326
f(3w/4)= 0.376 607 f(7m/4) = —0.466 261,

using the results of the previous two exercises to check your
calculation.

State and prove a characterization theorem for the best minimax
approximation from 2, to a function f in €., that is analogous
to Theorem 7.2.

Let f be a function in 4, that takes the values

flx)=1|x—¢|, E—esx<{+e,

where ¢ is a fixed number, and where ¢ is a positive constant that
is much less than 7. Prove that the limit

lim (S./)(&) = (&)

is obtained, and that, if f satisfies the Lipschitz condition
| f(x1) = f(xo) < Ll|x1 — xof

for all real numbers x, and x;, where L is a constant, then the
difference |f(£) — (S.f)(¢)| is of order 1/n.

Deduce from Exercises 13.3 and 13.5 that the inequality
5172, Nllo = IS, |l is satisfied.

Prove the analogy of Theorem 6.2 for trigonometric approxima-
tion, namely that, if {Gx; k=1,2,3,...}is a sequence of linear
monotone operators from %,, to €., then the sequence
{Gif; k=1,2,3,...} converges uniformly to f for all f in €., if
and only if it converges uniformly for the functions {f(x)=
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1;—co<x <o}, {f(x)=cosx;—co<x<oo}, and {f(x)=
sin x; —00 < x < 00}. By establishing that the Fejer operator

1
Gk =-];[S0+Sl+ . .+Sk—1]

is monotone, where S, is still the Fourier series operator, deduce
another proof of Theorem 13.1.



14

The theory of best L, approximation

14.1 Introduction to best L, approximation
In Chapter 1 we noted that a best L; approximation from a
subset o of €[a, b] to a function f in €[a, b] is an element of & that

minimizes the expression
b

Ir-ph=[ lfo-pwldx,  pest (14.1)

The theory that is given in this chapter is for the frequently occurring case
when &f is a linear space. Necessary and sufficient conditions for the
function p* in & to be a best L, approximation to f are given in the next
section. They have the interesting property that all the dependence on f is
contained in the sign function

-1, flx)<p*(x)
s*(x)=4 0, f(x)=p*(x) asx<bh. (14.2)

1, fl)>p*(x),
It follows, therefore, that if p* is a best approximation to f, and if f is
changed in any way that leaves the sign function (14.2) unaltered, then p*
remains a best approximation to f. A similar result holds in the discrete
case, where we require the function in & that minimizes the expression

2w -p)l,  pest, (143)

where {x,;t=1,2,..., m} is a set of data points in [a, b]. This property
explains the statement, made in Chapter 1, that, if there are a few gross
errors in the data {f(x,); t=1,2,..., m}, then the magnitudes of these
errors make no difference to the final approximation.

In order to introduce the characterization theorem, we consider first
the approximation of a strictly monotonic function f in €[a, b], by a
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constant function p, where the value of the constant is to be determined.
Thus & is a linear space of dimension one. The value of expression (14.1),
when p is the function {p(x)=f(£); a <x <b}, is the total area of the
shaded regions of Figure 14.1. We require the value of ¢ that minimizes
this area. The figure shows that, if we replace p by the function {p(x) =
f(&)+e; a<x<b}, where ¢ is small, then the change to the area of the
left-hand shaded region is approximately & (£ —a), and the change to the
area of the other shaded region is approximately — & (b — ¢), which gives a
total change of about 2¢ (¢ —3[a + b]). Therefore, if £<3[a+b], we can
reduce ||f — p||; by letting & be positive, and, if £ >3[a + b], there exists a
negative value of ¢ that reduces the error. It follows that the required
approximation is the constant function {p(x)=fG[a +b]); a<x<b}.
This approximation is optimal because the measures of the sets {x: f(x) <
p(x)} and {x: f(x)>p(x)} are equal. Thus we have an example of a
condition for a best approximation that depends just on the sign of the
error function.

Another useful property of this example is that, if we know in advance
that f is monotonic, then the calculation of f(x) at the single point
x=3a+b) provides all the data that are needed to determine the best
approximation. It is shown in Section 14.3 that this property generalizes
to the case when o satisfies the Haar condition.

14.2 The characterization theorem
The following theorem gives the basic necessary and sufficient
condition for the function p* to be a best L; approximation from « to f. It

is an extension of the example of the last section. It includes a condition

Figure 14.1. The value of ||f —p]..

Sx)

_

px)

- - — — =
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on the set of zeros of the function {f(x) — p*(x); a < x < b}, that fails only
in pathological cases.

Theorem 14.1
Let of be a linear subspace of €[a, b]. Let f be any function in
%[a, b], and let p* be any element of &, such that the set

Z={x:f(x)=p*x),a<x<b} (14.4)

is either empty or is composed of a finite number of intervals and discrete
points. Then p* is a best L; approximation from & to f, if and only if the
inequality

b

j s*(x)p(x)dx

a

<[ Iptolax (14.5)
Z
is satisfied for all p in &, where s* is the function (14.2).

Proof. If condition (14.5) does not hold for all functions p in <, we let p
be an element of & such that the number
b

n =I s*(x)p(x) dx —J lp(x)| dx (14.6)
a zx
is positive, and such that the normalization condition

Iplle= 1 (14.7)

holds. We prove that p* is not a best L, approximation from & to f by
showing that, if the number 6 is sufficiently small and positive, then the
inequality

If = Cp* + op)l <lIf —p*|lx (14.8)
is obtained. The upper bound on 6 depends on the set

Zo={x:0<|f(x)—p*(x)|<6,a<x=<b}. (14.9)
We require 6 to be so small that the condition

L dx <in (14.10)

is satisfied, which is possible because of the restrictions on & that are
given in the statement of the theorem. We let ZR be the set that contains
the points of [a, ] that are neither in & nor in %,. Inequality (14.8) is
proved by dividing the range of integration in the definition

b
ltf—(p*+0p)||1=j [f(x) —p*(x)—6p(x)| dx (14.11)
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into the three parts %, Z, and Zr. The definition (14.4) gives the identity

[f(x)—p*(x)—6p(x)|=0lp(x)], xeZ, (14.12)
condition (14.7) provides the bound
|f(x) —p*(x) — p(x)| <|f(x) — p*(x)| + 6lp(x)]
<|f(x)-p*(x)|+6[2—s*(x)p(x)], xeZe (14.13)
and equations (14.7) and (14.9) imply that, when x is in Zg, the sign of
{f(x)—p*(x)— 6p(x)}is the same as the sign of {f(x) — p*(x)}, which gives
the relation

[f(x)—p*(x)— Op(x)| = [f(x) —p*(x)| - 6s*(x)p(x), xeZx.
(14.14)

Therefore it follows from equations (14.2) and (14.11) that the condition
b

I =¥+ op)a <l —p*l+6 | ol dx =0 [ s*p(x) dx

+26 j dx (14.15)
%,

is obtained. Inequality (14.8) is now a consequence of expressions (14.6)
and (14.10), which proves the first half of the theorem.

To prove the second part of the theorem, we let g be a general element
of o, we let p be the function (p* — q), which is also in s, and we deduce
from inequality (14.5) that the distance ||f —ql|; is not less than the
distance ||f — p*|,. Specifically, from expressions (14.2), (14.4) and (14.5)
we obtain the relation

b b
[ -atlax= [ s* @l -q0lax+ Llf(x)—q(x)ldx

=j S () = p* ()] dx+[ Sl p*(x) — q(x)] d

+[ Ip*-a00lax
x
b

—lr-p*h+ [ s*Ipte) dx+ [ lp(olax

a %X
=|If - p*|1, (14.16)

where the first line depends on the property {s*(x) =0, x € Z}. Because
this inequality shows that q is not a better L, approximation than p*, the
theorem is proved. [

Frequently the set Z, defined by equation (14.4), contains only a finite
number of discrete points. In this case, because the right-hand side of
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expression (14.5) is zero, p* is a best L, approximation from & to f if
and only if the condition

(s*,p)=0, ped, (14.17)

holds, where s* is the function (14.2), and where (s*, p) is the scalar

product
b

(s*,p)=J' s*(x)p(x) dx. (14.18)
a

Scalar products are mentioned, because it is interesting to compare a best
approximation in the 1-norm with the best approximation in the 2-norm.
We recall from Theorem 11.1 that the condition for p* to be the function
in & that minimizes the expression

X :
lF-pl= [ j [f(x)—p ()T dx] ., ped, (14.19)

is the equation
(f-p*,p)=0, ped (14.20)

Therefore, to minimize the 2-norm of the error, we require the error
function to be orthogonal to every element of </, but, to minimize the
1-norm of the error, it is the sign function (14.2) that has to be orthogonal
to every element of .

The reason for the similarity between these characterization theorems
is that expressions (14.1) and (14.19) are both special cases of the g-norm
error

b 1/q
-plo=[ [ Feo-peiraz] ,  pes, (14.21)

where q is a real constant that is not less than one. In order to develop this
remark, we let p* be an element of & that minimizes expression (14.21),

we let p be any element of &/, and we let ¢ be the function
b

¢(0)=j f(x)—p*(x)—6p(x)|"dx, —o<@<oo. (14.22)

It follows that ¢ (@) is least when 6 is zero. Therefore, if ¢ is differenti-
able, the term ¢'(0) must be zero. This derivative can be calculated when

q is greater than one. Hence we obtain the condition
b

j S Opf)—p*" dx =0, ped, (14.23)

a

on p*, where s* is the function (14.2). We note that, when q =2, this
condition is the same as equation (14.20). Moreover, if we let g tend to
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one, then the conditions (14.17) and (14.23) on p* become the same.
Thus the similarity between the characterization theorems 11.1 and 14.1
is explained.

Two uses of Theorem 14.1 are as follows. The proof of the first part of
the theorem provides a constructive method for obtaining an approxi-
mation from &/ to f that is better than p* if condition (14.5) is not
satisfied. Secondly, the theorem can be used sometimes to calculate the
best approximation directly. For example, in the approximation problem
that is shown in Figure 14.1, the required approximation is the function
{p*(x)=fGla +b]); a<x<b}, because then the sign function (14.2)
satisfies the characterization condition (14.5).

14.3 Consequences of the Haar condition

As in the case of minimax approximation, one can say much
more about the best L approximation from & to f, if the linear space &
satisfies the Haar condition. We refer to the properties (1)-(4) of the Haar
condition that are stated in the second paragraph of Section 7.3. First we
prove a theorem on the number of zeros of the error function of a best L,
approximation, that is applied in two ways. It helps to show that the best
approximation is unique. Moreover, it is used to generalize our earlier
remark, that the best L, approximation can be calculated sometimes by
interpolation at points of the range [a, b], that are independent of the
function that is being approximated.

Theorem 14.2

Let & be an (n + 1)-dimensional linear subspace of €[a, b] that
satisfies the Haar condition, and let f be any function in €[a, b]. If p*isa
best L, approximation from & to f, and if the number of zeros of the error
function

e*(x)=f(x)—p*(x), as<x<b, (14.24)
is finite, then e* changes sign at least (n + 1) times.

Proof. Suppose that ¢* has a finite number of zeros, and that it changes
sign fewer than (n + 1) times. Then, by property (2) of Section 7.3, there
exists a function p in &, such that the product s*(x)p(x) is positive for all
values of x in [a, b], except for the zeros of e*, where s* is the function
(14.2). Hence the integral (14.18) is positive, but the right-hand side of
expression (14.5) is zero, because & has measure zero. Therefore p* fails
to satisfy the characterization theorem 14.1. This contradiction proves
the theorem. 0O
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One application of this theorem is to show that the best L, approxima-
tion is unique when the Haar condition is satisfied.

Theorem 14.3

Let & be a linear subspace of €[a, b] that satisfies the Haar
condition. Then, for any f in €[a, b], there is just one best L; approxima-
tion from « to f.

Proof. Let q* and r* be best L, approximations from & to f, and let p*
be the function 5(¢* + r*). We consider the inequality

b b
[ ) ="l dx = [ BLAG) —g* ]+ — ()] dx

b b
s%j |f(x) = q*(x)| dx +1 j |F(x) = (2] dx, (14.25)

which depends on the definition of the modulus of a number. Because the
right-hand side is the least distance from & to f, and because p* is in &,
this inequality is satisfied as an equation. Therefore, because all functions
are in €[a, b], the identity
If(x) = p*(x)| = 3lf (x) — g * ()] + 3|f (x) — r*(x)] (14.26)

holds for all x in [a, 6]. In particular, when f(x) is equal to p*(x), then
both g*(x) and #*(x) must be equal to f(x). It follows from Theorem 14.2
that the function {g*(x)—r*(x); a =x <5} has at least (n+1) zeros.
Therefore the Haar condition implies that the functions ¢* and r* are the
same. 0

Most algorithms for calculating best L, approximations aim to find the
zeros of the error function. Often the number of zeros is exactly (n + 1),
where (n + 1) is the dimension of &. For example, this case occurs if & is
the space @,,, if f isin €"*V[a, b], and if the derivative f" " "(x) is positive
for all x in [a, b]. Therefore the following theorem is useful.

Theorem 14.4

Let o be an (n + 1)-dimensional linear subspace of €[a, b] that
satisfies the Haar condition, and let f be a function in €[a, b]such that the
error function (14.24) has exactly (n + 1) zeros, where p* is the best L
approximation from & to f. Then the positions of the zeros do not depend
on f.

Proof. Let s* be the function (14.2), and let the zeros of the error
function {f(x) - p*(x); a <x < b}beat the points {¢;;i =0, 1, ..., n}. Let
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g be a function in €[a, b] such that the error function

d*(x)=g(x)—q*(x), as<x<b, (14.27)
also has exactly (n + 1) zeros, where g* is the best L; approximation from
& to g. Let these zeros be at the points {n;; i =0, 1, ..., n}, and let ¢* be

the function

-1, glx)<q*(x)
t*(x)=< 0, gx)=q*x) a<x<bh. (14.28)

1, gx)>q*(x),
We have to show thatthe sets {&;;i=0,1,...,n}and{n;;i=0,1,...,n}
are the same. The method of proof depends on the Haar condition, and

on the fact that Theorem 14.1 gives the equations
b b

I s*(x)p(x)dx=j t*(x)p(x)dx =0, pe . (14.29)
We also require two consequences of Theorem 14.2, namely that the
error functions (14.24) and (14.27) both change sign at their zeros, and
that e*(a) and d*(a) are both non-zero.

We assume without loss of generality that & < 7o, and that the signs of
e*(a) and d*(a) are the same. Because of property (2) of Section 7.3, we
may let p be a function in & that changes sign at the points {&;i=
1,2,..., n}, and that has no other zeros. We choose the overall sign of p

so that the signs of p(a) and e*(a) are opposite. We consider the equation
b

J [*(x) — £*(x)]p (x) dx = 0, (14.30)

which follows from condition (14.29). The sign of the integrand is
important. Our assumptions imply that [s*(x) — t*(x)] is zero when x is in
the interval [a, &). Further, in the range (&, 6], the product s*(x)p(x) is
positive, except on a set of measure zero, namely the point set {¢;
i=1,2,...,n}. Moreover, the definitions (14.2) and (14.28) show that, if
s*(x)p(x) is positive, then the product [s*(x) — t*(x)]p(x) is non-negative.
By combining all these remarks, we deduce that the inequality

[s*(x)—t*(x)]p(x)=0, a<x<h, (14.31)

is satisfied. It follows from equation (14.30) that the function {s*(x)—
t*(x); a<x <>} is zero almost everywhere. Therefore the sets {£;
i=0,1,...,n}and {n;;i=0,1,...,n}are the same. 0O

This theorem provides the main method for calculating best L,
approximations to continuous functions. One begins by assuming that the
error function will change sign only (n + 1) times. In this case, because the
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zeros of the error function are independent of f, they may be found by
detailed consideration of &/. An approximation from & to f is calculated
by interpolation at these zeros, and then a check is made to find out if its
error function satisfies the assumption. If the assumption holds, then the
required approximation has been found. Otherwise a more elaborate
approximation algorithm is necessary, for example a linear programming
method of the type that is described in Section 15.4. The interpolation
points for the case when & is the space %, are given in the next section.
Some applications of this method are given in Chapters 15 and 24.

14.4 The L, interpolation points for algebraic polynomials

In order to apply the algorithm for calculating best L, approxi-
mations, that is described in the previous paragraph, it is necessary to
identify the interpolation points that are the subject of Theorem 14.4.
The interpolation points for the important special case when & is the
space P, are given in the next theorem.

Theorem 14.5

Let the conditions of Theorem 14.4 be satisfied, where & is the
space ?,, and where [a, b] is the interval [—1, 1]. Then the zeros of the
error function

e(x)=f(x)—p*(x), -l=x=1, (14.32)
have the values
_ (n+1—i)1r] .
§,-—cos[ "y s i=0,1,...,n (14.33)

Proof. Theorem 14.2 implies that the error function (14.32) changes
sign at its zeros. Therefore, because of the characterization theorem 14.1,

it is sufficient to prove that the equation
1

J s*(x)p(x)dx =0 (14.34)
-1

holds for all polynomials p in 2,, where s* is the sign function
1, —1<x<é

(-1)}, La<x<&,  i=1,2,...,n,
(-D", g <x<1

0, otherwise.

s¥(x)= (14.35)

The numbers s*(—1) and s*(1) are defined to be zero, in order that the
function

o (6)=s*(cos 8), O=s0<m, (14.36)
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satisfies some periodicity conditions. We extend o to the infinite range by
defining {o(—0) = —a(0); 0< 6 < 7}, and by letting o be a 27-periodic
function. It follows from equations (14.33) and (14.35) that the graph of
{o(8); —0< <00} is a square wave that changes sign when 6 is any
integral multiple of 7/(n +2). Hence the condition

a.(0+ 7 ) =—g(f), —0<h<0, (14.37)
n+2

is obtained.

It will be shown that, if the change of variables {x =cos ;08 <7}is
made in the integral (14.34), then condition (14.37) enables equation
(14.34) to be proved when p is any one of the Chebyshev polynomials

T,~(x)=cos(jcos_1x), —-1=sx=1, j=0,1,...,n.
(14.38)
Because these polynomials are a basis of ?,,, we complete the proof of the

theorem by establishing the equations
1

J' s*(x)Ti(x)dx =0, i=0,1,...,n (14.39)
-1

The identity
1 T

j s*¥(x)Ti(x) dx = J- s*(cos 6) cos (j6) sin 6 d@
-1 0

i

%Jﬂ o()sin [(j+1)0]—sin[(j—1)0]} d6

=41J'" a(6)sin[(j+1)8]—sin[(j—1)6]} d@ (14.40)

is satisfied, where the last line depends on the fact that o is an odd
function. Therefore it is sufficient to show that the integrals

1k=J o(8)sin (k6)do,  k=0,1,...,n+1, (14.41)

are zero. We use the periodicity of the integrand of I, then condition
(14.37), and then the fact that o is odd, to deduce the equation

§ T ) T
L —J‘.,,(r(a-'-n +2) st [k(0+n +2)] de

- _cos (nkfz) L: (8) sin (k6) d6

—sin (n':’_’z) J' " 5(6) cos (k6) do

-

=—cos( km )Ik, k=0,1,...,n+1, (14.42)
n
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Because the factor —cos [k#/(n +2)] is not equal to one, it follows that Iy
is zero, which gives the required result. 0

We note that the points (14.33) are the abscissae of the extrema of the
Chebyshev polynomial T,,.,. We note also that the extension of Theorem
14.5, to the case when the range of the variable is [a, b], is that the zeros of
the error function occur at the points
(—n—tl;l)l], i=0,1,...,n

n+2

(14.43)

&=5a +b)+3(b—a) cos[

Therefore the polynomial in 2, that minimizes the L, error
b
f [fx)—pGoldx,  pe, (14.44)

may be calculated by satisfying the conditions {p(&)=/f(&); i=0,1,
.., n}, provided that the error function of the resultant approxi-
mation changes sign just at the interpolation points.

14 Exercises

14.1 Find the best L, approximation to the function {f(x) =x31<
x <2} by a multiple of the quadratic polynomial {p(x)=x?;
1=<x =2} in the following two different ways. Firstly calculate

the integral
2

n(a)= L |x®—ax?| dx

analytically, and obtain the required value of a from the equa-
tion n'(a)=0. Secondly calculate the number b such that the
integral of the function {x?sign (b —x); 1<x <2} is zero. You
should find that b = a.

14.2  Let o be the three-dimensional linear space of functions in
¥[—1, 1] that are composed of two straight line segments that
join at x = 0. In other words & is the space of splines of degree
one that have only one interior knot, at the point x = 0. Calculate
the element of & that minimizes the integral

1
I [x*—p(x)| dx, pedd.
-1

14.3  Let & be the one-dimensional linear space that contains all
multiples of the function {p(x)=x—c; —1sx =<1}, wherecisa
constant. Prove that, if ¢ is non-zero, then each function in
€[—1, 1] has only one best L, approximation in .
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Let &/ be the two-dimensional linear subspace of %[0, 1]
that is spanned by the functions {¢o(x)=1; 0<x <1} and
{$1(x) = x*; 0<x < 1}. Calculate the points & and &; such that, if
p* e o, if fe €[0, 1], and if the error function e* = f — p* changes
sign just at the points & and &, then p* is the best L, approxi-
mation to f from &. Hence show that the least value of the
integral

1
I lx—px)|dx, ped,
0

is equal to i(\/S -2).

Let o/ be the set of monic polynomials in ?,.;, which means
that the coefficient of x" " is one, and let the range of the variable
be[—1, 1]. Deduce from Theorem 14.5 thatthe norm{||p|l1; p € «¢}
is least when p is the function {p(x)= Th.2(x)/[2" ' (n +2)];
—1=<x =1}. Hence obtain the bound

”P”lzz_", p E.Sd,

and verify that it is correct by applying Theorem 14.5 directly in
the case when n = 1.

Let f be a function in 4[—1, 1] that is identically zero on the
intervals [—1, —c] and [c, 1], but that is positive on the interval
(=c, c), where c is a positive constant. Prove that the zero
function is a best L, approximation from %, to f if and only if
c<i(V5-1).

Let p* be the linear function {p*(x)=x; —1=<x=<1}, and let f
be a function in €[—1, 1], such that the error {e*(x)=f(x)—
p*(x); —1=x=1} changes sign just at the points x =0 and
x = +1/V2. It follows from Theorem 14.5 that p* is the best L,
approximation to f from %,. By choosing a suitable f, show that
p* need not be a best L, approximation to f from the space of
rational functions that is called &/;, in Exercise 10.1.

Let & be a finite-dimensional linear subspace of € D[ a, b] that
satisfies the Haar condition, let f be any fixed function in
%"[a, b], and let p* be the best L, approximation from & to f.
Prove that there exist positive constants ¢ and d such that the
inequality

If =pll: =1f = p*lls + min [c]|p - p*{, dllp = p*I]

is satisfied for all p € of. Show, however, that this condition need
not be obtained if the function f is continuous but not differenti-
able.
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Let g* be the best L; approximation from the space 2, of
trigonometric polynomials to a function f in €>,. Show that the
error function (f —q*) has at least (2n +2) zeros in the interval
[0, 277). Further, show that, if the number of zeros in this interval
is equal to (2n +2), then the spacing between adjacent zeros is
constant.

Let the linear subspace & of €[a, b] be composed of splines of
degree one whose knots are fixed. Prove that each function in
%l a, b] has only one best L, approximation in /.
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An application of L, approximation and the
discrete case

15.1 A useful example of L, approximation

A particular L, approximation problem is solved in this section,
in order to demonstrate the method of calculation when the number of
sign changes of the error function is equal to the dimension of &, and in
order to provide a result that is required in Section 15.2. The problem is
to calculate the value of the expression

ko
min I
b1,b2,....bn Jg

where the quantities {b,; k=1, 2, ..., n} are real parameters. We see
that it is equivalent to finding the best L, approximation to the function
{f(x)=x;0<x <} from the n-dimensional linear space &, that is
spanned by the functions {¢,(x)=sin (kx);0sx<m;k=1,2,...,n}

We take the optimistic view that this problem can be solved by the
procedure that is described at the end of Section 14.3. Therefore we seek
points {&;i=1,2,..., n}, satisfying the conditions

0<¢,<¢,<...<¢ <m, (15.2)

x—3 by sin (kx)| dx, (15.1)
k=1

such that the equation
J s*(x)p(x)dx =0, pe A, (15.3)
0

holds, where s* is the sign function
1, 0<x<§

s*(x)=4(=1),, &<x<&a, i=1,2,...,n-1 (15.4)
1", & <x<m.

Because the integrals (14.41) are zero, it is suitable to replace n by (n — 1)
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in the definition of o, given in the proof of Theorem 14.5, and to let
{s*(x); 0=<x < =} be the function {o(8); 0 < @ < 7}. Thus the values

&L=im/(n+1), i=1,2,...,n, (15.5)

cause equation (15.3) to be satisfied. It follows that, if p* is an element of
& that is defined by the interpolation conditions

p*(§I)=f(£I)=§l$ i=19 2’~~~an’ (15'6)
and if the error function
e*(x)=x—p*(x), Osx<m, (15.7)

has no other zeros in the open interval (0, ), where a double zero at any
& would count as an extra zero, then p* is the approximation that
provides the least value of expression (15.1).

In order to prove that the equations (15.6) have a solution, we recall,
from the proof of Theorem 5.4, that it is sufficient to show that the zero
function is the only element of &f that vanishes at the interpolation points.
If this condition is not satisfied, then an odd trigonometric polynomial of
degree n has n zeros in the interval (0, 7), and therefore it has 2n +1)
zeros in (—m, ), which is a contradiction. Hence the equation (15.6)
defines p* uniquely. We now consider the number of zeros of the function
(15.7).

We see that the first derivative of ¢* is an even trigonometric poly-
nomial of degree at most n. Therefore it is zero at not more than n points
of the open interval (0, 7). Hence the error function itself has at most
(n + 1) zeros in the closed interval [0, 7]. We know already, however, that
e* is zero at the interpolation points and at x = 0. Therefore there are no
extra zeros. It follows that the coefficients of the function p* in &, that is
defined by the interpolation conditions (15.6), are the values of the
parameters {b;;i=1,2,..., n}, that minimize expression (15.1).

Next we make the very useful observation that there is no need to
calculate the coefficients of p*. The reason is that equation (15.3), and the
definitions of {s*(x); 0=<x <} and the interpolation points, give the
identity

Iﬂ |x —p*(x)| dx = Jﬂr s*(x)[x —p*(x)]dx

) (15.8)

Lﬂ s*¥(x)x dx
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Therefore expression (15.1) has the value
- n CpUHDT/(n+1)
[Tk-prwlar=| £ 1y x dx
o i=0 o/ (n+1)
=72/2(n+1), (15.9)
which is the required result. This example shows that the interpolation

procedure for calculating best L; approximations can be used sometimes
when & does not satisfy the Haar condition.

15.2 Jackson’s first theorem

Equation (15.9) is important to the following question. Let f be
any function in 4., that is continuously differentiable; find the smallest
number c¢(n) that satisfies the condition

min £ = qllo = c ()l f'lleo> (15.10)

and that is independent of f, where 2, is the space of trigonometric
polynomials of degree at most n. In this section it is proved that ¢(n) has
the value 7/2(n + 1), which is ‘Jackson’s first theorem’. We note that, if it
is necessary to approximate f by a trigonometric polynomial to given
accuracy, and if the norm ||f'|| is known, then the theorem gives an upper
bound on the least value of n that may be used. Usually, however, this
upper bound is so high that it is of no practical value. Two reasons for
studying Jackson’s first theorem are that it shows a way of relating errors
in function approximation to derivatives, and it is the basis of the work of
the next chapter.

In order to relate f to f’, when f is in € $) we make use of the formula

1 [~ 1",
f(x)=Zr—J'_wf(e)d0+EJ‘_"0f(0+x+7r)d0, (15.11)

which may be verified by integration by parts. We require also the fact
that, if g is any function in €,., and if g is any element of 2,, then the
function

o

t//(x)=I q(0)g(6+x)ds,  —co<x<00, (15.12)
is also in 2,,. This statement holds because periodicity gives the equation
([/(x)=J. q(6-x)g(8) o, (15.13)

and because q(# — x) may be expressed in the form

q(0—x)=1ao(8)+ T a,(6)cos (jx)+b, () sin (jx).  (15.14)
=1

j=
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In the proof of Jackson’s theorem, which is given below, we let g be the
function
gx)=f(x+m), —O<x<oo. (15.15)

Theorem 15.1 (Jackson I)
For all functions f in gV 2+, and for all non-negative integers n, the
inequality

i - oo == o 15.16
min ||f ~qlo <5 +1 171 (15.16)
is satisfied, where 2, is the linear space of trigonometric polynomials of

degree at most n.

Proof. We express f in the form (15.11). Because the first integral in this
expression is independent of x, and because the space 2, includes
constant functions, we just have to consider trigonometric approxima-
tions to the function

1 m
2—I of'(0+x+m)de, —00 < x < 00. (15.17)
T e

Therefore, by using the remark that expression (15.12) is a trigonometric
polynomial, we obtain the bound

1 o™
min ||f — qllo < min max —j [6-q(0)1f (6 +x+m)d8
qae2, qe2, x (2 J)_,

1 ki
<min >— [ 6-4(6)| 40 £ (15.18)
mJlon

qe2,

where the last line is elementary. Because the work of Section 15.1 gives

the equation
2

(n+1)’

it follows that Theorem 15.1 is true. 0O

The factor 7/2(n +1) that occurs in inequality (15.16) cannot be
decreased. In order to prove this statement, we consider a function f in
%Y%) that takes the values

min j |6—q(8)| do= (15.19)

fUm/ln+1)=(-1), j=0,%1,%£2,.... (15.20)
For any ¢ >0, it is possible to choose f so that it also satisfies the condition
Iflo=<2(n+1)(1+e)/m (15.21)

We let g* be a best approximation from 2, to f. If the distance || f — ¥~ is
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less than one, then equation (15.20) implies that the sign of ¢*(jm/[n +1])
is the same as the sign of (-1)". Hence q* has azero in each of the intervals
{G-VDa/(n+1),jm/(n+1)];j=1,2,...,2n+2}, which is not possible
because g* is in 2,. It follows that the inequality

min [|f—qlo=>1
qe2,

—2(n+1)(1+s) ™ (15.22)

is satisfied. Therefore, because £ can be arbitrarily small, Jackson’s first
theorem gives the least value of ¢(n), that is independent of f, and that is
such that inequality (15.10) holds for all continuously differentiable
functions in €.

15.3 Discrete L, approximation

In data-fitting calculations, where the element of & that mini-
mizes expression (14.3) is required, there is a characterization theorem
that is similar to Theorem 14.1. It is stated in a form that allows different
weights to be given to the function values {f(x,); t=1,2,..., m}.

Theorem 15.2

Let the function values {f(x,); t =1, 2, . .., m}, and fixed positive
weights {w,;t=1,2,..., m} be given. Let & be a linear space of
functions that are defined on the pointset {x,; t=1,2,..., m}. Let p* be

any element of &, let & contain the points of {x,;t=1,2,...,m} that
satisfy the condition
p*(x) =f(x.), (15.23)

and let s* be the sign function
19 f(xt)>p*(xt)
s*¥(x)=< 0, f(x)=p*(x) t=1,2,...,m. (15.24)
-1, f(x:)<P*(xx),
Then p* is a function in & that minimizes the expression

L wif)-pel,  pest, (15.25)

if and only if the inequality

i wes*(x)p(x)| < Z wi| p(x.)] (15.26)

xeZ

holds for all p in .



An application of L, approximation 182

Proof. The method of proof is similar to the proof of Theorem 14.1. If
condition (15.26) is not satisfied, we consider replacing the approxima-
tion p* by (p* + 6p), where || is so small that, if x, is not in Z, the sign of
{f(x)—p*(x,)— 6p(x,)} is the same as the sign of s*(x,). It follows that the
replacement changes the value of expression (15.25) by the amount

-6 ’ZI W:S*(xx)P(x:) +6 X w,|p(x,)|. (15.27)
= X €

Therefore, if the left-hand side of expression (15.26) is larger than the
right-hand side, one may choose the sign of 6 so that (p* + dp) is a better
approximation than p*.

Conversely, if condition (15.26) is obtained for all p in &, then, by
replacing the integrals in expression (14.15) by weighted sums, it follows
that p* is a best discrete L; approximation to the data. 0

The following theorem shows that there is a function p* in & that
minimizes expression (15.25), and that is such that the set & of Theorem
15.2 contains at least (n + 1) points, where (n + 1) is the dimension of .
Therefore many algorithms for calculating best discrete L; approxima-
tions seek a set & that allows an optimal function p* to be obtained by
interpolation.

Theorem 15.3

Let the function values {f(x,); =1, 2, ..., m} and fixed positive
weights {w,; =1, 2, ..., m}be given. Let & be a linear subspace of 2",
where the components of each vector p in & have the values {p(x,); t =
1,2,...,m}. Then there exists an element p* in &, that minimizes
expression (15.25), and that has the property that the zero vector is the
only element p in & that satisfies the conditions {p(x,) = 0; x, € ¥}, where
the set Z is defined in Theorem 15.2.

Proof. Let p* be a best weighted L, approximation from & to the data,
but suppose that there exists a non-zero element g in & that satisfies the
condition

q(x)=0, xeZ. (15.28)
We consider the function

v(8)= i wel f(x) = p*(x.) — 6q(x,)|, —o< <o, (15.29)

where 6 is a real variable. It is a continuous, piecewise linear function of 6,
that tends to infinity when || becomes large, and that takes its least value
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when @ is zero, because p* is a best approximation. Moreover, equation
(15.28) implies that two different line segments of ¢ do not join at § = 0.
Therefore ¢ is constant in a neighbourhood of 6 =0. If @ is increased
from zero, then (@) remains constant until a value of @ is reached that
satisfies the conditions
f(xo) ‘P*(xz) —0q(x)=0 }
q(xr) #0

for some value of ¢. Let this value of 8 be 6. Because ¢(8) is equal to /(0),
the function (p* + q) is another best weighted L, approximation from &/
to the data. Equation (15.28) implies that the residuals {f(x,)—
(p*+60q)(x,); x. € &} are zero. Further, another zero residual is obtained
from the first line of expression (15.30). Hence our construction increases
the number of zeros of a best approximation. Because the construction
can be applied recursively, it follows that the theorem is true. 0

This theorem shows that the calculation of a best discrete L, approxi-
mation can be regarded as a search for suitable interpolation points in the
set of data points {x,; t=1, 2, ..., m}. A systematic method of searching
is needed, and also it is necessary to test whether a trial set of inter-
polation points gives a best approximation. The condition (15.26) is not
suitable in practice, because it has to be satisfied for every element of <.
All of these problems can be solved quite routinely, because the complete
calculation is a linear programming problem.

(15.30)

15.4 Linear programming methods

In order to show that the best discrete L; approximation cal-
culation is a linear programming problem, we let {¢;; i =0,1,...,n}bea
basis of the space o of approximations, and we write the expression
(15.25), whose least value is required, in the form

Zl wi fx) = L Aidhi(xo)], (15.31)
t= i=0
where the parameters{A;; i =0, 1, ..., n}are some of the variables of the
linear programming calculation. We also introduce two new variables for
each data point, which we call {u;t=1,2,...,m} and {v;;t=1,2,
.., m}. They have to satisfy both the non-negativity conditions
U, = 0}
s t=1,2,...,m, 15.32
v, =0 ™ ( )

and the bounds
o, <f(x)— X Aidi(x)<u, t=1,2,...,m. (15.33)
i=0
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Therefore, if, for any values of the coefficients {A;;i=0,1,..., n}, the
variables u, and v, are chosen to minimize the sum (u, +v,), then the
equation

u+uv = f(xl)_ 2 Aidi(x) (15.34)
i=0
is satisfied. It follows that we require the least value of the expression

g wi(u, +v,), (15.35)
=1

t

subject to the constraints (15.32) and (15.33) on the values of the
variables {A;;i=0,1,...,n}, {u;t=1,2,...,m} and {v;t=1,2,
..., m}, which is a linear programming calculation.

Because the use of a general linear programming procedure is less
efficient than one that is adapted to the calculation of the last paragraph, it
is helpful to think of the linear programming method geometrically. The
constraints define a convex polyhedron of feasible points in the space of
the variables, and there is a solution to the calculation at a vertex of the
polyhedron. The characteristic properties of a vertex are that it is feasible,
and it is on the boundary of as many linearly independent constraints as
there are variables, namely (2m +n + 1). Because each of the variables
{u;t=1,2,...,m}and {v,; t=1,2,..., m} has to occur in at least one
of the independent constraints, the equations

= max [0, fx) = £ A ()
- t=1,2,...,m, (15.36)
v, = max [0, ‘go Aidi (x,)—f(x,)]

are satisfied at every vertex. The remaining (n + 1) constraints that hold as
equations have the form

fx)= 2 Adilx), teJ, (15.37)
i=0
where  is a subset of the integers {1, 2, ..., m}. Because J contains

(n +1) elements, and because the constraints that define a vertex are
linearly independent, we have another explanation of Theorem 15.3.
At the beginning of an iteration of the simplex method for solving a
linear programming calculation, the variables are set to the coordinates of
a vertex of the polyhedron. If it is not possible to reduce the function
(15.35) by moving along one of the edges of the polyhedron that meet at
the vertex, then the current values of the variables{A;; i =0, 1, ..., n}are
the ones that minimize the function (15.31). Thus there is a test for
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optimality which is more useful than condition (15.26), because it
depends on a finite number of inequalities.

* An edge of the polyhedron is defined to be in the intersection of the
boundaries of (2m +n) linearly independent constraints. One way of
generating an edge from a vertex is to give up one of the conditions
(15.36), but these edges are irrelevant because they always lead to
increases in the objective function (15.35). Therefore we have to consider
only edges that satisfy expression (15.36), and that are defined by n
independent equations from the system (15.37). We let g be the set of
indices of the independent equations. Hence Jg is a subset of . Except
for a constant scaling factor, there is a unique non-trivial solution

{Ai;i=0,1,...,n}to the conditions
Y ANidi(x)=0, teJTg. (15.38)
i=0
If{A,=X;;i=0,1,...,n}is the solution of the system (15.37), then, ata
general point on the edge, the equations {A; =A; +aX;;i=0,1,..., 1}

are obtained, where « is a real parameter. Moreover, the objective
function (15.35) has the value

Yla)= tgl w, f(xl)_ ‘io (X, +a7«,~)¢,-(x,) . (15.39)

Suppose that, at the vertex where equations (15.36) and (15.37) hold, it
is found that the objective function is reduced if a move is made along the
edge that is defined by equations (15.36) and (15.38). The far end of the
edge in the (2m +n + 1)-dimensional space of the variables is reached
when one of the terms {f(x,) —Y Aii(x,); t=1,2,..., m} in expression
(15.36) changes sign. At this point the term that changes sign is zero.
Hence another interpolation condition of the form (15.37) is satisfied,
which implies that the point is another vertex of the polyhedron. A
standard linear programming procedure would have to begin a new
iteration at this vertex. However, because our purpose is to make the
function (15.31) as small as possible, it is sensible to continue to change a
until the function (15.39) reaches its least value. Hence we are searching
along a locus that is composed of straight line segments in the space of the
variables. Because the optimal point on the locus is also a vertex of the
polyhedron of feasible points, all other features of the standard simplex
method can be retained. The technique of choosing @ to minimize
expression (15.39) on every iteration can provide large gains in efficiency,
especially when the linear programming calculation is obtained by dis-
cretizing the continuous problem that is studied in Chapter 14.
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One reason for discretizing a continuous problem is that it may not be
possible to minimize expression (14.1) by the method that is described at
the end of Section 14.3, because the error function of the best approxi-
mation may have too many zeros. A standard technique in this case is to
apply a linear programming procedure to minimize the sum (15.31)
instead, where the weights {w,;¢t=1,2,..., m} and the data points
{x;;t=1,2,..., m}are chosen so that expression (15.31) is an adequate
approximation to the integral (14.1). It is not appropriate to use a high
order integration formula, because the integrand has first derivative
discontinuities, and because the discretization forces (n + 1) zeros of the
final error function {f(x)—p(x); a < x < b} to be in the point set {x,; ¢t =
1,2, ..., m}. Therefore usually m has to be large.

An extension of this linear programming method provides a useful
algorithm that can be applied directly to the minimization of the
continuous L distance function (14.1). It comes from the remark that, in
the linear programming procedure, expression (15.39) can be replaced by
the integral

b
|
in order to determine the value of a that is most appropriate to the

continuous calculation. Each iteration begins with a trial approximation,
D say, to f, that has the property that the set

f)= § Gi—aR)di(x)] dx, (15.40)
i=0

Z={x:f(x)=p(x);a<sx<b} (15.41)
contains at least n points. A subset Zg is chosen that is composed of
exactly n points of Z, and p is defined to be a non-zero function in & that
satisfies the equations {j(x)=0; x € Zg}. The iteration replaces p by
(p +ap), where a has the value that minimizes the norm ||f —p — ap|;,
which is equal to expression (15.40). Then another iteration is begun.
Most of the details are taken from the linear programming method that
has been described already, but an important difference is the need to
evaluate integrals. It is therefore worth noting that, because the cal-
culation of « is itself an L, approximation problem, the required value
depends only on integrals of p and on the sign properties of the error
function (f—p —ap). Exercise 15.6 gives an example of the use of this
algorithm.

15 Exercises
15.1 Let f be the function in 4, that takes the values {f(x)=1x;
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—Smr<x<in}and {f(x)=m—x; 3w <x<3rw}. Prove that the
equation
2

mi I
q€21 Jy

is satisfied.

Deduce directly from expressions (15.18) and (15.19) that the
term 3/ (n + 1) that occurs in inequality (15.16) is optimal.

Let & be any linear space of functions that are defined on the
point set {x,; t=1,2,...,m}, where the dimension of & is less
than m. Prove that there exist function values {f(x,);t=1,2,
...,m} and positive weights {w,;¢t=1,2,...,m} such that
more than one element of &/ minimizes expression (15.25).
Construct an example of non-uniqueness of best discrete L,
approximations in the case when & is the space 2,.

The polynomial {p(x)=16x—x* 1<x=<8} is one of several
functions in 25 that minimizes the expression

|f(x)—q(x)|dx ==%/18

‘§1 Wilf(xi)—p(xi)" pEPs,

where the data have the values wi=wg=1, wa=wg=w;=2,
wa=ws=ws=3, f(1)=15, f2)=31, f(3)=39, f(4)=46,
f(5)=58, f(6)=60, f(7)=62, and f(8)=64. Find another
function in &5 that minimizes this expression.

The best L, approximation in £, is required to the data f(0) =
-35, f(1)=-56, f(2)=0, f3)=-16, f4)=-3, f(5)=4,
f(6)=10, f(7)=53 and f(8B)=69, where all the weights are
equal to one. Calculate it by the method that is described in
Section 15.4, where on the first iteration the only point of the set
{x;;te Tg}tis x=0.

Let the algorithm that is described in the last paragraph of
Section 15.4 be applied to calculate the best L; approximation
from @, to the function {f(x)=x?; —1 < x <1}. Investigate the
rate at which the zeros of the error function (f—p) converge to
the points +3 that are given by Theorem 14.5. You should find
that, if an iteration adjusts a zero to (3+¢), where ¢ is small, then,
when the zero is adjusted again two iterations later, the
difference between its new value and % is of order £*.

Theorem 15.3 does not have an analogue in the continuous case.
Prove this remark by finding a finite-dimensional linear subspace
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15.9

15.10
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o of €[a, b), and a function f in €[a, b], such that every best L,
approximation from & to f has fewer than (n + 1) zeros, where
(n+1) is the dimension of «.

Let the function values {f(x;)=f(i);i=0,1,2,3,4} be given,
and let p* be a polynomial in 2, that minimizes the expression

L 1@ —p), pe?.

Prove that p*(0) and p*(4) are equal to f(0) and f(4) respectively.
Let &/, be the set of functions in €[—1, 4] that have the form
{a/(1+Bx); —1=x =<4}, where « and B8 are real parameters.
Calculate the function p* that minimizes the weighted sum
9—p(-=1)|+M|8~p(0)|+|4~p@)l, pesdos,

where the weight M is so large that the condition p*(0) =8 is
obtained. The purpose of this exercise is to show that Theorem
15.3 does not extend to rational approximation on a discrete
point set.

Investigate the convergence properties of the algorithm that is
described in the last paragraph of Section 15.4, in the case when
the choice of g is governed by the rule that no point shall remain
in &g for more than » iterations. You may assume that all
functions are continuously differentiable, that &/ satisfies the
Haar condition, and that every error function that is calculated
has exactly (n +1) zeros.
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The order of convergence of polynomial
approximations

16.1 Approximations to non-difierentiable functions

In the first three sections of this chapter we consider the error of
the best minimax approximation from 2, to a function f in %,,.
Specifically we study the dependence on n of the number

min |f - qllo = Ea (f), (16.1)

qe2,
say. Section 16.4 extends the work to best minimax approximations from
P, to functions in €[—1,1]. Most of the theory depends on the
bound

EN <5l fe%in (16.2)
which is given in Theorem 15.1. The purpose of this section is to show
that, by elementary analysis, one can deduce from inequality (16.2) some
bounds on E, (f), that hold when f is non-differentiable.

The technique that is used depends on a differentiable function that is
close to f. We let § be a small positive number, and we let ¢ be the
function

1 x+8
<zS()c)=%J;_‘s f(6) de, —00< x <00, (16.3)

which is in € (21; for any f in €,.. The derivative of ¢ has the value

F() =[x +8)~flx=8)], ~w<x<o, (16.4)

and ¢ tends to f if § tends to zero. The proof of the following theorem
depends on both of these properties.
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Theorem 16.1 (Jackson II)
Let f be a function in €,., that satisfies the Lipschitz condition

[f(x1) = Fxo)| < Mxy = xol, (16.5)
for all real numbers x; and xo, where M is a constant. Then expression

(16.1) is bounded by the inequality

E.(f)saM/2(n+1). (16.6)

Proof. For every function ¢ in €5, the inequality

E.(f)<If - 9"~
<|f — ¢llo+llb —a*[lo
=lf —&lo+E.(d) (16.7)

is satisfied, where g* is the best approximation from 2, to ¢. We let ¢ be
the function (16.3). Therefore condition (16.5) gives the bound

1 x+8
I~ o =max = || fx)~f(6)do
x 28 x—8
M x+8
< — —-0|d
max 5 J;_s |x —6|de
=3Ms. (16.8)
Moreover expressions (16.4) and (16.5) imply the inequality
ll"lleo < M. (16.9)

Therefore, if we replace f by ¢ in condition (16.2), it follows from
inequalities (16.7) and (16.8) that the bound

E.(f)<iMs+7M/2(n+1) (16.10)
is satisfied. Because & can be arbitrarily small, the required result (16.6) is
implied by expression (16.10). O

Expression (16.2) also implies a bound on E, (f), when f is a continuous
function that does not satisfy a Lipschitz condition.

Theorem 16.2 (Jackson III)

For every function f in 4,,, the inequality
<3 L)
E(f)<do( (16.11)

is obtained, where w is the modulus of continuity of f.
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Proof. We again substitute the function (16.3) in expression (16.7).
Instead of inequality (16.8), however, we have the bound

x+

1 &
1f = ¢l = max 5= j'x_a f(x)=£(6) do
smiix%‘[ms w(x—6])de
<w(d). (16.12)

Moreover, because equation (16.4) implies the condition
&0 < (28)/28
<w(8)/8, (16.13)

where the last line is an elementary property of the modulus of continuity,
expression (16.2) gives the bound

o
(D) ——— . 16.1
E.) <3555 0 ®) (16.14)
It follows from condition (16.7) that the inequality
T
E, \[1+———] 16.15
(h=|1+55 55 ) ® (16.15)

is satisfied. Therefore, to complete the proof of the theorem, it is sufficient
to let § have the value w/(n+1). 0O

We note that inequality (16.11) gives a proof of Theorem 13.1, for it
shows that E,, (f) tends to zero as n tends to infinity. Further, extending
inequality (16.11) to approximation by algebraic polynomials, which
is done in Theorem 16.5, gives another proof of the Weierstrass
Theorem 6.1.

In fact inequality (16.11) remains true if the constant 3 is replaced by
the value one. The following example shows that the parameters c; and ¢,
in the bound

E.(f)sciw(cam/[n +1]), fe€s,, (16.16)

cannot both be less than one.
Let ¢, be from (3, 1), let £ have the value
e=(1-c)m/(n+1), (16.17)
and let f be a function in €,, that satisfies the following conditions.
For each integer j, f does not change sign on the interval [ jo/(n +1) -3¢,
jm/(n+1)+3¢], and f is zero on the interval [jm/(n+1)+3e, (j+1)
m/(n+1)—3e]. The equations

lIllo =1 (16.18)
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and

fGm/ln+1])=(-1Y, j=0,%1,%2,..., (16.19)
hold. A suitable function is shown in Figure 16.1. Expressions (16.18)
and (16.19) imply that the zero function is a best approximation from 2,
to f, because otherwise a best approximation would change sign (2n +2)
times in [0, 27]. Hence E,(f) is equal to one. Moreover, Figure 16.1
shows that w(7/[n + 1] —¢) is also equal to one. Therefore substituting
the value (16.17) gives the equation

E.(f)=w(com/[n+1)). (16.20)

Thus, if ¢, <1 in inequality (16.16), then ¢, is not less than one.

16.2 The Dini-Lipschitz theorem

The Dini-Lipschitz theorem identifies a quite general class of
functions f in 4., such that S,f converges uniformly to f as n tends to
infinity, where S,, is the Fourier series operator that is defined in Section
13.2. Because the method of proof depends on Theorem 3.1, we require
an upper bound on ||S,,||. Therefore we recall from Section 13.2 that the
norm has the value

sin{(n +3)6]

1 m
Sn = J N
ISl T sin (36)
The integrand is bounded above by (2n +1) and by /6, where the first

bound is a consequence of equation (12.51), and where the second bound
follows from the elementary inequality

sin (36)=6/7m, O<@<m. (16.22)
Therefore the relation

I dé. (16.21)

1¢“ 17
||sn||s—J' (2n+1)dé +—J Tde
mJo mJy 6

=QRn+Du/m+Inm—Inpu (16.23)

Figure 16.1. A function that satisfies equation (16.20).

n+1 € € Sx)

4
)
v
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is satisfied for all u in (0, 7). In particular, the value & = 7/(2n + 1) gives
the bound
IS.l<1+In(2n +1), (16.24)

which is sufficient to prove the following theorem.

Theorem 16.3 (Dini-Lipschitz)
If f is any function in 4,,, whose modulus of continuity satisfies
the condition

lim |w(8) In 8| =0, (16.25)

-0
then the sequence of Fourier series approximations {S,f; » =0, 1,2,...}
converges uniformly to f.

Proof. By applying Theorem 3.1, then Theorem 16.2, and then expres-
sion (16.24), we deduce the bound

"f_ks‘nf"f-’f’S [1 +"Sn"]En(f)
<3L+1S.e(—2)

n+1
3 o
<¥2+1In (2n+ 1)]w(—) . (16.26)
n+1
Because the elementary inequality
In (2n +1)<In 27)+ ln( ™ ), (16.27)
n+1

and condition (16.25) imply that the right-hand side of expression (16.26)
tends to zero as # tends to infinity, it follows that the theorem is true. [
One reason why the theorem is useful is that it is often easy to show that
a continuous function satisfies condition (16.25). However, condition
(16.25) is not necessary for the uniform convergence of the Fourier series.
It is not possible to strengthen the theorem by improving the bound
(16.24), because ||S,|| is bounded below by a multiple of In 1. Specifically,
equation (16.21) and elementary arithmetic give the inequality

j/(n+%) . 1
n 2 +— 0
J’ sm[(no 2) ],d(9

IS.>= 3

j=1

(Gi—1)w/(n+3)
2 =n n+% jm/(n+3)
mi=1 J;

|sin [(n +3)6]| d6

i—Dm/(n+})
no1
=@4/7h ¥ -
i=1]

>(@4/7%) In (n+1), (16.28)
which is important to the work of the next chapter.
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16.3 Some bounds that depend on higher derivatives

It is interesting that Theorems 16.1 and 16.2 apply to Lipschitz
continuous and to continuous functions, because they are derived from an
inequality, namely expression (16.2), that is valid when f is continu-
ously differentiable. In this section we move in the other direction, for,
given that f can be differentiated more than once, we deduce a bound on
E,(f) that is stronger than expression (16.2). Our main result is analogous
to Theorem 3.2, but it is a little more difficult to prove, because, if 7 is a
trigonometric polynomial, then the indefinite integral of r is also a
trigonometric polynomial only if the constant term of r is zero.

Theorem 16.4 (Jackson IV)
If the function f is in the space €%, then the error of the best
approximation from 2,, to f satisfies the condition

k
< m (k)
En(f)\(2n+2> 11 llo- (16.29)

Proof. First we establish the bound

T
2n+2

where r is any function in 2,,, and then the proof is completed by induction
on k. We obtain inequality (16.30) by extending the proof of Theorem
15.1.If f' isreplaced by (f' — r) in the second integral of equation (15.11),
the right-hand side of this equation is changed by the amount

E.(f)<

If' = rllo, (16.30)

—-l—jwﬂr(0+x+7-r)d0=¢(x), (16.31)
27 J_,

say. We may express r(6 + x + ) in terms of cos (j8), sin (j@), cos (jx) and
sin (jx), for j=0,1,..., n, and we may integrate over # analytically,
which shows that the function {¢ (x), —00 < x <oo}isin 2,. It follows from
equation (15.11), and from the fact that the first term on the right-hand
side of this equation is a constant, that E, (f) is equal to the maximum
error of the best approximation from 2,, to the function

%j Olf(@+x+m)—r(6+x+m)]dé, —00< x <00,
(16.32)

where r is any element of 2,. Hence inequality (15.18) remains valid if f'
is replaced by (f'—r). Therefore the required condition (16.30) is a
consequence of expression (15.19).
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To begin the inductive part of the proof, we suppose that inequality
(16.29) is satisfied when k is replaced by (k—1). It follows from
expression (16.30) and from the inductive hypothesis that the bound

Ex(f) <57 minlf' = rlle
“2n +2E w(f)
(2n +2) I le (16.33)

is obtained, which is the general step of the inductive argument. Because
Theorem 15.1 states that inequality (16.29) holds when k = 1, the proof is
complete. 0

One fundamental difference between Theorems 3.2 and 16.4 is that
Theorem 16.4 does not require the condition k <n. It is therefore
interesting to consider the consequences of inequality (16.29) when k is
larger than n. For example, if f is an infinitely differentiable function
whose derivatives are bounded, if we let n = 1, and if we take the limit of
inequality (16.29) as k tends to infinity, then it follows that E,(f) is zero.
Thus the function f is in the space 2,, which can also be proved from the
fact that the derivatives of the Fourier series expansion of f are equal to
the derivatives of f. The more usual application of Theorem 16.4,
however, is when a bound on ||[f*)|« is known, and a trigonometric
polynomial approximation to f is required, whose maximum error does
not exceed a given tolerance. Inequality (16.29) provides a value of n
such that a trigonometric polynomial from 2,, is suitable.

16.4 Extensions to algebraic polynomials
In this section we deduce from Theorems 16.1 and 16.2 some
useful bounds on the least maximum error

d}(g)=min ||g = plle, (16.34)

peP,
where g is a function in €[ —1, 1]. It is necessary to relate approximation
by algebraic polynomials to best approximation by trigonometric poly-
nomials. The following technique is used, which is similar to one that
occurs in the proof of Theorem 13.1.
Given g in €[ —1, 1], we let f be the function in é,,, that is defined by
the equation

f(x)=g(cos x), —0<x <0, (16.35)



The order of convergence of polynomial approximations 196

We let ¢* be an approximation to f from 2, that satisfies the condition
E.(f)=If - q*l. (16.36)

Because f is an even function, it follows that g * is also even, but the theory
that has been given does not include a proof of this statement. Instead we
note that, if {g*(x); —c0 <x <o} is not even, then {g*(—x); —0o<x <
oo} and hence {3{g*(x) +g*(—x)]; —00 < x < oo} are also best approxima-
tions from 2,, to f. Therefore, in the hypothetical case when there is some
freedom in g*, we can choose ¢* to be an even function, which gives an
expansion of the form

q*(x)= ‘:: c;(cos x)’, —00< x <00, (16.37)
j=0

where each ¢; is a real coefficient. Therefore the algebraic polynomial
p*()= Y it} —-1=sr=1, (16.38)
ji=0

satisfies the equation
q*(x)=p*(cos x), —00 < x <00, (16.39)
It follows from equations (16.34), (16.35), (16.36) and (16.39) that the
inequality
dr(g)=<lg—p*o
= max [f(x)—q*(x)|

—00<x <00

=E.(f) (16.40)

is obtained. In fact this inequality is satisfied as an equation for all g in
¢[—1, 1]. It is important to the proof of the following theorem.

Theorem 16.5 (Jackson V)
For all functions g in €[ — 1, 1], the least maximum error (16.34)
satisfies the bound

* 3 77'
dn (g)s2wg(n+1)a (1641)

where w, is the modulus of continuity of g. Further, if the Lipschitz
condition

lg(£1) — g (t0)| < M|ty — to] (16.42)
holds for all #p and ¢; in [ — 1, 1], then d (g) is bounded by the inequality
d¥(g)<mM,/2(n+1). (16.43)
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Proof. The bound (16.41) is a corollary of Theorem 16.2 and condition
(16.40), provided that the inequality

( T )< (—-” ) 16.44
No+1) =%\ 11 (16.44)

is obtained, where wy is the modulus of continuity of the function (16.35).
In order to establish this inequality we require the elementary relation

[cos 6, —cos 6o <|61 — 60| (16.45)
Thus the bound
T
w, = max 61)—g(0
g(n + 1) |61—80l<m/(n+1) |g( )-8 0)|

= max |g(cos 6;)—g(cos 6o)|
|81—80l<7m/(n+1)

= max |£(81) — £(80)|

|61—60l=m/(n+1)

= w7 1) (16.46)

is satisfied, where f is the function (16.35). Therefore the first part of the
theorem is true.

In order to prove the second part, we note that inequality (16.42) and
the method of proof of inequality (16.44) imply the relation

|f (x1) — f(x0)| < wp(|x1 — x0l)
< wg(|x1—x0|)
< M |x1 — xol. (16.47)
Therefore condition (16.43) is a consequence of the bound (16.40) and
Theorem 16.1. O

One important corollary of the theorem is the extension of Theorem
15.1 to algebraic polynomials. Because the Lipschitz condition

lg (1) — g(to)| < l|g'llolt:1 — to] (16.48)
is satisfied if g is in €[ -1, 1], expression (16.43) implies the bound
d¥ (@) < ———|lg"lo- 16.4

(8) ) llg’ll (16.49)

Therefore inequality (3.19) is valid. Specifically, if the range [a, b] is
[—1, 1], we may let ¢ have the value 3. It follows from Theorem 3.2 that
the condition

(n = k)!Gm)"
n

(@)= = g¥es  n=k, (16.50)

is obtained by all functions g in the space €*[—1, 1].
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We consider whether a bound that is stronger than inequality (16.50)
can be found by applying the method of proof of Theorem 16.5 to the
bound (16.29). First we let k = 2. Expressions (16.40) and (16.29) imply
the relation

w

2n+2

where f is still the function (16.35). Hence, in order to deduce a condition
of the form (16.50), it is necessary to bound || f"|l.. by a multiple of ||g"|j.
Here the method breaks down, however. For example, if g is the function
{g(x)=x; —1=<x =1}, then ||g"]lw is zero but |||« is one. Therefore the
close relation between minimax approximation by trigonometric and
algebraic polynomials, which is shown in Theorem 16.5, does not extend
to bounds that depend on higher derivatives.

axe)=( )zllf"llm, (16.51)

16 Exercises

16.1 Find values of n such that E, (f) is less than 107 for each of the
following three functions f: (i) the function defined in Exercise
15.1, (ii) the function defined in Exercise 13.2, and (iii) a function
in %6,, that is infinitely differentiable and that satisfies the
condition || f*)| < 10%, for all positive integers k.

16.2 Let c(n) be a number such that the condition E,(¢)<
c2(n)|l¢ "]l is satisfied, where ¢ is any function in €. By letting
¢ be the function (16.3), prove that, if f is any function in @5,
then E, (f) is bounded by the inequality

E,(f)<[2¢2(n)Fllf |-
16.3  Give an example to show that the value of ¢;(n) in the inequality

E.(@)<can)¢"llo, &€ E5m
is at least 72/[8(n +1)*].

16.4  Let f be a function in ‘6(1)[0, 1], and let B,f be the Bernstein
approximation (6.23). Deduce from the equation
(f_an)(X)=k§=:ok!(nn—!k)! xk(l_x)"_k[f(")_f(f)]
that, when n = 2, the inequality

If = Baf oo <55 [If I

is satisfied. Compare the bound (16.50) in the case when k=1
and n =2, after allowing for the change to the range of the
variable.
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By following the method of proof of Theorem 3.2, obtain from
condition (16.49) a bound on d}(g) that is stronger than
inequality (16.50), and that is valid when n = k — 1. Deduce from
Theorems 4.2 and 7.3 that the least number ¢ (n) that satisfies the
inequality

d¥@=cmlg" e, ge€"[-1,1],

has the value c(n)=1/2"(n +1)!.

By showing that the function {p(x) =sin (nx)/n; —c0 <x <o}is
the element of 2, whose minimax norm is least subject to the
condition p'(0)= 1, prove that the inequality ||p“llo=<n"[pllo
holds for all trigonometric polynomials p in 2,,. )

Let f be a function in €., that has the form {f(x)=|x|?} in a
neighbourhood of the origin. Deduce from Exercise 16.6 that
E,.(f) is bounded below by a multiple of (1n%|f]l)"/>. Compare
the bound that is given by Theorem 16.2.

Theorem 16.4 shows that the constant ¢,(r) of Exercise 16.2 may
be given the value [7/(2n +2)]*. Deduce from the proofs of
Theorems 15.1 and 16.4 that smaller values of c,(n) exist, giving
attention to the conditions on f' that make E,(f') close to
L7/ 2n+2)]1f .

Prove that the inequality

)

is satisfied, for all functions f in %,., where c;(n) is the constant
of Exercise 16.2. A suitable method is to replace ¢ in the proof of

Theorem 16.2 by the function
&

¢(x)= J fx+6)(6—|6])deo/s>, —00< x <00,

-8

E,,(f)s[1+

Hence Exercise 16.8 implies that the constant 3 in the statement
of Theorem 16.2 is not optimal.

By considering a case when the best minimax approximation in
P, to afunction g in €[ — 1, 1]is the zero function, show that, if ¢
is a constant that satisfies the condition

di@=<clglle ge€[-1,1],
then ¢ is not less than 3. Further, by considering a case when the

best approximation is a straight line, show that the lower bound
on ¢ can be increased to (6 —4+v2).



17

The uniform boundedness theorem

17.1 Preliminary results

If an approximation to a function f in €¢[a, b] is required to high
accuracy, then it is usual to calculate a sequence of approximations
{X.f;n=0,1,2,...}, until the accuracy is achieved. Therefore it may be
helpful to know whether the sequence converges uniformly to f. The
uniform boundedness theorem gives one of the most useful methods for
answering this question. A simple version of it is proved in Section 17.2,
which implies that, if the operators {X,; n =0, 1, 2, ...} are linear, then
uniform convergence is obtained for all functions f in €[a, b], only if the
sequence of norms {|X,|; »=0,1,2,...} is bounded. Because expres-
sions (13.29) and (16.28) give the inequality

IRallo> (4/7%) In (n +1), (17.1)

it follows, for example, that there exists f in ¢[—1, 1] such that the
sequence of approximations {R,f; n =0, 1, 2, ...} fails to converge to f.
Moreover, because the work of Section 17.2 applies also to the approxi-
mation of functions in %,,, the bound (16.28) implies that there exist
continuous periodic functions whose Fourier series approximations do
not converge uniformly.

Therefore Section 17.3 addresses the question whether there is a
sequence of operators {X,;n=0,1,2,...} for calculating approxima-
tions to functions in €,,, that is more suitable than the Fourier series
sequence {S,; n =0, 1, 2,...}. We find the remarkable result that, if X, is
linear, if X,.f is in 2, for all £, and if the projection condition

X.f=f, fe2, (17.2)

is satisfied, then the norm || X/« cannot be less than ||S,|l-. Hence, in
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order to obtain uniform convergence, it is necessary to give up the
projection condition, or to give up the linearity of the operator. A similar
conclusion is reached for approximation by algebraic polynomials in
Section 17.4. The main theory of the chapter requires the definitions and
elementary results that are mentioned below.

In order to prove the uniform boundedness theorem we make use of
‘Cauchy sequences’ and ‘complete’ normed linear spaces. We note,
therefore, that the sequence {f;;i =0, 1,2,...}is a Cauchy sequence if,
for any € >0, there exists an integer N such that the difference ||f; — fil is
less than ¢ for all i=N and j= N. Further, a normed linear space is
complete if every Cauchy sequence is convergent. In particular, the space
€[a, b]is complete when the norm is the co-norm, which allows Theorem
17.2 to be applied to €[a, b].

We also make use of ‘fundamental sets’. Theset{f;;i=0,1,2,...}ina
normed linear space @ is called fundamental if, for any f in 8 and any
€ >0, there exist an integer k and coefficients {a;;i =0, 1, ..., k} such
that the element

k
¢=3 af (17.3)

satisfies the condition

If—oll<e. (17.4)

For example, the set of polynomials {fi(x)=x';a<x=<b;i=0,1,2,...}
is fundamental in €[a, b].

One application of fundamental sets is to show that two bounded linear
operators, L, and L, say, from & to # are equal. Clearly, if {f;;i=
0,1,2,...}is a fundamental set, then the operators are equal only if the
equations

Llf,'=L2f,', i=0, 1,2,..., (175)

are satisfied. The following argument gives the useful result that the
conditions (17.5) are sufficient for the operators to be the same.

Suppose that the equations (17.5) hold, but that L; and L, are
different. Then there exists f in 9% such that L,f is not equal to L,f. We let
¢ be the positive number

€= ||L1f—L2f||/[”L1”+ ”LG], (17.6)

and we let expression (17.3) be an element of % that satisfies the bound
(17.4). The properties of norms, the linearity of the operators, and
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condition (17.5) imply the relation
ILif—Lafll=NLi(f—&)—La(f— )l
<[IL:|+IL0lf - &l

<e[l|IL4l[+]|L2{, (17.7)
but this relation contradicts the definition (17.6). Therefore the equations
(17.5) are suitable for showing that two operators are equal.

17.2 Tests for uniform convergence

The two theorems of this section are useful for testing whether a
sequence of linear operators {X,;n=0,1,2,...} from & to & has the
property that {X,.f; n =0, 1, 2, ...} converges to f for all f in %.

Theorem 17.1

Let {f;;i=0,1,2,...} be a fundamental set in a normed linear
space &, and let {X,,; n=0, 1, 2,...} be a sequence of bounded linear
operators from % to 9. The equations

lim [Ifi ~X.fil=0, i=0,1,2,..., (17.8)

are necessary and sufficient conditions for the sequence {X,f;n =
0,1,2,...} to converge to f for all f in %.

Proof. Clearly the equations are necessary. To prove that they are
sufficient, we let f be a general element of 9. The definition of a
fundamental set implies that, for any £ > 0, there exists a function of the
form (17.3) that satisfies the condition

If — &l <2e/(M +1), (17.9)
where M is a fixed upper bound on the norms {|X,|;»=0,1,2,...}.

Further, equation (17.8) implies that there is an integer N, such that the
coefficients of expression (17.3) satisfy the bound

k
||f,'—X,lf,-|ls%e/Zo al,  i=0,1,...,k (17.10)
2

for all n=N. It follows from the properties of norms, and from the
linearity of the operators, that the inequality

If =X Al<I(f = &)= X (F= &) +]1b — X8
k
<M +DIf=¢l+] T ailfi =X

k
<M+ DIf-l+ X lalIfi~ X

<g, n=N, (17.11)
is satisfied, which completes the proof of the theorem. [
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Because many algorithms for calculating spline approximations are
bounded linear operators, Theorem 17.1 is useful to the work of the last
seven chapters. The next theorem shows that, if the norms {|X,||; n =
0,1, 2,...} are unbounded, then there is an unequivocal answer to the
convergence question of this section.

Theorem 17.2 (uniform boundedness)

Let # be a complete normed linear space, and let {X,;n =
0,1,2,...} be a sequence of linear operators from % to %. If the
sequence of norms {||X,||; n =0, 1, 2, .. .} is unbounded, then there exists
an eclement, f* say, in %, such that the sequence {X,f*;n=0,1,2,...}
diverges.

Proof. Because it is sufficient to show that a subsequence of {X,,f*; n =
0,1,2,...} diverges, we may work with a subset of the sequence of
operators. We may choose operators whose norms diverge at an arbi-
trarily fast rate. Therefore we assume, without loss of generality, that the
conditions

I1X.]|= (20n)4", n=0,1,2,..., (17.12)
are satisfied. The method of proof is to use these conditions to construct a
Cauchy sequence {f.; k=0,1,2,...}, whose limit f* is such that the
numbers {| X, f*; n=0,1,2, ...} diverge.
The terms of the Cauchy sequence depend on elements {¢,;n =
0,1,2,...} of & that satisfy the conditions
lpnll =1

} n=0,1,2,.... (17.13)
1Xnall= 0.8 Xl J,

The definition of || X,,|| implies that these elements exist. We let fo = ¢,
and, for k =1, f; has the form

_ { either fx_;
““lor for + @G

where the choice depends on || X fi-1| and will be made precise later. In
all cases expression (17.14) implies that for j > k the bound

(17.14)

Ifi-fd< % O@Isl<d (17.15)

is obtained. Therefore {f;; k =0, 1, 2, .. .} is a Cauchy sequence, and its
limit f* satisfies the condition

I/ =fll=@®*,  k=0,1,2,..., (17.16)
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which gives the inequality

”an*“ = ”ann“ - "Xn (f* _fn)“

=X, fo |- @™ HIX . 17.17)
It follows that the relation
IXefell= &k +@ X,  k=0,1,2,..., (17.18)

would imply the divergence of the sequence {X,.f*; n=0,1,2,...}. We
complete the proof of the theorem by showing that the choice (17.14)
allows condition (17.18) to be satisfied.

The value of f, is such that condition (17.18) holds when k = 0, but this
case is unimportant. For k=1 we let f, = fi,_; if this choice satisfies
inequality (17.18). Otherwise, when the bound

Xk fie—all < e + @)Xl (17.19)

is obtained, f; is defined by the second line of expression (17.14). Hence
the triangle inequality for norms, expressions (17.13) and (17.19), and
the bound (17.12) give the relation

1Xeefiel = 13) @) Xiebrell = 1 X fie 1l

>0.6(2) |1 Xl = [k + @ 1Xe

= [k +@" " IXil]+ (0.1 | Xl - 2k]

=k + @ 1Xl, (17.20)
which establishes expression (17.18). Therefore, for reasons given
already, the sequence {X,.f*;n=0,1,2,...} diverges, where f* is an
element of the complete linear space 8. O

Because the spaces €[a, b] and ¥,,. are complete, and because the

bound (17.1) applies to both ||R, || and ||S,|lo, the theorem proves two of
the statements that are made in the first paragraph of this chapter, namely
that there exists f in €[—1, 1] such that {R,.f;n=0, 1, 2, ...} diverges,
and there exists f in 4>, such that {S,f; n =0, 1,2,...} diverges. These
remarks, however, should not deter one from using the operators R, and
S», because the rate of divergence

IRl =liSall ~1n n (17.21)
is slow, and in any case divergence cannot occur when f is differentiable.
From a practical point of view it is more important to keep in mind that
it is unusual to calculate polynomial approximations of high degree.

17.3 Application to trigonometric polynomials
In this section we prove the result, mentioned in Section 17.1,
that, if L is a bounded linear operator from %,, to 2,, and if the
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projection condition
Lf=f, fe2,, (17.22)

is satisfied, then ||L|l is bounded below by ||S,|lx. The method of proof
depends on the displacement operator D, from 4., to €., thatis defined
by the equation

(Drf)(x)=f(x+A), —oo<x<co, (17.23)

where A is any real parameter, and where f is any function in €5, It also
depends on the operator

1 2@
G=———I D_,LD, dA. (17.24)
2 [\)

Before beginning the proof of the main result, the meaning of this integral
is explained.
For any f in €,.,, we let f, be the function

fr=D_,\LD,f, (17.25)

which is also in €,.. For any fixed value of the variable x, we regard f; (x)
as a function of A. Equation (17.24) means that Gf is the function

27

(Gf)(x)=%J‘ f(x)da, —00 < x <00, (17.26)

0

which is a valid definition, because the following discussion shows that
fr(x) is a continuous function of A.

It is straightforward to prove that D,f depends continuously on A.
Specifically, because the definition (17.23) implies the equation

Duf=DhYx)=f(x +u)—f(x+A), —co<x<oo, (17.27)
we have the bound

ID,.f = Di flleo < ¢ (e = A]), (17.28)
where wy is the modulus of continuity of f. Thus the inequality

ILD,.f — LD, fllo <|IL|| wf(|e — A]) (17.29)

is satisfied, which shows that the function LD, f also depends continu-
ously on A.

To continue the discussion we require the result that the family of
functions {LD, f; 0< A <2} is uniformly continuous. This result holds
because the dependence on A is continuous, because the range of A is
compact, because each function in the family is continuous in the variable
x, and because, due to periodicity, it is sufficient to establish uniform
continuity when x is restricted to the compact interval 0 < x <47. We let
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»* be the modulus of continuity of the family. Therefore, if we replace f
by LD, f in expression (17.28), we find that the bound

|D.LD,f~D\LD,fl|<w*(lx = A|) (17.30)

is obtained for all values of the parameters u, A and ». Moreover
expression (17.29), and the fact that the norm of a displacement operator
is one, give the condition

\D-.LD,.f—D_, LD, fI<|IL|l (e = A). (17.31)

We deduce from the last two inequalities and from the definition (17.25)
that the relation

If. = fill<|f. = D_.LDif|+|D_. LDy f - fill
<|IL|| (e —AD)+ @*(u —A)) (17.32)

holds, which completes the demonstration that f, is a continuous function
of A.

We note also that the function Gf is in 6., because it is an average of
functions that are in %,,.. We are now ready to prove the relation between
ILllo and S |-

Theorem 17.3
If L is any bounded linear operator from %, to 2,, that satisfies
the projection condition (17.22), then ||L|» is bounded below by [|S,|.

Proof. The key to the proof is that, for every operator L that satisfies the

conditions of the theorem, the equation
1 2w
—j D_,LD, d\ =8, (17.33)
27 0

is obtained. In order to establish this equation, we recall from Section
17.1 that it is sufficient to prove that the conditions

Gf;=S.f, i=0,1,2,..., (17.34)
hold, where we are using the notation (17.24), and where {f;;i=
0,1, 2,...}is any fundamental set in €;,.. Theorem 13.1 shows that, in
the notation of equations (13.22)-(13.24), the functions {cos {j.};j=
0,1,2,...}and {sin{j.};j=1, 2,3, ...} together form a fundamental set.
Therefore we prove that equation (17.34) is satisfied for each of these
functions. We recall from Section 13.2 that the operator S, gives the
equations

Sufi=fi fie2,, (17.35)
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and
S, cos{j}=0

(> n, 17.36
S,.sin{j.}=0}, I=n (17.36)

which we compare with the equations that are obtained by applying G to
the functions in the fundamental set.

When f; isin 2,, then D, f; is also in 2,.. Hence the projection condition
(17.22) and the definition (17.23) of the displacement operator imply the
identity

D_,\LD,\f,' =D_)\D,\f,' =f,', f,-EQ,.. (17.37)
It follows that Gf; is equal to expression (17.35).
Next we consider G cos {j.} when j > n. We require the equation

D, cos{j.} =cos (jr) cos {j.}—sin (jA) sin {j.}, (17.38)

and we require the fact that L cos {j.} and L sin {j.} can be expressed in the
form

Leos{j}= ¥ [aj cos{k}+ by sin{k}]
e (17.39)
Lsin{j}= g [ajx cos {k.}+ Bjx sin {k.}]

Hence we can write LD, cos {j.} in terms of the basis functions of 2,. An
obvious continuation of this procedure gives D_,LD, cos {j.} in terms of
the same basis functions, and we obtain G cos {j.} by integrating this
expression over A. Every term of this integral includes a factor of the form

2m

I [cos (kA) or sin (kA)]x[cos (jA) or sin (jA)]dA. (17.40)

Because k is in the interval [0, n], and because j is greater than n, each of
these factors is zero. It follows that G cos {j.} is equal to S, cos {j.}. A
similar argument gives the equation

Gsin{j}=8,sin{j}, j>n, (17.41)

which completes the proof that the operators G and S, are the same.

The required lower bound on ||L||is a consequence of equation (17.33),
the properties of norms, and the fact that ||D, | is one. By extending the
triangle inequality for norms to integrals, it follows from equation (17.33)
that the inequality

1 27
Isd<5- [ ID-\LDJl oA (17.42)
0
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is satisfied. The integrand is bounded above by the relation
IDALD <D\l ILIlIDA]| = IL]. (17.43)

Therefore ||S,| is a lower bound on |L|. O
This theorem gives an excellent reason for taking the point of view that
S, is the best of the linear projection operators from 4, to 2,.

17.4 Application to algebraic polynomials

An interesting question is to seek the linear operator L from
%[a, b] to P, that satisfies the projection condition

Lf=f, fePu (17.44)
and whose norm ||L||» is as small as possible. Equation (17.44) implies the
bound

IL|o=1, (17.45)
which can hold as an equation when n = 1. Specifically, it is shown in
Section 3.1 that, if Lf is the function in %, that is defined by the
interpolation conditions

(Lf)(a) =f(a)}

(Lf)(b) =f(b)),
then ||L|l is equal to one. It follows that ||R,.|| is not a lower bound on ||L|.
The least value of |L{| for general n is unknown, but the next theorem
gives a useful condition that depends on ||R,|.

(17.46)

Theorem 17.4
If L is any bounded linear operator from ¢[—1, 1] to &, that
satisfies the projection condition (17.44), then the inequality

ILlI=3|Ro+ R.| (17.47)
holds.

Proof. Because the proof has much in common with the proof of
Theorem 17.3, some of the details are omitted. Instead of the displace-
ment operator D,, it is helpful to employ an average of two displace-
ments. Therefore the operator H, is defined by the equation

(Hif)(cos §) =3{f(cos[§+A]) +f(cos [ —A])}, O<f@<m.
(17.48)
It should be clear that H, f isin ¢[—1, 1]for every f in 4[—1, 1], and that,

if fis in 2, then H, f is also in P,. We take for granted that the operator
27

1
G=— j H,LH, dA (17.49)
0

m
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is well defined. The key equation in the present proof is the identity
G=Ro+R,, (17.50)
and, to establish it, we make use of the fundamental set {T};j=0,
1,2, ...}, where T; is still the Chebyshev polynomial
T;i(cos 6) = cos (j6), Oso<. (17.51)
Therefore we recall from Section 12.4 that R,, gives the functions
T, j<n,

R,T;= '
o, j>n.

(17.52)

Moreover, it is important to note that the definition (17.48) implies the
relation

H,T;=cos (jA)T; (17.53)
for each scalar A. Hence GT; and (R, + R,,)T; are the same if j < n, which
depends on the projection condition (17.44). The term R, allows for the
fact that the integral of the function {cos® (jA); 0<A <27} whenj=01is
twice the value that occurs when j is a positive integer. When j > n, we
may express LH,T; in the form

LH,T;=cos (jA) ¥ apTy, (17.54)
k=0

where the coefficients {a;;; k =0, 1, ..., n}are independent of A. There-
fore the equation

H,LH,T;= Y aj cos(jA)cos (kA)T, (17.55)
k=0
is satisfied. Because the integral over A of each term of the sum is zero, we
find the identity
GT;=0
=(Ro+R,)T;, j>n, (17.56)

which completes the proof of expression (17.50).
Because |H, || is one, equations (17.49) and (17.50) give the bound

2m

1
IRo+ Rull<— [ " IFLLEL] oA
o]

2w

1
<— [ IE Iz ax
m Jo

=2y, (17.57)

which is the required result. 0



The uniform boundedness theorem 210

By combining this theorem with inequality (17.1), we find that ||L||» is
bounded below by the inequality

ILllo> (2/7%) In (n +1)—3. (17.58)

It follows from Theorem 17.2 that the sequence {X,.f;n=0,1,2,...}
does not converge uniformly to f for all f in €[—1, 1], if each X, is any
linear operator from 4[—1, 1] to 2, that leaves polynomials of degree n
unchanged. However, we recall from Section 6.3 that the Bernstein
operators (6.23) give uniform convergence. Perhaps it would be useful to
investigate algorithms for calculating polynomial approximations that
have bounded norms, that are linear, and that are more accurate than the
Bernstein method when f can be differentiated more than once.

17 Exercises

17.1  Prove that the space %[a, b] is complete with respect to the
00-norm.

17.2  Let{¢;i=2,3,4,...}be an infinite sequence of numbers in the
interval [a, b], such that every point of [a, b] is a limit point of the
sequence. Prove that the functions {¢o(x)=1;a=<x=<b},
{#1(x)=x; a<x<b} and {$:i(x)=|x~&|; asx=<b; i=2,3,
4, ...} are a fundamental set in €[q, b].

17.3  Let B be the space €. of periodic functions with continuous
first derivatives. The Fourier series operators {S,;n =0, 1,
2, ...} map % into & and the sequence of norms {||S,,|lx; n =0, 1,
2,...} diverges. Nevertheless, Theorem 15.1 shows that the
sequence of functions {S,.f; n =0, 1, 2, ...} converges uniformly
to f for all f in 9. Explain why there is not a conflict with the
uniform boundedness theorem 17.2.

17.4  Calculate the right-hand side of inequality (17.47) in the case
when n = 1. You should find, of course, that it is not greater than

one.
17.5  Prove that the operator G of equation (17.49) is well defined.
17.6  For every positive integer n, let {£,;;1=0,1,...,2n} be a set of

distinct points of [a, b], arranged in ascending order, and such
that £,0=a and &, 2, = b. For any f in €[a, b], the function X, f is
defined to be the piecewise quadratic polynomial that is a single
quadratic on each of the intervals {(&,.;, &..42]; i=0,2,...,
2n —2}, and that interpolates the function values {f(£.); i =0,
1,...,2n}. Find necessary and sufficient conditions on the points
[{&.;i=0,1,...,2n};n=1,2,3,...] for the sequence {X,f;
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n=1,2,3,...} to converge uniformly to f for all f in
%la, b].
Prove that the powers {@w(x) =x*-1<sx=<1;k=0,2,3,
4,...}, excluding the linear function {¢i(x)=x;-1=sx=<1},
are a fundamental set in €[—1, 1], but that the Chebyshev
polynomials {T,; k =0,2,3,4,...}, excluding the linear term,
are not a fundamental set in €[—1, 1].
Let{L,;n=0,1,2,...} be asequence of linear operators from
¥[—1, 1] to €¢[—1, 1] such that, for every f in €[—1, 1], the
sequence of functions {L,.f; n =0, 1, 2, ...} converges uniformly
to f. Let X,, be the operator

1 2

Xn =_J HALnHA dA _Ro,
m Jo

where H, and R, occur in the proof of Theorem 17.4. Prove that,
for every f in €[—1, 1], the sequence {X,f; n=0,1,2,...} con-
verges uniformly to f. Note that L, need not be a projection.
Construct a linear operator L from €[—1, 1] to %,, satisfying
the projection condition (17.44), whose norm ||L || is as small as
you can make it. By letting L have the form 3(L, + L,), where, for
any f in ¥[—1, 1], L,f is the quadratic polynomial that inter-
polates the function values {f(—A), f(0), f(A)}, it is possible for
IL|l to be less than 3.

Let S[n, N1 be the operator from €., to 2, that corresponds to
the discrete Fourier series method of Section 13.3. Let L be any
linear operator from €, to 2, that satisfies the projection
condition (17.22) and that has the property that, for any f in 6>,
the function Lf depends only on the function values
{f@mj/N);j=0,1,..., N—1}. Prove that, if n <3N, then |L|o
is bounded below by ||S[7, Nl
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Interpolation by piecewise polynomials

18.1 Local interpolation methods

We have noted several disadvantages of polynomial approxima-
tions. In Chapter 3, for example, it is pointed out that they are not well
suited to the approximation of the function shown in Figure 1.1, because,
if {p(x); —0<x <o} is a polynomial whose degree is non-zero, then
|p(x)| becomes unbounded as |x| tends to infinity. It is noted also that it
can be highly inefficient to use an analytic function to represent a function
that is not analytic. Therefore it happens often that, in order to obtain
sufficient accuracy by a polynomial approximation, it is necessary to let
the degree of the polynomial be high. In this case there may not be
sufficient data to determine all the coefficients properly, the effort of
calculating the polynomial is increased, and the tendencies towards
unboundedness are exacerbated. Really polynomials are quite inap-
propriate for general use as approximating functions. Because piecewise
polynomials are much more successful in practice, they are studied in the
next four chapters.

We use the notation {s(x); a < x < b} for a piecewise polynomial. In

this chapter s is defined by the interpolation equations

s(x;) = f(x;), i=1,2,...,m, (18.1)

where the function values {f(x;); j=1,2,..., m} are given, and where
the data points satisfy the conditions

a=x1<x2<...<xm=b. (18.2)

This section is concerned with interpolation methods that have the
property that, for any fixed x, the function value s(x) depends on only a
few of the data, whose abscissae are close to x.
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The most frequently used method of this type, namely piecewise linear
interpolation, has been mentioned already in Section 3.4. In each of the
intervals {x; < x <x;.1;7=1,2,..., m—1}, s(x) is defined by the formula

5 (x) = f(x;) +—

j+1

" fx0) = 1) (18.3)

which is equivalent to equation (3.29). The main advantages of the
method are that {s(x); a < x < b} adapts itself easily to the form of {f(x);
a<x <b}, and that the error ||f —s|l» can be controlled directly by the
spacing between data points. However, in order to achieve a prescribed
accuracy, piecewise linear interpolation usually requires far more data
than some higher order methods.

We consider two higher order methods that are quite useful. Both of
them define s to be a cubic polynomial, s; say, on each of the intervals
{xisx<sxj1; j=1,2,...,m—1}. Therefore there are two degrees of
freedom in s; after equation (18.1) is satisfied. In the first method s; is
defined by interpolating two more function values. If 2<j<m —2, these
values are f(x;—1) and f(x;.+2), but, if j = 1 or m — 1, they are f(x3) and f(x4)
or f(xm—3) and f(x,.-2) respectively. In the other method the derivatives
{s'(x;);7=1,2,..., m}are given or are calculated at the beginning of the
interpolation procedure. For example, if 3 <j<m -2, we may let s'(x;)
be the derivative at x; of the quartic polynomial that interpolates the five
function values {f(x;); k =j—2,j—1,j,j+1, j+2}. The derivatives s'(x;)
and s'(x;.1) fix the two degrees of freedom in s; for each j. Hence s;(x) is
the cubic polynomial

5i(x) = f(x;)+s'(x;)(x —x;) + calx — x,-)2 +cs(x— x,-)3, (18.4)
where the coefficients have the values
_ 3 Ge) = F(x)] - 28"(x)) +5"(x;41)

2
(xj+1—x;) Xj+1 7~ X

¢ (18.5)

and

2L (x) = f(x+)] | 8'(x) + 5" (x541)
= =+ .
(%j+1—x;) (xj+1—x7)

It should be clear that each of the three interpolation methods that have
been mentioned gives a function {s(x); a <x < b} that is continuous, but
only the last method makes the first derivative {s'(x); a < x < b} continu-
ous also.

In order to compare the accuracy of the first two methods, in the case
when f has a continuous fourth derivative, we refer to the expression for
the error of polynomial interpolation that is stated in Theorem 4.2, If s

(18.6)

3
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is the cubic polynomial that interpolates the data {f(x;—1), f(x;), f(xj+1),
f(x;+2)}, and if x is in the interval [x;_1, x;.+2], then the theorem gives the
bound

j+2
) =s@)l<zs T1 bx—xl max [f9) (18.7)

i=j—- i—1<ESXj42

This inequality suggests that doubling the number of data can improve
the accuracy by a factor of sixteen, but the corresponding result for the
interpolation formula (18.3) is that there is only a fourfold increase in
accuracy. Therefore piecewise linear interpolation is normally less
efficient. In the third method the values of the derivatives {s'(x;); j =
1,2,..., m} can usually be chosen so that this method gives the best
accuracy, which is demonstrated in Exercise 18.1. However, if f is not in
%“[a, b], then piecewise linear interpolation may be preferable, especi-
ally if the spacing between data points is irregular.

Because all of these interpolation methods depend linearly on the data,
each one can be expressed in the form

s(x) = k§ L()f(x), a<x<b, (18.8)

where [, is a ‘cardinal function’ that depends on the positions of the
data points, but that is independent of the given function values. As in
equation (4.4), the cardinal functions satisfy the equations

lk (Xj) = 5kj, (18.9)

in order that the interpolation conditions (18.1) hold. If the interpolation
method is ‘local’, then [, (x) is non-zero only if x is close to x;. A
convenient way of obtaining /. is to apply the interpolation procedure
to the data {f(x;)=6&y;; =1, 2, ..., m}. The results of this calculation for
the three interpolation methods of this section are shown in Figure 18.1,
where k is remote from the ends of the interval [1, m], and where the
derivatives {s'(x;};j =1, 2, ..., m}for the last method are obtained in the
way that is suggested before equation (18.4). It is clear that only the last
method makes {s'(x); a <x<b} continuous for general data {f(x;);
ji=1,2,...,m}

The figure suggests that there are many ways of choosing cardinal
functions so that equation (18.8) gives a tolerable approximation to {f(x);
a < x <b}. The ideal properties for a cardinal function are that it is
non-zero over only a small part of the range [a, b], it is smooth, the form
of 5 is convenient for computer calculations, ||/ || is not much larger than
one, and, if f can be differentiated many times, then the error ||f — s|o of
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the approximation (18.8) is small. A good way of achieving the last
condition is to ensure that the error is zero when f is a polynomial of
suitable order, but the last two conditions can conflict when the spacing
between data points is highly irregular. These comments assume that
equation (18.9) is satisfied, but we find in Chapter 20 that it can be
advantageous to work with an approximation of the form (18.8) that does
not interpolate the data {f(x;); j=1,2,..., m}.

18.2 Cubic spline interpolation

Cubic spline functions are now used widely in computer cal-
culations for the approximation of continuous functions of one variable.
We recall from Chapter 3 that a cubic spline {s(x); a <x < b} is composed
of cubic polynomial pieces, that are joined so that the second derivative
{s"(x); a<x=<b}is continuous. In Sections 18.2 and 18.3 we consider
interpolation by cubic splines to the data {f(x;); j=1,2,..., m}, when
the cubic polynomial pieces meet at the data points. We continue to
assume that condition (18.2) is satisfied. Because it is convenient to
calculate the value of the spline from expression (18.4) when x is in the
interval [x;, x;+1], we study methods for obtaining the derivative values
{s'(x;);7=1,2,..., m}from the data. One important difference between

Figure 18.1. Cardinal functions for three local interpolation
methods.
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cubic spline interpolation and the methods that are described in the last
section is that, if s is a cubic spline, then each of the pieces of s usually
depends on all the data.

The condition that s” is continuous at the data points {x,; k=2,
3,..., m—1} gives equations that have to be satisfied by the deriva-
tives {s'(x;); j=1,2, ..., m}. In order to derive these equations, we note
that expression (18.4) implies the value

§"(xj+1) = 2c2+6C3(x; 41— X))
_ LA = fxn)], 25'(3)+45'05p00)
(xje1— %) (Xjs1—%7)
which, if j <m —2, has to agree with the second derivative at x;,; of the
cubic polynomial that is equal to s on the interval [x;.1, xj+2]. An

expression for this polynomial can be obtained by replacing j by (j+1) in
equations (18.4), (18.5) and (18.6). Hence the relation

§'(xp—1)+25" (k) 28"(xk) + 5" (Xpc41)

, (18.10)

(% — Xp-1) (Xe+1—Xk)
30 Ge) = fe-1)] | 30 (k1) — F(x)]
- (xk_xk—1)2 * (xk+1_xk)2 (18'11)

is the condition for second derivative continuity at x,. Because we give
special attention to the case when the spacing between data points is
constant
Xj+1—Xx; = h, i=1,2,...,m—1, (18.12)
we note that in this case expression (18.11) simplies to the form
§'(xk—1) + 45" () + 5" (1) =3[ fxe+1) = fxe-1)1/ b (18.13)
One method, that is sometimes recommended, for fixing the two
degrees of freedom that remain in the derivatives {s'(x;);j =1, 2, ..., m},
after equation (18.11) is satisfied for k=2, 3,...,m—1, is to use a
separate preliminary procedure to calculate or to estimate s'(x;) and
§'(x,). In this case the second derivative continuity conditions give a
tridiagonal system of linear equations in the unknowns {s'(x;); j=
2,3,...,m—1}, which can be solved easily because it is diagonally
dominant. Several other methods for fixing the two degrees of freedom
are mentioned in the next section.
In the remainder of this section we consider cubic spline interpolation,
when there are an infinite number of uniformly spaced data points

x;=jh, j=0,x1,x2,.... (18.14)

This case is studied because it is easy to analyse, and because the cardinal
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functions of the interpolation procedure help one to understand some of
the main properties of spline approximation. We may express s in the
form

s(x) = ,_f L(Of(x),  —oo<x <o, (18.15)

where each /; is a cardinal spline function that satisfies the equations
l,-(xk)=8,-k, k=0, ﬂ:l, :t2,.... (18.16)

Because the range of the variable x is infinite, there is the possibility
that /; is unbounded, which would be unacceptable, because then the
approximation (18.15) would be highly sensitive to the function value
f(x;). Fortunately it happens that the two degrees of freedom that occur in
cubic spline interpolation, when the number of data points is finite, can be
used in just one way to make {/;(x); —00 < x <o} bounded when the data
points have the values (18.14). The derivatives {/] (xx); k =0, £1, £2, ..}
of the bounded cardinal spline are found in the following way.

The second derivative continuity conditions that correspond to equa-
tion (18.13) have the form

i Oeem1) + 415 (i) + 1 (X 1)
=3[8jx+1—8ik-11/h, k=0,%1,+2,.... (18.17)

It is important to note that the right-hand side is zero if k=j+2. It
follows from the theory of recurrence relations that the conditions

V) =a(=2+V3) T +8(=2-V3)*,  k=j+1, (18.18)
hold, where « and B are constants, and where (—2+ v 3) are the roots of
the quadratic equation

1+46+6°=0. (18.19)

In order that {/;(x); — 00 < x <oo}is bounded, the value of 8 must be zero.
Similarly, because the right-hand side of expression (18.17) is zero for
k <j-2, the conditions

L) =y(=2+V3)7%  k<j-1, (18.20)
must hold also, where v is another constant. The numbers «, y and [} (x;)
are determined uniquely by giving k the values j—1, j and j+1 in
equation (18.17). Hence the bounded cardinal spline /; has the derivatives

—3(=24+V3)Y*/h, k<)
I (xi) = 0, k=j (18.21)
3(=2+V3)/h,  k>j.
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This cardinal function is shown in Figure 18.2. It is an oscillatory
function that decays exponentially by the factor (3-2) per data point as
x moves away from x;. It follows from equation (18.15) that, if x is not a
data point, then s(x) depends on all the function values {f(x;); =0, £1,
+2,...}, but the contribution from f(x;) to s(x) is usually negligible
when |x —x;|/h is large.

Itis easy to calculate the co-norm of the interpolation algorithm (18.15)
when expression (18.21) gives the derivatives of the cardinal functions.
Because each interval between data points is similar, the norm has the
value

max max %o: 1i(x)f (x;)

osx<h |flo=1 lj="w

=max T [x)]

Osx<h j=-o0
=max Y (—1)[l_;(x)+}+1(x)]
O<x<h j=0

= max p{x), (18.22)

O=x=h

say, where the third line of this equation depends on the sign properties
of the cardinal function that are shown in Figure 18.2. The function {p(x);
0<x =< h}is a cubic polynomial that is defined by the equations

p0)=ph)=1 (18.23)
and
PO =-p®= T [f0x)

=3(3-1)/h. (18.24)
Hence the co-norm has the value p(h)=(1+ 3\/3)/4 =1.55, which is
remarkably small. Therefore cubic spline interpolation to equally spaced

Figure 18.2. A cubic spline cardinai function.



End conditions for cubic spline interpolation 219

data on the whole real line is a reliable procedure. It is analysed further in
Section 22 .4.

18.3 End conditions for cubic spline interpolation

It has been noted that, if {s(x); a < x < b}is a cubic spline that has
knots at the points {x;; j=2,3,..., m—1}, and that satisfies the inter-
polation conditions (18.1), then there are two degrees of freedom in s. A
change in the method that fixes this freedom alters s by a spline, ¢ say,
that is zero at all the interpolation points. Therefore, if the data points are
equally spaced, then equation (18.13) implies the conditions

o'(x_1)+40' (xi)+ o' (xe1) =0, k=2,3,...,m—1.
(18.25)

It follows that, if § is any particular cubic spline that interpolates the data,
then the general interpolating spline has the derivative values

s'(x) =85 (x)) +a(=2+V3Y T+ B(=24+V3)" 7,
i=1,2,...,m,  (18.26)

where a and B are constants. This section considers procedures that
define the values of « and B.

Expression (18.26) shows that the influence of a is strongest at the
left-hand end of the range [a, b], while the influence of B is strongest at
the right-hand end. Therefore, in order that s depends stably on the
procedure that fixes « and B, it is necessary to impose a condition on s at
each end of the range. Normally this remark is also true in the general
case when the distribution of data points is irregular. Therefore, obtain-
ing the values of s'(a) and s'(b) from a preliminary calculation, which is
suggested in the last section, is a suitable method for determining the free
parameters of s.

A different procedure that is used sometimes is to set s"(a) = s"(b) = 0,
which makes s a ‘natural spline’. Natural splines have some interesting
theoretical properties that are studied in Chapter 23, but in practice they
are often poor approximating functions, because they waste the accuracy
that can be achieved when f is in €“a, b). When f"(a) and f"(b) are both
non-zero, the error || f — s||» of a natural spline approximation is bounded
below by a multiple of max [(x —xl)z, (X —xm_,)z], instead of being of
fourth order in the spacing between the data points. It is better to
choose two suitable properties that would be obtained by a good spline
approximation when f is a polynomial of degree at least three, and to
force s to have these properties.
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For example, if f is a cubic polynomial, then s is equal to f only if s" is
continuous throughout [a, b]. Therefore the property that s can equal a
general cubic polynomial is preserved if « and B, in equation (18.26), are
defined by requiring any two of the third derivative discontinuities

di=s"(x;j+)—s"(x;—), i=2,3,...,m—1, (18.27)
to be zero. Equations (18.4) and (18.6) show that d; has the value

12[f(x,~)—f(x;+1)]+6[S’(xf)+S‘(x,»+1)]

di - (xj+1 _Xj)3 (x,'+1 _xi)z
_12[f(xf-1)—f3(x,-)]_6[S’(x,-—1)+S’§x,')]. (18.28)
(x; —xj-1) (xj —xj-1)
A good method for determining s is to set d, = d,,—1 =0, in addition to
satisfying condition (18.11) for k =2, 3, ..., m —1. Hence the required
derivatives {s'(x;); j=1,2,..., m} are defined by a square system of

linear equations, that is easy to solve, because it is almost tridiagonal and
almost diagonally dominant. Another technique for fixing the values of
the parameters « and B istoset d> = d; and d,,_» = d,,.—1. It has the strong
advantage that it minimizes the error ||f — s/ when the spacing between
data points is uniform and f is any quartic polynomial.

Two important and related questions, which we consider in the case
when the data points have the constant spacing (18.12), are the effect
that the data {f(x;);j =1, 2, ..., m} have on the parameters « and 8, and
the effect that @ and B8 have on the spline {s(x); a < x < b}. In order that
the values of a and B are unambiguous, it is necessary to choose a
particular function § in equation (18.26). Because of the nice properties
that are obtained by the interpolating spline (18.15) when the cardinal
functions have the form shown in Figure 18.2, we define § in the following
way. We continue the uniform spacing of data points along the whole real
line, and we assign fixed values to f(x;) at the new data points. For
instance, these function values may be set to zero, if it is not important to
preserve continuity in the extension of f. We let § be the part of the
function (18.15) that is relevant to the range [a, b].

The two conditions on {s(x); a < x < b} that fix the parameters a and 8
give these parameters non-zero values only if the required conditions on s
are not obtained by 5. The equation

oo
Sx)= Y Lx)f(x), asxs<b, (18.29)
j=—o0
shows directly the contribution from f(x;) to §(x), and we note the
presence of the scaling factor /;(x). Therefore, in the usual case when «
and B depend on the form of § near the ends of the range [a, b], it follows
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from Figure 18.2 and equation (18.21), that the contribution from f(x;) to
a or B includes the factor (2 — N, 3)’ or (2—+/3)™"". Hence the values of a
and B depend mainly on the data that are near the ends of the interval
[a, b]. Moreover, equation (18.26) shows that the effect of the end
conditions on s(x) decays exponentially if x is moved towards the centre
of the range [a, b].

These remarks suggest that, when x is well inside the interval [a, b],
then it is usually adequate to regard s(x) as the value of a cubic spline
that interpolates f on the infinite range — 00 <x < 00. Thus one can obtain
useful error estimates, and one can study the behaviour of the error as h
tends to zero, in a way that avoids the complications that come from the
choice of end conditions.

18.4 Interpolating splines of other degrees

In most of this section we consider interpolation by quadratic
splines. It is possible to satisfy the conditions (18.1) by letting s be a
quadratic polynomial on each of the intervals {{x;, x;+1]; j=1,2,...,
m — 1}, where the joins of the quadratic pieces are such that the first
derivative {s'(x); a <x < b} is continuous. This procedure, however, has
some severe disadvantages. In particular, the following example shows
that there are difficulties in adapting the distribution of data points to the

form of f.
We let f be the continuous function
0, —-1=<sx<0
f(x)_{x, 0sx=<1. (18.30)

We suppose that the number of data points m is given, and that we are
free to choose the positions of the data points, subject to the conditions

—1l=x1<x<...<x,=1, (18.31)

and subject to the restriction that one of the data points, x, say, is at zero.
If s is to be a quadratic spline that satisfies the conditions of the previous
paragraph, we find that, because x,, is zero, it is not possible to make the
error |[f—s|w very small by clustering the data points near the first
derivative discontinuity of f, even though f is equal to a single segment of
a quadratic spline on each side of the discontinuity. In order to reach this
conclusion we note that, because s is a quadratic function on each of the
intervals {[x; x;+1]; j=1,2,..., m —1}, the equations

%[s'(xj) +5'(xp01)]1=[s(xj41) = s(x)1/ (x40 — x;),
i=1,2,...,m-1, (18.32)
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are satisfied. Thus expressions (18.1) and (18.30) give the conditions
0, j<n
1, j=n,

als'(x;) + 8" (xj41)] = (18.33)

which imply the identities

s'(xj+2) = 5'(x;), j#n—1, (18.34)
In particular, the derivatives {s'(x,), s'(x,+2), ' (Xnz4), . . .} are all equal. It
follows that s cannot adapt itself efficiently to the slopes of both of the
straight line sections of f. The difficulty is due to the fact that the cardinal
functions of quadratic spline interpolation do not usually become small
when x is remote from the data point at which the cardinal function is
equal to one. For example, Figure 18.3 shows a symmetric cardinal
function, where the distribution of data points is uniform.

However, there is a way of making quadratic spline interpolation a
flexible procedure. It is to position the knots of s midway between the
data points. We study this technique in the case when the range of x is the
whole real line, and when the data points have the equally spaced values
{x;=jh;j=0,x1, £2,...}. Asin Section 3.4, the notation

&=3xj+x41), Jj=0,%1,%2,..., (18.35)
is used for the knots of the spline. Because s(x;) is equal to f(x;), and
because x, is the mid-point of the interval [£;_;, &1, the quadratic function
{si(x)=s(x); &-1=<x = &} is the expression

5;(x) = fx;) + (x = x))[s(&) — s (§-1)]/ A

+2(x —x;)°[s(&) —2f (x;) + s (&_1))/ B>, (18.36)
Therefore, in order to define {s(x); —o0<x <00}, it is convenient to
calculate the function values {s(£;); j=0, =1, £2,...}. The first deriva-

Figure 18.3. A quadratic cardinal function whose knots are at the
data points.
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tive continuity condition s; (&) = s}+1 (&) and equation (18.36) imply that
the recurrence relations
§(€—1) +65(&) +5(Ecr) =4[ f(xi) + Fxies1)],
k=0,x1,£2,..., (18.37)
are obtained. Therefore the cardinal function [, that satisfies equation
(18.16) at the interpolation points, also satisfies the conditions
li(€e—1) +61(&) + i (€xr1) = 4[67x + 81 11],
k=0,x1,+£2,.... (18.38)
As in Section 18.2 there is only one bounded solution to this system,
which is that the cardinal function takes the values
L&) = { 2-v2)2v2- 3)"‘_{"‘, k<j—-1
2-v2)2v2-3)*7, k=j,
at the knots. Hence /; has the form that is shown in Figure 18.4. The
localization properties are even better than those of the cardinal function
of Figure 18.2, because the exponential decay factor |2v2 — 3| is less than

|~/ 3-2|. Therefore quadratic spline interpolation is a very useful pro-
cedure, if the knots are placed between the data points.

(18.39)

When there are a finite number of data points {x;;j =1, 2, ..., m}, and
when s is an interpolating quadratic spline, then the knot positions
&=53(x;+%41), Jj=2,3,...,m—2, (18.40)

are usually suitable. Because there are no knots in the intervals [x, x5]
and [x,,—1, Xm], the number of parameters of the spline is equal to the
number of data. The Schoenberg—Whitney theorem, which is proved in
Section 19.5, shows that the interpolation conditions (18.1) determine
the parameters uniquely. Hence the knots (18.40) take up the degrees of
freedom in the quadratic spline that correspond to the end conditions that

Figure 18.4. A quadratic cardinal function whose knots are midway
between the data points.
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are discussed in Section 18.3. This approximation method is usually
successful in practice.

Interpolation by splines of degree greater than three is rare. One of the
main reasons is that increasing the degree of a spline normally makes the
localization properties less good, because the tails of the cardinal
functions decay at a slower exponential rate. Another reason is that there
are many computer programs available for interpolation by cubic splines.
However, splines of greater degree can be very useful when high accuracy
is required. The work of the next chapter is sufficiently general to provide
a suitable method of calculation.

18.1

18.2

18.3

18.4

18 Exercises

Let the data points of the interpolation procedures of Section
18.1 have the equally spaced values {x;=jh; j=1,2,...,m}.
Calculate the values of the cardinal functions of Figure 18.1 at
the points that are midway between the interpolation points.
Hence, for each of the three interpolation procedures, identify
the coefficients {c;; j=1, 2, ..., m} of the equation

G +3h) = § o fi),

where s is the interpolating function, and where k is remote from
the ends of the interval [1, m]. Thus compare the accuracy of the
three interpolation methods when f is a quartic polynomial.
Show that both of the piecewise cubic interpolation procedures
of Section 18.1 have the property that, depending on the dis-
tribution of the data points {x;; j=1, 2, ..., m}, the c0-norm of
the interpolation operator can be arbitrarily large.

Let the data points {x;; =1, 2, ..., m} be equally spaced, let f
be a quartic polynomial, and let s be the cubic spline, whose
knots are at the data points, that satisfies the interpolation
equations (18.1) and the end conditions d, = dsand d,,—2 = d -1,
where d; is the third derivative discontinuity (18.27). Prove that
the equations {s'(x;) =f'(x;); j=1, 2, ..., m} are obtained, and
that the third derivative discontinuities of s have the constant
values

di=hfP%), j=2,3,...,m—1,

where h is the spacing between data points.
Let s be a cubic spline that satisfies the interpolation conditions
(18.1), where the knots of s are at the data points, and where the
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data points are equally spaced. If the function values f(3[x, +
x2]) = f(x11) and fGlx2+x3]) = f(x21) are known, then two useful
methods for fixing one of the degrees of freedom in s are as
follows. In one method s'(x3) is made equal to the first derivative
at x, of the polynomial in 2, that interpolates the function values
{f(xp);i=1, 13,2, 23, 3}, and in the other method the equation

f(x23) —s(x28) = f(x14) —s(x12

is satisfied. Prove that these methods are equivalent.

For any f in €(—00, 0), let Xf be the quadratic spline that has
knots at the points {¢ = (j+2)h;j=0, £1, £2,...}, and that
interpolates the function values {f(jh); j=0, =1, £2,...},
where & is a positive constant. Prove that the co-norm of X has
the value || Xl = V2.

For any f in €(—00, 00), let s be a cubic spline that is defined by
equation (18.15), where the data points have the values (18.14),
and where each function {/;(x); —oco<x < o0} satisfies the
cardinality conditions (18.16). Show that, if s is allowed to have
knots not only at the data points {jh;j =0, £1, £2,.. .} butalso
at the mid-points {(j +3)h;j =0, £1, £2, ...}, thenitis possible
for each /; to be non-zero only on the interval (x; —3h, x; +3h),
and for s to be equal to f when f is any cubic polynomial.

Let {s(x); 0 =< x <00} be a non-zero cubic spline function that has
knots at the points {x; =u’;j=0,1,2,...}, and that is zero at
every knot, where u is a constant that is not less than one. Prove
that it is possible for the derivatives {|s'(x;)|; =0, 1,2, ...} tobe
bounded for any value of u, but that it is possible for s to be
bounded only if u <3(3+V5).

For any bounded function f in €(—0, 00), let s be the spline
function (18.15), where each cardinal function has the form that
is shown in Figure 18.2, and where the spacing between data
points, A, that is given in equation (18.14), is a parameter. Prove
that, as & tends to zero, s converges uniformly to f.

Let f be a cubic polynomial, and let s be the quadratic spline with
knots at the points (18.40) that interpolates the function values
{f(x;); 7=1,2,..., m}, where the spacing between the data
points {x;;j=1,2,...,m} is constant. Sketch the form of the
error function {f(x)—s(x); x;=<x <x,,}. Propose an algorithm
for quadratic spline interpolation that does not cause an increase
in the error function near the ends of the range [x1, x,.] when f is
a cubic polynomial.
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Given two sets of data points {x;;j=1,2,...,m}and {ys; k=
1,2,...,n} that satisfy conditions (18.2) and the inequalities
a=y;<y,<...<y,=b, an algorithm is chosen for cubic spline
interpolation on each set of points. Let the cardinal functions
of the algorithms be {/;(x);a<x=<b;j=1,2,... m}and {A.(y);
asysb;k=1,2,...,n} For any function {f(x, y); a<x < b;
a <y < b} of two variables, the approximation

s(x, y)= ,Zl kZI L) Aey) f(xpye),  as<x<b,  asys<b,
=1 ks

is called a ‘bicubic spline’ approximation to f. Investigate its
properties, giving particular attention to the accuracy of the
method when f is differentiable, and to procedures for calculat-
ing the value of s(x, y) for any x and y directly from the data
{fxoye);j=1,2,...m; k=1,2,...,n}.
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B-splines

19.1 The parameters of a spline function

Most of the results of this chapter and of Chapter 20 apply to
general spline functions, that are not necessarily defined by interpolation
conditions. As in Section 3.4, we let #(k, &, &1, . . ., &) be the linear
space of splines of degree k, whose knots are {¢;;i=1,2,...,n—1}. The
range of the variable is still the interval [a, b], and it is assumed that the
conditions

a=§&<E<E< . <E=b (19.1)

are satisfied. Sometimes the name of the space is shortened to %.
Equation (3.31) states that each function in this space can be expressed in
the form

k ) 1 n—1
s()= Y eox'+= Y dix—&)%, asx<b, (19.2)
j=0 k' ji=1

where {¢;;7=0,1,...,k} and {d;;j=1,2,...,n—1} are real
parameters. Therefore the dimension of the space is (k +n). The main
purpose of this chapter is to describe a general method for defining an
element of & that is highly convenient for computer calculations.

First an example is given to show that it can be quite unsuitable to
specify a spline by the values of the coefficients {c;;j=0,1,..., k} and
{d;j;j=1,2,...,n—1}. We let s be the piecewise cubic polynomial,
whose knots are the integers {£,=j; /=0, 1,..., n}, that is defined by
the equations

s(&)=0
s'(&)=(3-2)

It is a cubic spline because it is a multiple of the tail of the cardinal

}, j=0,1,...,n. (19.3)
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function that is given in Figure 18.2. Therefore, there is an expression for
s of the form (19.2), which is the function

s()=x—V3x+(V3-1)x*+2V3 g_l V3-2)(x =),

Osx=<n. (194)

If we calculate s{10.5), for example, from this equation, then the third
term contributes the number (v3—1)(10.5)> ~847, but, because s(x)
decreases exponentially as x is increased by whole integers, the actual
value of 5(10.5) is (v3—2)"%(0.5)=3.02x107". Hence nine decimal
digits are lost in cancellation if expression (19.4) is evaluated. Excellent
accuracy can be obtained, however, from the data (19.3). Therefore it is
better to work with the function and derivative values {s(&;); j=0,
1,...,n} and {s'(¢&); j=0,1,..., n}, instead of with the coefficients
{¢;;7=0,1,...,k}Yand {d;;j=1,2,...,n—1}.

There are disadvantages, however, in defining s by function and
derivative values when &k =3. In particular, the second derivative
continuity conditions are artificial, and, if n is large, then the number of
parameters that specify an element of & is almost twice the dimension of
&. Therefore, except in a few special cases such as interpolation to f at the
knots of s, there are more unknowns than necessary in the calculation of a
particular cubic spline from data, which can increase greatly the length of
the calculation. Further, for larger values of k, it would be necessary to
take account of higher derivatives, for instance {s"(¢); j=0,1,..., n},
which would make the disadvantages worse.

In order that the number of parameters of s is the same as the dimen-
sion of &, we may choose any fixed basisof &, {¢;;7=1,2,..., k+n}say,
and we express s in the form

k+n

s(x)= X Ar¢i(x), asx<b. (19.5)

The coefficients {A;;j=1,2,..., k+n} are the parameters that charac-
terize 5. The example (19.4) shows that the basis functions {¢;{(x)=
(x—§,-)li, a<x<b;j=1,2,...,n—1} and {¢;(x)=x"",a<x<b;j=
n,n+1,...,n+k}can give severe difficulties in practice, but many other
choices of basis can be made. We find that a basis of ‘B-splines’ is
particularly suitable, not only because it prevents severe loss of accuracy
due to cancellation, but also because it reduces the amount of calculation,
and it helps the convergence analysis of Chapter 20.
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19.2 The form of B-splines

One way of introducing B-splines is to address the question of
choosing the basis functions {¢;; j =1, 2, ..., k +n}in expression (19.5),
so that each function {¢;(x); a < x =< b}is identically zero over a large part
of the range a <x < b. Therefore we consider the problem of finding an
element of F(k, &, &1, - . ., &) that is zero on the intervals [&, &,] and
(&, &, but that is non-zero on (&, £;), where 0<p <q <n.If s issuch a
function it can be expressed in the form

s(x)= i:, di(x—&)%, asx<bh, (19.6)

i=p

where the parameters d; have to satisfy the condition
q
Y di(x—£) =0, &=<x<b (19.7)
ji=p
It follows that the equations

Y de=0, i=0,1,....k (19.8)
i=p

must hold. These equations have a non-zero solution if g=p+k+1,
because then the number of coefficients {d;} is greater than the number of
equations. The identity (4.11) shows that, if q=p+k+1, then the
coeflicients
p+k+1 1 .
di= LIP G-z j=p,p+1,...,p+k+1, (19.9)

i#j

are suitable. We note that the sign of expression (19.9) is such that d, is
positive. The spline function

p+k+1 rp+k+1 X
By)= 1 [ @]u—m, —w<x<w®,
(19.10)

is called a ‘B-spline’. The subscript p on B,(x) denotes that B,(x) is
non-zero only if x is in the interval (£, &p4r+1).

Figure 19.1 shows B-splines of degrees one, two and three when the
spacing between knots is constant. We note that the value of each spline is
positive, except where it is constrained to be zero. The following theorem
proves that this property is obtained by all B-splines, and it gives a useful
condition on the number of zeros of some other spline functions.
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Theorem 19.1

Let s be a function in the space F(k, &, &1, ..., &), that is
identically zero on the intervals [, &,] and [£,, £.], and that has r zeros in
the open interval (¢, &), where p and g are integers that satisfy the
condition 0 < p < q < n, and where r is finite. Then the number of zeros is
bounded by the inequality

r<q—(p+k+1). (19.11)

Proof. When s is composed of straight line segments, then it has at most
one zero in each of the intervals {[¢, &+1);j=p,p+1,...,9—1}
Because s(£,) and s(¢,) are both zero, it follows that the total number of
zeros in the open interval (&, £,) is at most (g —p —2). Therefore the
theorem is true when k = 1.

In order to treat larger values of k, we require an upper bound on the
number of sign changes of a linear spline, o say, that is in the space
P, & &1y - - -, &), and that is zero at &, and £, Because no sign
changes can occur in the intervals [£,, &+1] and [£,-1, &, ], and because
each of the other intervals {[¢;, &.1);j=p+1,p+2,...,q—2} contri-
butes at most one sign change, the total number of sign changes is also
bounded above by (g —p—2). An important difference between this
result and the one given in the previous paragraph is that some of the
linear sections of o are allowed to be identically zero.

Figure 19.1. B-splines of degrees one, two and three.

T
d
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To complete the proof of the theorem for k=2, we let o be the
function {s* P(x); &, <x<¢,}, and we do some counting. Since, by
definition, the function s has r zeros in (¢,, &), and since s(£,) and s(&,)
are both zero, the first derivative {s'(x); £, < x < £,} changes sign at least
(r+1) times. If k =3, we consider next the second derivative {s"(x); &, <
x<¢,}. Because 5'(§,) and s'(&,;) are both zero, the number of sign
changes of the second derivative is at least one more than the number of
sign changes of the first derivative. Hence s” changes sign at least (r +2)
times. If k =4, we continue this argument inductively. It follows that, for
all k =2, the function {o(x) = s "(x); &, <x <¢,} changes sign at least
(r + k — 1) times. Combining this statement with the result of the previous
paragraph gives the inequality

(r+k-1)<(q—p-2). (19.12)
Therefore the theorem is true. 0O

The theorem implies that g cannot be less than (p + k + 1). Moreover,
the proof of the theorem shows that, if s is the B-spline (19.10), then, not
only is r equal to zero, but also all the inequalities that lead to condition
(19.12) are satisfied as equations. Hence, for j=0,1,...,k—1, the
derivative {BY (x); &, <x <&,,+1} changes sign exactly j times. There-
fore Schoenberg made the highly descriptive remark that ‘B-splines are
bell-shaped’.

19.3 B-splines as basis functions

The fact that the B-spline (19.10) is non-zero only in the interval
[&, & +x+1]) can be very useful in practical computer calculations. There-
fore we seek a basis of the space F(k, &, &1, . . ., &) that is composed of
B-splines. We include the functions {B,; p=0,1,...,n—k—1} in the
basis, because they are linearly independent and they are all in &. The
dimension of the space that is spanned by these functions, however, is
(n — k), while the dimension of & is (n + k). Therefore another 2k basis
functions are required. A convenient way of choosing them so that they
are also B-splines is to introduce some extra knots outside the interval
[a, b]. Specifically, we let {&; j=—k,~k+1,...,—1}and {¢;j=n+1,
n+2,...,n+k} be any points on the real line that satisfy the condi-
tions

g_k<§_k+1<...<§_1<§o=a}' (19.13)

b=¢ <&ur1<&nin<...<E&uik
For example, we may set {& =& +j(é1—&0);j=—1,-2,...,—k} and
{&=&+(—n)&—&-1);j=n+1,n+2,...,n+k}. Wenow define B,
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by equation (19.10) for p = —k, —k +1, ..., n — 1, but we make use of the
function value B,(x) only if x is in the interval [a, b]. Hence the total
number of B-splines is equal to the dimension of &. The following
theorem shows that every element of & can be expressed in the form

1

s)= ¥ ABx), a=x<b. (19.14)
ie—k

Theorem 19.2

Let the points {&;j=—k, —k+1,..., n+k} satisfy conditions
(19.1) and (19.13), and let B, be defined by equation (19.10) for
p=—k,—k+1,..., n—1.Then the functions {B,(x), as<x<b; p=—k,
—k+1,...,n—1}are a basis of the space L(k, &, &1, ..., &n).

Proof. The definition (19.10) implies that each of the functions
{Bo(x),as<x<b;p=—k,—k+1,...,n—1} is in Lk, &, &1,y ..., &n)s
and we have noted already that the number of functions is equal to the
dimension of &. It is therefore sufficient to show that the functions are
linearly independent. We follow the normal method of proof, which is to
show that, if the spline

s =T Ay Bylx)- (19.15)

p=—k
is zero on a <x<b, then all the coefficients {A,; p=—k,—k+1,...,
n —1} are zero.

Let £_,_; be any real number that is less than ¢_,. We consider the
spline {s(x); é_r_1<x<¢&;}, where s(x) has the value (19.15). The
definition (19.10) implies {s(x) =0; £-,_1 < x < &_,}. Therefore, if s(x) is
also zero for &< x < ¢, it follows from the remark, made immediately
after the proof of Theorem 19.1, that s is identically zero on [£_y_1, &1].
Hence it is sufficient to show that the condition {s(x)=0; é_, <x < b}
implies {A,=0;p=—k,—k+1,...,n—1}.

Alternatively we may prove the equivalent result that, if any of the
numbers {A,; p=—k,—k +1,..., n—1} are non-zero, then s is not iden-
tically zero on [£_,, b]. We let g be the smallest integer such that A, is
non-zero. It follows from the definitions (19.10) and (19.15) that the
equation

s()=AgBy(x), &a<x<&an, (19.16)

is satisfied. Hence s(x) is non-zero for &, < x < §&,.1, which completes the
proof of the theorem. 0O
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In order to demonstrate the way in which a B-spline basis can be used,
we consider the problem of expressing the cardinal function of Figure
18.2 in the form

Lx)= T Ay B,x), —c0<x<o, (19.17)

p=-

Because the knots are the points {& = ih; i =0, 1, £2, .. .}, the B-spline
B, is the function

1
Bp(x) = W[(x _gp)i _4(x —'fp+1)3- +6(x _§p+2)i

—4(x —&i3)s +(x—&,04)3], —0<x<o. (19.18)

In particular the equations

B,(&p+1)=1/(24h)

B,(&+2)=1/(6h) (19.19)

B,(&p+3)=1/(24h)
are satisfied. Because B, is zero at all the other knots, it follows from
equation (19.17) that /;(¢;) has the value

L(&) =[Aic1+4Xi2+Ai25]/24h. (19.20)
Therefore the cardinality conditions {/;(£&)=6;;i=0,+1,£2,...} give
the equations

Aic1+4r_2+Ai_3=24hé;, 1=0,+1,%2,.... (19.21)
This recurrence relation has just one bounded solution, namely the values

A, =4V3(V3-2)i72 Pl p=0,£1,42,..., (19.22)

which are the required coefficients of expression (19.17). Two advantages
of using B-splines are that the method of calculating cardinal functions
can be extended easily to splines of higher degree, and, for any x, the
number of non-zero terms in the sum (19.17) or (19.14) is finite.

It is interesting also to express the function (19.4) in terms of B-splines.
Therefore we introduce extra knots at the points {&=j;j=-3,
-2, =1, n+1, n+2, n+3}. Because the shape of the spline (19.4) is
the same as the tail of the cardinal function (19.17), the required
expression has the form

s(x)=a i (V3-2)’B,(x), O<xs<n, (19.23)

where « is a constant. Equation (19.18) and the property s'(0) =1 give
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the value a =%7+v/3-12). If 5(10.5) is calculated numerically from
expression (19.23), then a small number is found, because of the factor
(+/3—2)" and because the first non-zero term of the sum occurs when
p =7. Hence the B-spline basis avoids the very serious cancellation that
occurs when equation (19.4) is used to evaluate s(10.5).

19.4 A recurrence relation for B-splines

In many algorithms for approximation and data fitting it is
necessary to calculate the values of B-splines for several values of the
variable x. One possible method is to calculate directly the expression

K p+k+1 rp+k+1 1 X
B,(x)= 1 [ 1l m](x—f,»)h (19.24)

which is the same as equation (19.10), except that the superscript k on the
left-hand side shows the degree of the B-spline explicitly. If one allows for
the fact that the term in square brackets is independent of x, then this
method is quite suitable, unless x is very close to &,.«.+1. The difficulty in
this case is that B ;f (x) should tend to zero as x tends to &, ,+1, but formula
(19.24) relies on cancellation to give this property. It would be better to
make use of the fact that B';(x) is a multiple of (x — §p+k+1)k when x is in
the interval [&,+x, &+k+1). A procedure that is efficient in all cases is
described in this section. It depends on the following recurrence relation.

Theorem 19.3

Let k be an integer that is greater than one, and let {¢;; j =p,
p+1,...,p+k+1} be a set of distinct real numbers, which we assume
are in ascending order. Then the function (19.24) satisfies the equation

(x —&)Br ' () + (£pars1—x)Brii (x)
(§p+k+l —gp) ’

B’;(x)= (19.25)

for all real values of x.

Proof. Let s(x) be the right-hand side of expression (19.25). The
function {s(x); —00 < x < oo} is composed of polynomial pieces, each of
degree at most k, that are joined at the knots {¢&; j=p,p+1,...,
p + k +1}. By the definition of a B-spline, this function is identically zero
for x<¢, and x=&,4k+1. When x is in the interval [£,, &,+1], the
definition (19.24) implies the identity

(x —§p)

k = —-————
BP(X) (£p+k+1_§p)

B (x), (19.26)
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and BSIll (x) is zero. Therefore the equation {s(x) = B';(x); Lsx <}
is satisfied. In order to prove that the conditions {s(x) = B';(x); Esxs
&.;=p+1,p+2,..., p+k} hold also, it is sufficient to show that the
change in s at the knots {&;/=p+1,p+2,...,p+k} agrees with the
change that is given in equation (19.24). This result is obtained by
straightforward algebra from the definitions of B';_l(x), B';I% (x) and
s(x). When jisin [p+1, p+k], we find that the change in s at & is the

polynomial (x — §,~)"_1 /(&p+1+1— &,) multiplied by the factor

bk prk+1 ]
x—&) ‘.l;l”. & _é_)+(§p+k+l_x) ifrplfl (&—¢)
i i bkl 1
=[x = &) Epricr1— &) + (Epris1 = )& — )] {[Ie G-o
) —&) T (19.27)
i=p (&— &)

i#j
Hence the change in s is the same as the change in B ',,‘, which completes
the proof of the theorem. [
Equation (19.25) is similar to the recurrence formula (5.14) for divided
differences. Therefore a convenient method for calculating B';(x) for a
fixed value of x is to compute the columns of the tableau

Bj(x) - B (x) By(x) ... B‘k’flm/B’;(x)
B, (x) B2..(x) ; B (x)

. ' (19.28)
B:,+2(x) : BZ+k—3(x)

Bi+k—2(x)
B:H-k—l(x)

in sequence. If x is in the interval [&, &.1], then the numbers in the first
column have the values

B}(x)=0, j#i-1, j#i
Bl i(x)=(&1—x)/[(&i1— &) — &) . (19.29)
Bi(x)=(x—&)/[(&ix1— &) &2 — &)]
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The remaining entries in the table (19.28) are obtained from equation
(19.25), which gives B';(x) in the final column. This procedure is highly
suitable for numerical computation, because, except for differences
between values of the variables, there is no cancellation. Moreover, it is
easy to extend the table to provide B’;(x) for a range of values of p.

There are other relations between B-splines and divided differences.
One of them is so fundamental that it is used sometimes to introduce
B-splines. It comes from a property of the function

fO=D""x-gi, —o<E<oo, (19.30)
where x is any fixed number. We recall from Chapter 5 that the divided
difference f[£&), &1, - - - €psian] is the coefficient of £€“*' in the poly-
nomial of degree at most k+1 that interpolates the function values
{f&);j=p,p+1,...,p+k+1}. Therefore, if we make the definition

By (x) = flép &psts - - - priesr), (19.31)
it follows that B',ﬁ(x) is zero when x < ¢, and when x'= &, 1. Further,
because the divided difference is a linear combination of the function
values {f(¢&);j=p,p+1,...,p+k+1}, the function {B';(x); —0<x <
oo} is a spline of degree k whose knots are the points {£; j=p, p+1,

..,p+k+1}. Hence B is a B-spline. An alternative and less inter-

esting method of reaching this conclusion is to deduce from equations
(5.2), (19.30) and (19.31) that B';(x) has the value

prk+1 (_1Vk+1(, _ £k
Bj(x)= il(‘,i,)(—“(xi)* (19.32)
" l;l (&—&)

which is equivalent to the definition (19.24).

There are some advantages in taking the point of view that B'; (x)is the
divided difference (19.31). In particular, a neat proof of Theorem 19.3
can be obtained by letting g and & be the functions

gé)=(£—x), —0<¢E<o, }
h(&)=(-1)*(x-)57, —o<¢<o)’

and by calculating expression (19.31) from the product formula

(19.33)

p+k+1

Bl;(x) = Z g[gp’ §p+1, L] §[] h[gp §i+17 L] §p+k+1]’ (19'34)
1=p
which is given in Exercise 5.9.

19.5 The Schoenberg-Whitney theorem
A convenient method for calculating an approximation from the
space &L(k, &, &1, ..., &) to the function {f(x); a <x <b} is to inter-
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polate some function values {f(x;);i=1,2,..., n+k}. We let the inter-
polation points be in ascending order
asx1<x<...<Xp+kSb, (1935)

but there is no need for any of them to be at knot positions. Because the
number of function values is equal to the dimension of ¥, it isimportant to
ask whether there is just one element s in & that satisfies the equations

s(x;) =f(x:), i=1,2,...,n+k. (19.36)
We introduce extra knots outside the interval [a, b], in order that every
element of & can be expressed as a linear combination of the B-splines

{Bp;p=—k,—k+1,...,n—1}. Useful necessary and sufficient condi-
tions for s to be unique are given in the following theorem.

Theorem 19.4 (Schoenberg—Whitney)

Let the real numbers {£;; j = ~k, -k +1, ..., n+k} be in strictly
ascending order, and,forp=—k, —k+1,...,n—1,let{B,(x); —0o<x <
oo} be defined by equation (19.10). Let the interpolation points {x;; i =
1,2,...,n+k}alsobe in strictly ascending order. Then, for any function
values {f(x;);i=1,2,..., n+k}, the equations

n—1
Y A, Bp(xi)=f(xi), i=1,2,...,n+k, (19.37)
p=-k
have a unique solution {A,; p=—k, —k+1,...,n—1}, if and only if all
the numbers {B;_,-1(x;); =1, 2, ..., n+k} are non-zero.

Proof. Suppose that B;_,_i(x;) is zero. Then either the inequality
x;j < ¢j_x—1 or the inequality x; = ¢; is satisfied. In the first case B,(x) is zero
if the conditions p = j — k — 1 and x < x; both hold. It follows that the first j
of the equations (19.37) have the form

j—k=2

Y AB,(x)=f(x), i=1,2,...,]. (19.38)
k

[l
Because these j equations depend on only (j — 1) unknowns, they do not
have a solutioh for a general right-hand side. Similarly, if x; = &, then the
last (n + k +1—j) equations have the form

n-1
Y Ay By(x)=f(x:), i=jj+1,...,n+k, (19.39)
k

p=i-

so again the number of unknowns is insufficient. Therefore the conditions
Bi_k_l(x,) # 0, j= 1, 2, R/} +k, (1940)

are necessary for the system (19.37) to have a solution for any f.
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The equations (19.37) do not have a unique solution if and only if there
exist parameters {A,; p=—k,—k+1,...,n—1}, that are not all zero,
such that the function

n—1

s(x)= =Z_k A, B,(x), —00< x <00, (19.41)

satisfies the conditions

s(x)=0, i=1,2,...,n+k. (19.42)

In this case Theorem 19.2 states that the function (19.41) is not identi-
cally zero. Therefore, to prove the second half of the theorem, it is
sufficient to show that conditions (19.40), (19.41) and (19.42) do not
allow s to be a non-zero spline function.

We suppose that these conditions hold, but that s is non-zero. As x
ranges over the real line, there are some intervals, including x <£_, and
x = &,+1, on which s is identically zero, but in other parts of the range the
number of zeros of s is finite. Therefore there are knots, &, and &, such
that s is identically zero on [£,-1, &,] and [, &,+1]), While, in the open
interval (&, &), s has only a finite number of zeros, r say. It may be
necessary to introduce two more artificial knots £€_,_; and &, +1 satisfy-
ing the conditions ¢é_;_; <£&_i and &, .+x+1>> €.+« In any case, the proof of
Theorem 19.1 shows that inequality (19.11) is obtained. However, the
B-splines{B;;j=p,p+1,...,q—k —1} take non-zero values only if the
variable x is in the interval (&, &). Therefore condition (19.40) implies
that the points {x;.x+1;j=p,p+1, ..., q—k ~1}are all in this interval. It
follows from equation (19.42) that the number of zeros of s in (&, &) is at
least (@ —p—k), which contradicts inequality (19.11). Therefore the
theorem is true. 0

The calculation of the spline s in #(k, &, &1, . . ., &) that satisfies the
equations (19.36) shows the usefulness of many of the results of this
chapter. The Schoenberg-Whitney theorem makes it easy to check
whether the equations have a solution. We may use the ideas of Section
19.3 to express s as a linear combination of B-splines. Therefore we have
to calculate the parameters {A,;p=—-k,—k+1,...,n—1} that are
defined by the system (19.37). This system is easy to solve, because the
properties of B-splines, given in Section 19.2, imply that, for each i, at
most (k +1) of the matrix elements {B,(x;);p=—-k, —k+1,...,n—1}
are non-zero. The non-zero matrix elements can be obtained con-
veniently from the recurrence relation that is described in Section 19.4.
Hence, after the knots of the spline and the points {x;;i=1,2,...,n+k}
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are chosen, it is straightforward to calculate spline approximations by
interpolation.

19.1

19.2

19.3

19.4

19.5

19.6

19 Exercises

Let V be a polyhedron in R**! that has (k +2) vertices, for
example a tetrahedron in %2°. Let d be a fixed non-zero vector in
R**! and, for any real number 6, let U (8) be the linear manifold
{x:x'd=6,xe R"“*"}, which is a slice of #**" that is orthogonal
to the direction d. Let s(8) be the volume (or area) of the
intersection of U(6) and V. Prove that, if no linear manifold
U (6) contains more than one vertex of the polyhedron, then the
function {s(8); —o0 < # <o} is a B-spline of degree k.

Let k=3, n=10 and {¢=/;j=-3,-2,..., 13} in the state-
ment of Theorem 19.2. Express the function {f(x)=x*;0<x <
10} as a linear combination of the B-splines {B,; p=-3,
—2,...,9}. Check the calculation of the coefficients by
evaluating your expression at x =/ +3, where / is any integer in
the range {0, 9].

Express the first derivative of the B-spline (19.10) in terms of two
B-splines of degree (k —1).

Let B'; be the B-spline of degree k whose knots have the values
{=j,j=p,p+1,...;p+k+1}. Use the recurrence relation
(19.25) to determine the value of the B-spline at its knots for
k=1,2,3,...,7. A convenient check on your calculations is
that the equation

p+k

T Br)=1/(k+1)
j=p+1
should be satisfied, which is a consequence of Theorem 20.1.
Let n be a positive integer, let « be a constant from the interval
(0, 1), and let the points {£} and {x;} have the values {¢ =/;j=
0,1,...,n}, {xi=a+i—1;i=1,2,...,n} and x,+, = n. Show
that, for any function f in €[0, n], there is a linear spline in the
space ¥(1, &, &1, .. ., &) that interpolates the function values
{f(x:);i=1,2,...,n+1}. Sketch the cardinal functions of the
interpolation procedure. It should be clear that the co-norm of
the interpolation operator is large if « is near one, but that it is of
moderate size if @ <3.
Let s be an approximation from the space ¥(k, &, &1, ..., &) to
a function f in €[a, b], where the knots satisfy the conditions



19.7

19.8

19.9

19.10
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(19.1). Prove that s is a best minimax approximation from & to f
if and only if there exist integers p and g in [0, n] and points

{¢i;i=0,1,...,q—p+k}such that the following conditions are
obtained:

HE<sbo<OH<...<(p—p+k <§&,,

[F(&) = s =l — 5leos O=sisq—-p+k, and

LF(&)—s(&)]=—[f(Li-1) = s(&i-0)], I<isq-p+k

Prove Theorem 19.3 by the method that is suggested in the last
paragraph of Section 19.4.

Let B’; be the spline function (19.10), where the superscript
shows the degree of the spline, and where we allow k to be any
non-negative integer. Let x be any point in the interval
(&, &+x+1), and let the integer g be defined by the condition
& <x <£;41. Prove that the indefinite integral of B’,ﬁ has the
value

: B (0) do___ z (x §p+l) Bp+](x)

This formula allows the integral to be calculated without any
cancellation from the bottom entries of the columns of the
tableau (19.28).

Let k and n be positive integers such that (k + n) is even, and let
the knots {¢;i=0,1,...,n} of the space F(k, &, &1y ..., &n)
satisfy inequality (19.1). Let f be a function in €‘"[a, b] and let
{xi;i=1,2,...,5k+n)} be a set of distinct points in [a, b].
Obtain necessary and sufficient conditions on these points that
imply that a unique spline in & is defined by the equations
{s(x)=fx),s'x)=f(x);i=1,2,...,5(k +n)}.

Let & be the space of quadratic splines that have the knots
{&=jh;j=0,x1,+2,...}, let f be a bounded function in
€ (—00, 00), and let the function

s(x)= E A By(x), —oo<x<oo,

p=—00

be the best least squares approximation from & to f. Calculate
the elements of the matrix of the normal equations. Hence
deduce that there exist multipliers {u;; /=0, £1,£2,...} such
that A, has the value

l=—00

) Epri1+3
Ap= z p,lj Bp+,(x)f(x)dx, p=0,-_l:1,12,...,
3

p+I

and that the order of magnitude of |u,| is (0.4306)" 5.
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Convergence properties of spline
approximations

20.1 Uniform convergence

If one requires a spline approximation from #(k, &, &1, ..., &)
to a function f in €[a, b], then it is useful sometimes to have bounds on
the least maximum error

d*(&, f)=min ||f — s||e. (20.1)

se¥

They are studied in this chapter, including the case when f is differenti-

able. It is assumed that the numbers {&;i=0,1,...,n} satisfy the
conditions

a=§<é6<6H<...<§ =), (20.2)
and we let & be the maximum interval between knots

h= ) IP?X (& —&i-1). (20.3)

The main purpose of this section is to derive the inequality
d*(&, H<wGlk+1]1h), (20.4)

where w is the modulus of continuity of f. It follows that any continuous
function can be approximated to arbitrarily high accuracy by a spline
function of degree k, provided that the spacing between knots is
sufficiently small.

In order to express spline functions as linear combinations of B-
splines, we introduce extra knots that satisfy condition (19.13). Instead of
using B ',ﬁ, however, it is more convenient to work with the function

p+k+1 — & k
N:;(x)'=(fp+k+l_£p) Z ;.%1——&);’

I @-8

i#j

asx=<»>b, (20.5)
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which is just B’;(x) multiplied by the factor (&4+x+1—&,). Therefore the
splines {N';;p=—k, —k+1,...,n—1} are a basis of &, and N’;(x) is
non-zero only if x is in the interval (£,, &,+x+1). It is important to notice
also that Theorem 19.1 and equation (20.5) imply the condition
Ni(x)=0, a=<x<b. (20.6)
Because the function {s(x)=1; a < x < b}isin &, it can be expressed in
terms of the basis functions. The factor (&,.+x+1 — &) is present in equation
(20.5) in order that this expression has the following simple form.

Theorem 20.1
For all positive integers k, the functions {N ',f; p=—k,—k+1,
.., n—1} satisfy the identity
n—1
Y Ni(x)=1, as<x<b. (20.7)

p=—k

Proof. Theorem 19.3 allows a proof by induction. By changing the
notation from B'; toN ',j in expression (19.25), we find that the equation

(x“fp) k-1 (§p+k+1—x)
(fp+k—§p)Np (x)+(§p+k+l—§p+1)

holds for p=—k, —k+1,...,n—1. The two sides of this equation are
summed over p, and we make use of the identities {N*;' (x)=0;a<x <
b} and {NX7' (x)=0; a <x <b}. Hence, for k =2, we find the relation

n! (x—gp)

N§(x)= Fa(x)  (20.8)

n—1
k - Nk—l
pg—kNp(X) p=z—k(§p+k_§p) ? (X)
.
+p—-zk+1(§p+k AR
= Z Ny '(x), as<x<b. (20.9)
p=~k+1

Therefore, if equation (20.7) holds for k =1, then it is satisfied for all
positive integers k. In the case k = 1 the function N '; (x) is equal to B,l,(x)
multiplied by (&,+2 — &,). It follows from expression (19.29) that equation
(20.7) is valid for k = 1, which completes the proof. 0

The following theorem shows that the properties of B-splines and
equation (20.7) provide an elementary proof of the useful bound (20.4).

Theorem 20.2
For every function f in €[a, b], the least maximum error (20.1)
satisfies condition (20.4).
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Proof. 1t is sufficient to find an element s in & such that the inequality
If = slleo < w Glk +11R) (20.10)

is obtained. We let s be the spline function
n—1
s(x)= ¥ f(x,) Ns(x), a<x<b, (20.11)
p=—k

where x, is the number in the range [a, b] that is closest to %(g,, +&pik+1)-
Therefore x, is one of the three numbers a, b and %(.fp + & 41+1). Equa-
tions (20.7) and (20.11) imply the relation

fo)-st)= T [f0)-feN5),  a=x<b  (@0.12)

Because the term under the summation sign is non-zero only if x is in the
interval (&, &+« +1), the definitions of x, and h give the bound

|f(x) = Fxe) IN§ (0)| < 0 Gl&psrir— €D INF (x)]
<w@lk+110) NS (x), a=<x<b.
(20.13)

It follows from expressions (20.12), (20.6) and (20.7) that the inequality
n—1
[fx)—sx) <wGlk+1]n) ¥ . ING ()
P

—w@k+1]h), asx<b, (20.14)

is satisfied, which is the required result. 0

This proof demonstrates that B-splines are useful, not only for simpli-
fying the numerical calculation of spline approximations, but also for
theoretical analysis. Their properties imply that the function value s(x),
defined by equation (20.11), is independent of x,, unless |x —x,| is less
than 3[k +1]h. Therefore we have a spline approximation whose local
properties are similar to those that are given by the interpolation pro-
cedures of Section 18.1. The spline function (20.11), however, does not
satisfy any obvious interpolation conditions.

20.2 The order of convergence when f is differentiable

It is proved in this section that, if f is a differentiable function,
then there are upper bounds on the least maximum error (20.1) of the
form

d*(%, )< ch® | £, (20.15)

for certain positive integers q and j, where ¢ is a number that is
independent of f and of the positions of the knots {¢;; i =0, 1, ..., n},and
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where h is still the maximum distance between adjacent knots. For
example, if f is in €[ a, b], then expression (20.4) and the definition of
the modulus of continuity give the bound

d*(&, f)<i(k + Dh || flo. (20.16)

An advantage of this kind of bound is that it indicates the improvement in
accuracy that can be obtained by increasing the number of knots. It is
therefore advantageous if q is as large as possible in expression (20.15).
The following argument shows, however, that, even if f can be differen-
tiated more than ; times, then g is equal to j.

Let f be a function in €"'[a, b] such that d*(¥, f) is positive. We make
the change of variable {¥ =ax; a <x<b}, where o is any positive
constant. Let f be the function { (%) = f(¥/a); aa <% < ab}, let & be the
space L(k, ato, aty, ..., at,), and let §* be a best approximation to f
from &. We note that the function {s*(x)=§*(ax); a<x=<b}isin &£
Therefore the inequality

d*(&, 1) <If—s*o
=11 = 5*llo
— %2 ) (20.17)

is satisfied, where the c0-norm is applied to two different spaces. We may
apply condition (20.15) to d*(&, f), when ¢ is independent of f and of the
numbers {£;i=0,1,..., n}. Because the maximum distance between
adjacent knots in the space & is ah, it follows from inequality (20.17) that
the bound

d*(&, f)<c(ah) |F e (20.18)

is obtained. Therefore, because the definition of f implies that ||[f*"|| is
equal to a '||f"”|«, the relation

d*&, fi<ch’a®" | f e (20.19)

holds for all positive values of . However, the left-hand side of this
expression is a positive number that is independent of «, and, if q is not
equal to j, the right-hand side can be made arbitrarily small by choosing
an extreme value of «. Hence, even if the restriction is relaxed that g is to
be an integer, q cannot be different from j in inequality (20.15).
Therefore, we would like j to be as large as possible. Of course j may
not exceed the number of times f can be differentiated, and also it cannot
be larger than (k + 1), because inequality (20.15) has to hold in the special
case when f is the polynomial {f(x) =x**'. g <x<b}. Therefore the
values of j that are given in the following theorem are optimal. Another
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nice feature of the theorem is that the proof is elementary, although the
spacing between knots is allowed to be irregular.

Theorem 20.3
Let k and ! be positive integers. For every function f in €""[a, b],
and for every integer j in the range [1, min(/, k +1)], the least maximum
error (20.1) satisfies the condition
(k+1)!

d*(ff,f)g-m(%h)" [Tk (20.20)

Proof. The proof is by induction, and it is similar to the proof of
Theorem 3.2. For the general step of the induction we let the values of
both j and k be greater than or equal to two, and we assume that
condition (20.20) is satisfied if j and k are replaced by (j —1) and (k —1).
This assumption implies the inequality

k! 1y 8i=1 o)

% dpy Mo, 20.21
TS (20.21)
where o is a best approximation to f' from the space F(k—1,
&o, &1, ..., &,). We let s be an indefinite integral of o, and we let s* be a
best approximation to (f —s) from the space F(k, &, &1, - . ., &). There-
fore inequalities (20.16) and (20.21) give the bound

I - orlle=

max |f(x)~s(x)—s*(x)| <3k + D |f = ol

asx<b

k+1) , G

= k+1=j) Gh) | flle- (20.22)
Because (s +s*) is in &, it follows that inequality (20.20) is satisfied. It
remains to establish suitable conditions to begin the inductive argument.
When j =1, we find that condition (20.20) is the same as inequality
(20.16), which is valid for k= 1. It follows that the theorem is true if
k=j=1. However, in order that the inductive argument can be applied
also to the important special case when j =k + 1, we have to show that
inequality (20.20) is valid when k£ =1 and j = 2. In this case we let s be
the function in (1, &, &1, . . ., &) that is defined by the interpolation
conditions {s(&)=f(&); i=0,1,..., n}. Because each piece of & is a
linear function, it follows from Theorem 4.2 that, if x is in the interval

[&, &41], where i is any integer from [0, n — 1], then the equation

fx)—s(x)=3(x —&)(x — &) f'(€) (20.23)
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holds, where ¢ is a point in [£, &.1] that depends on x. Hence we deduce
the inequality
d*(&, f)<If — slo=8h” | 'l (20.24)
Because this condition is stronger than expression (20.20), the proof of
the theorem is complete. 0O
This theorem is useful because it indicates the order of magnitude of
the error of a spline approximation when # is small. We recall, however,
from Chapter 3, that bounds of the form (20.20) fail to show that it can be
highly advantageous to adapt the distribution of knots to the form of f.

20.3 Local spline interpolation
If one is selecting a method to calculate an approximation from
F(k, &o, &1, .. ., &) to a function f in €[a, b], one should ask if there are
any sudden changes in the form of f, for example a derivative dis-
continuity. For many approximation algorithms, the effect of a dis-
continuity is to introduce a wave in the spline that decays in magnitude
away from the discontinuity. However, if the spacing between knots is
increased away from the discontinuity, then the rate of decay is usually
diminished. In this kind of situation it can be helpful to select an
approximation method that has the property that, if x is any point of [a, 5]
that is separated from the discontinuity by a certain number of knots, then
the value of the spline at x is independent of the discontinuity. The
following interpolation method is suitable.
We choose (k +1) different points in each of the intervals {[£;, &.1];

j=0, (k+1),2(k+1),...,r(k+1)}, where r is the greatest integer that
satisfies the bound
rtk+1)<n—1, (20.25)

and, if the bound holds as a strict inequality, we also choose [n—1—
r(k +1)] different points in [£,-1, &, ], where the last of the points is
greater than ¢,_;. Thus the total number of points is equal to (n +k),
which is the dimension of &%. Therefore, because the conditions of
Theorem 19.4 are satisfied, we may define s to be the element of ¥ that
interpolates f at the points. The main property of this procedure is that,
on each of the intervals {[£, &.1]; /=0, (k+1), 2(k+1),...,r(k+1)},
the number of interpolation points is such that the polynomial segment
{s(x); & =< x < &1} is defined completely by the values of f in the interval.
Therefore there are no degrees of freedom that allow the form of s in
[a, &) to be related to the form of s in (&,41, b]. Hence, if a perturbation to
s is generated by a discontinuity in f, then the effect of the perturbation
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cannot pass through any of the intervals {[§, &+1]; j=0, (k+1),
2(k+1),...,r(k+1)}. Thus, if x is any point in [a, b], then the
value s(x) depends only on the form of f in the interval [max (¢,-, a),
min (&+k+1, )], where the integer g is such that x is in the range [£,, £,+1].

One reason for mentioning this interpolation procedure is that it can be
used to derive bounds of the form (20.15), in a way that is more direct
than the inductive proof of Theorem 20.3. The bounds are given in the
following theorem.

Theorem 20.4

Given the space F(k, &o, &1, ..., &), let (n+k) interpolation
points be chosen in the way that has just been described, and let L be the
operator from €[a, b]to & such that, for any f in €[a, b], the function Lf
is the spline that is defined by the interpolation conditions. If f is in the
space €"[a, b], where j is any integer in the range [1, k + 1], then the
inequality

*, f)< ||L||oo (k+1YR NPl (20.26)

is satisfied.

Proof. 1t is sufficient to prove that |f —s|lw is bounded above by the
right-hand side of expression (20.26), where s is the spline Lf. We let { be
any fixed point in [a, 5], and we let ¢ be the polynomial

4:) L= ot
fO+.. SyPTY

—— ),

asxs<b (20.27)

¢(x)=f(£)+

Because ¢ is in ¥, the spline L¢ is the polynomial ¢. Further, ¢(¢) is
equal to f(¢). Hence the error at { of the approximation s = Lf to f has the
value

fQ)=s() =) — (L))
= (L{¢ — D). (20.28)

It is important to notice that the function (¢ —f) takes very small values
when the variable is near ¢, and to recall that (L{¢ —f})({) depends only
on the form of (¢ —f) in the interval

[aC7 b{] = [max (§q~k7 a)’ min (§q+k+1’ b)]’ (2029)

where the integer g is such that { is in the range [£,, £&+1]. In order to
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make use of these remarks, we note that the mean value theorem gives
the bound

1 S
If(x)— & (x)| <7 e =&/ 1f N, a<xs<b. (20.30)

Therefore, if ¢, is the function in €[a, b] that satisfies the equation
Yx)=(x)—f(x), arsx<b, (20.31)

and that is constant on each of the intervals [a, a,] and [b;, b], then the
inequality

1 . . .
e lloo < Fymax ¢ —acl’, by = ¢l
1 i i ()
S]._! max [lfq*-l _a(l s |b{ - fql ]”f "00

< }' k+ DR 1F oo (20.32)

holds, where the last line depends on the definitions (20.3) and (20.29).
Because expressions (20.31) and (20.32) imply the bound

lLid = FHOI=1Lw) Q)]
<ILlo o

1 o
Sj_'”Lllw (k+1)'h’ ”f(/)“m’ (20.33)

and because the right-hand side of this inequality is independent of ¢, it
follows from equation (20.28) that the theorem is true. 0O

This theorem is less useful than Theorem 20.3, because the inter-
polation procedure is such that there is no upper bound on ||L||. that is
independent of the knot positions {¢;;7=0,1,..., n}. Really the main
value of the theorem is to show that it is possible to deduce bounds of the
form (20.26) from equation (20.28), by letting ¢ be the function (20.27),
provided that the operator L has the property that, for any ¢ in[a, b], the
function value (Lf)(¢) is independent of f(x) if |x — | exceeds a constant
multiple of A. This technique is used again in the next section.

20.4 Cubic splines with constant knot spacing

There are several methods for calculating spline approximations
with good localization properties that do not make use of interpolation
conditions. A procedure is developed in this section for the special case
when k =3 and the knots satisfy condition (20.2) and the equation

& =6&+jh, j=-3,-2,...,n+3. (20.34)
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It shows another technique for spline approximation that obtains high
order accuracy when f is sufficiently differentiable. We assume that the
function to be approximated is defined on the interval [a —2h, b +2h].
Because the B-spline {N ,3, (x); —00 < x <oo}is symmetric about the point
x =§p42, We let 5o (= Lof, say) be the spline function

n—1
solx)= Y . fl&2)N3(x), a<x<b, (20.35)
e
which is similar to the one that is used to prove Theorem 20.2. In order to
apply the idea that is used to prove Theorem 20.4, we seek the greatest
value of j such that the equation

¢ = L0¢5 ¢ € @j—ly (20'36)
is satisfied.

Because expression (19.18) implies the equations N ,3, (&p+1)=
Nﬁ (&+3) = $and Nf, (&42) = %, the spline (20.35) takes the values

so(&) =&f(&i-1) +3f(&)+of (&v1),  i=0,1,...,n,  (20.37)

at the knots. Hence, if f is in the space 2, then s¢(£;) is equal to f(¢&;), but,
if f is a quadratic function, then the error

(&) —so(&)=—Eh*f"(&), i=0,1,...,n, (20.38)

occurs. Similarly, the spline approximation

n—1
s1(x)=13 23[f(§,,+1)+f(§p+3)]N3(x), as<x<b, (20.39)

p=-—

has the value

s1(&) = "11—2[f(§i—2) +4f(&-1) +2f(&) +4f (&) +f(&22)],  (20.40)

which implies the error
f&)=si1&)=-3n*f"(&), i=0,1,...,n, (20.41)

when f is in 2,. The spline approximation that is studied in this section is
obtained by forming the linear combination of s and s; that eliminates
the error terms (20.38) and (20.41). Hence it is the function

n—1
@)= X [=6f(&1) +3f(pe2) =sf(&3)IN; (),
asx<b. (20.42)

Because equations (20.38) and (20.41) are valid when f is any cubic
polynomial, the conditions

f(&)=s(&), i=0,1,...,n, feP, (20.43)
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are obtained. Further, equations (19.18) and (20.42) imply that, for
i=0,1,...,n, the derivative s'(&) has the value

S(é)‘m[f(& 2) —8f(&i-1) + 8f(&i+1) — f(&ir2)], (20.44)

which is equal to f'(£) when f is in ;. Hence the spline approximation
(20.42) is equal to f, when f is any cubic polynomial.

Therefore, if f is in €“[a, ], we may apply the method of proof of
Theorem 20.4 to obtain a bound on d*(¥, f) in terms of ||f“l. To begin
this analysis the definition of f is extended to the interval [a —2h, b +2h]
in a way that does not increase ||f“|l», and an operator L, from
€la—2h, b+2h] to &, is defined by the equation

n—1
Lf= 1. [—&f(&s1) + 5 (£ps2)—5f (£543)IN;

=Y (AN, (20.45)

p=-3
say. We let j =4 in expression (20.27), and we note that equation (20.28)
is satisfied. Therefore we require an upper bound on [(L{¢ —f})(¢)| that
is independent of {.

Equation (20.45), the properties of B-splines and Theorem 20.1 imply
the condition

L6 -DOI=| T Al
-| £ ms-nnio)
< max D@-f T IN3Q)
= max |A,(¢—F), (20.46)
q—3<p=gq

where g is still an integer such that { is in the range [£&,, &+1]. There is no
need to introduce a function that corresponds to the function ¢, in the
proof of Theorem 20.4, because expressions (20.45) and (20.30) give the
bound

|)‘p(¢ —f)l él f_¢)(§p+l)|+%|(f_¢)(§p+2)l+%|(f_¢)(§p+3)[

| ép+1 é 8 §p+2 é ép+3 é

When p is in the interval [q — 3, q], then ¢ is in the interval [£,, &,+4]. In
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this case the greatest possible value of expression (20.47) occurs when
|&+2— ¢| = 2h. Itfollows from equation (20.28) and condition (20.46) that
the inequality

IFO)-sOI<Bn*|f D), as<i<b, (20.48)

is satisfied, which is a slight improvement on the one that is obtained by
setting k =3 and j =4 in Theorem 20.3.

The factor 33 in condition (20.48) is much larger than necessary. Most
of the loss of precision comes from the third line of expression (20.46),
but some of the loss can be avoided by a different choice of ¢. For
example, we let ¢ be the cubic polynomial that interpolates the function
values f(&,-1), (&), f(&;+1) and f(&,+2). In this case Theorem 4.2 gives the
inequality

q+2

f-ol<H T G-6)|If% a<x<b  (©2049)
1=q—

instead of expression (20.30). It follows that, instead of equation (20.28),

the bound

IF(O) = s <|d ()= (LADN+IF() - o ()]
<|(L{d — O+ sk I (20.50)

is satisfied, where the last line depends on the fact that ¢ is in [£,, &+1]-
The relation (20.46) is still valid, but there are substantial changes to
expression (20.47) because the terms {(f — @)(¢;); g —1<j<q+2}areall
zero. Hence, when p = g — 3, the definition of A, and inequality (20.49)
imply the bound

|Ap(¢ _f)l = %l(f_d’)(fq-—z)l
<th* | ¥ (20.51)

This bound also holds when p = q. Similarly, if p isequaltog—2org—1,
then A,(¢ —f) is zero. It follows from expressions (20.46) and (20.50) that
the inequality

IfO) - s <355h* IfVhos  a<<b, (20.52)

is obtained, which is sharper than condition (20.48).

By being more ingenious in the choice of ¢, or by giving detailed
attention to the third line of expression (20.46), it is possible to make a
further reduction in the constant of inequality (20.52). However, by using
a different procedure, the least possible value of this constant is found in
Section 22.4.
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20 Exercises

Let k=2, let f be a quadratic polynomial, and let s be the
quadratic spline (20.11), where {§;=jh; j=-2, —-1,...,n+2}
and {x, = %(fp +&,43); p=-2, —1,...,n—1}. Show that for
every point x in the interval [&, £,], the error [f(x)—s(x)] is
equal to the constant —gh’f"(x).

Let k be a fixed positive integer, and let 8 be a constant such that
the inequality

d*(¢, f)<w(Bh)

holds for all functions f in €[a, b] and for all spaces of splines of
degree k whose knots satisfy the conditions (20.2), where w is
the modulus continuity of f, and where s has the value (20.3).
Prove that 8 is not less than one. Hence Theorem 20.2 gives the
optimal value of 8 when k = 1.

Prove that, if the bound

d* & )<ch |f )y,  fe € a,b],

is satisfied for all spaces F(k, &, &1, - . . , &) Whose knots satisfy
the condition

&—&i1=ph, i=1,2,...n,

where u is a positive constant that is less than one, and where h
is the maximum knot spacing (20.3), then the inequality

d*( &, f)=<ch/[1=u] 1fe

holds when there are no restrictions on the positions of the knots
of &.

Let f be a quartic polynomial, and let s be the cubic spline in the
space (3,0, 1,2, 3, 4, 5) that satisfies the interpolation condi-
tions {s(x;)=f(x;); i=1,2,3,..., 8}, where the interpolation
points have the values {x; =(i—1)/3,i=1,2,3,4;x,=(i+7)/3,
i=5,6,7,8). Show that the error [f(23)—s(23)] is equal to
s f“)(x), and that the third derivative discontinuities of s have
the values %f“)(x), D), 35Fx) and BfD(x).

Obtain a bound on ||f — 5|« that is stronger than condition (20.52)
by substituting the conditions on {|A,(¢ —f)|; g —3<p <g}, that
are given immediately before inequality (20.52), into the second
line of expression (20.46).




20.6

20.7

20.8

20.9

20.10

Exercises 253

Let the knots {£} have the values (20.34), and let s, be the cubic
spline approximation

n—1
Salx)= Y . [f(&ps2) +af"(€+2)IND (x), a<x<b,

s
to a function f in €“[a — h, b + h]. Calculate the value of a such
that s, is equal to f when f is a cubic polynomial. Hence find a
bound on the error {|f(x) —s(x)|; a <x < b} of the form (20.48).
Investigate whether the inequality of Exercise 20.2 is valid when
k=2and B=1.

Improve the bound of Theorem 20.4 by replacing the function
(20.27) by a polynomial of degree (j—1) that interpolates f at
suitable points of the interval (20.29).

Prove that the Chebyshev polynomial T, maximizes the deriva-
tive {||p'||lo; p € P+} subject to the condition ||p|lx= 1, where the
co-norm applies to the interval [—1, 1]. Hence deduce that the
bound

max lp(x)|>(—§—i;-%ﬁ max |p'(x)l, peP,
&i1sx<¢§ 2k fi1sx<=s§

is satisfied. This condition is required for the next exercise.

Let f be a function in ‘é(i)[a, b], and let s be a spline in
Sk, &, &, - . ., &) that satisfies the condition

If = sllo < ch” | f Vs

where k=j—1=1, where ¢ is a constant, and where 4 is the
maximum interval between knots. Prove that ||f' — s’||« is boun-
ded ahove by a constant multiple of the expression 4’ ||f*”|lw/7,
where 7 is the smallest of the numbers {¢& —&-1;i=1,2,...,n}.
Note that it is helpful to use Exercise 20.9 to bound the
difference |f'(¢)—s'(¢)| =|¢'(¢)—s'(¢)|, where ¢ is any point of
the interval [£;-1, &), and where ¢ is the Taylor series approxi-
mation to f at ¢ of degree (j—1).
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Knot positions and the calculation of spline
approximations

21.1 The distribution of knots at a singularity
A strong advantage of letting the knots of a spline approximation
have the equally spaced values

&=¢6+(j/n)(&—¢), j=0,1,...,n, (21.1)
is that, for any x in [a, b], one can find by one division and one integer part
operation an index j such that the condition & < x < £, is satisfied. It is
often possible, however, to reduce greatly the total number of knots by
giving up the condition that the spacing between knots is constant. In
order to demonstlrate this point, we consider the approximation of the
function {f(x) = x%; 0 < x < 1} by the piecewise linear function s from the
space ¥(1, &, &1, . . ., &) (Where &= 0 and &, = 1) that is defined by the
interpolation conditions

s(&)=f(&), i=0,1,...,n (21.2)

We consider the number of knots that are needed to provide the accuracy

I7-sllose, 213
where ¢ is a small positive constant.

Ineach of the intervals {[£, &-+1];7=0, 1, ..., n —1}, the error function

satisfies the equation
F0)—s(x) = 5t —ELEm TN H & (X 8)

&iv1— &

) &sx <.

(21.4)
Therefore the maximum error on [§, &+1] occurs at the point x =
%(g% + §?+1 )*>. Here the modulus of the error function has the value

W — £ /(& + ). (21.5)

If the knots are equally spaced, then this expression is greatest when j = 0.
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Hence ||f — sl is equal to 4n 2,1t follows that, in order to achieve the
bound (21.3), the integer n must not be less than 1/(4¢)>.

If there are no restrictions on the positions of the knots, however, then
the values

g=3/m)',  j=0,1,...,n, (21.6)

are particularly suitable. In this case expression (21.5) gives the identity
1 4%+4j+1

max |f(x)—s(x)| =17 2y o — (21.7)

G=x=6. 4n* 2/ +2j+1°

Because the right-hand side is bounded :l:lbove by 1/2n?, the accuracy
(21.3) is achieved if n is not less than (2¢) 2, which is a large improvement
on the previous bound. For example, if ¢ = 107%, then n=25x10°
when the knots are equally spaced, but the distribution (21.6) allows
n = 71. The reduction in the number of knots that can be made by adapt-
ing the knot positions to the form of f is usually even greater when s is
a quadratic or a cubic spline.

It is interesting to compare the r}umber of knots that are needed to
approximate the functions {f(x)=x?; 0<x <1} and {f(x) =2x* 0<x <
1} to accuracy e by a linear spline. When f is a quadratic polynomial it is
best to use a constant knot spacing. Hence in both cases the fewest
number of knots that is necessary to achieve the required accuracy is
about (25)_%, even though one function has a singularity and the other
one is very smooth. It happens often that singularities in f do not increase
greatly the total number of knots, provided that careful attention is given
to the knot positions.

One kind of singularity that can be fitted easily is a derivative dis-
continuity. We consider the case when f(") is discontinuous at x, where q is
an integer in the interval [1, k], and where ¥ is an interior point of the
range [a, b]. When q = k, then placing one of the knots {¢;i=1,2, ...,
n—1} at ¥ allows the discontinuity to be fitted exactly, because
the function

o(x)=(x—x)4, a<x<b, (21.8)
is in F(k, &o, &1, - . ., &:). When g is less than k, then it is suitable to let
(k+1—q) of the knots {&;i=1,2,...,n—1} be close to , because the

following theorem shows that in this way the function (21.8) can be
approximated arbitrarily closely by an element of .

Theorem 21.1
Let g be an integer in[1, kK — 1], and let o be the function (21.8),
where ¥ is any fixed point in (a, b). For any £ > 0, there exists a spline s in
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F(k, &, &1, - - ., &) that satisfies the inequality

lo—sllo<e, (21.9)
provided that the condition

lx-gl<e/lq(b-a)"] (21.10)
holds for at least (k +1—q) of the knots {¢;;j=0,1,...,n}.

Proof. We let the knots {&;;j=p,p+1,..., p+k—q} satisfy condition
(21.10), and we let s be the function

_ED Tk —g)lgt i (x =)k

s(x) , sx<b,
k! =p Ptk-a
TP E-&
t=p
e (21.11)
which is in &. Equation (5.2) shows that, for any fixed x, s(x) is the divided
difference g[&,, & 41, - -+ » Ep+k—q), Where g is the function

g0)=(D)*"[(k—q)q!/k ) (x—0)%, a<6<b  (21.12)

It follows from Theorem 5.1 that s(x) has the value
s(x)=[1/(k —q)'] g“ (&)
=(x—-84%, (21.13)

where ¢ is in the interval [£,, &,.x—,] and depends on x. The remainder of
the proof depends only on equations (21.8) and (21.13), and the fact that
£ satisfies the condition

£~ ¢l<e/lqg (b~a) ], (21.14)
If g =1, then equations (21.8) and (21.13) imply the inequality
lo(x)—s(x)|<|x — €. (21.15)

When ¢g>1, the mean value theorem is applied to the function
{(x—6)%; a<0=<b}to deduce the equation

lo(x)=s(x)| =1 =¢q x =T, (21.16)
where ¢ is between % and & The term (x —¢)%"' is bounded above by
(b—a)?". 1t follows from expressions (21.14), (21.15) and (21.16) that
|o(x) — s(x)| does not exceed e. Because this statement holds for all x in
la, b], the theorem is proved. [

In practice, instead of choosing the knots {£,;/=0,1,...,n}insucha
way that the function (21.8) can be approximated to high accuracy by an
element of Pk, &, &1, ..., &), it is more convenient to let the function
(21.8) be in the set of approximating functions. Therefore we extend the
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definition of F(k, &o, &1, ..., &) in order to allow repeats in the set
{&;7=0,1,..., n}. If the conditions

a=bo<ti<ér<...<&=b (21.17)
hold, and if at least one of the inequalities is satisfied as an equation, then
the space $(k, &, &1, - - ., &) is defined as follows. It is the space that is
spanned by the functions {x’, a<x=<b;i=0,1,...,k} and {(x —§,~)i+,
asx<b;k+1—q(j)si<k;j=1,2,...,n—1}, where q(j) is the mini-
mum of k and the number of times that the number ¢; occurs in the set
{&;pr=1,2,...,n—1}. Most of the theory that is given in Chapters 19
and 20 applies to the extended definition of &.

21.2 Interpolation for general knots

In order that the results of the previous section are useful, there is
a need for an algorithm that calculates an approximation from
F(k, &o, &1, . . ., &) to afunction f in €[a, b], without unnecessary loss of
accuracy when the distribution of knots is highly irregular. Interpolation
methods are often suitable, provided that the interpolation points {x;;

i=1,2,...,n+k} are selected carefully. The conditions of Theorem
19.4 must be satisfied, and then the equations
s(x) = fx), i=1,2,...,n+k, (21.18)

define a unique element of & for each f in €[a, b]. Thus the interpolation
algorithm is a linear projection operator from €[a, b] to &. It follows
from Theorem 3.1 that, if the norm of the interpolation operator is small,
then the error of the calculated approximation is never much larger than
necessary. Therefore we seek interpolation points that make the norm
small.

If the splines are piecewise linear functions, then the norm of the
interpolation procedure is one if the interpolation points are the knots.
For k =2, it is usually suitable to include the values

xi=(&_k+&kar1t.. . vE&E_D/k, i=kk+1,...,n+1.
(21.19)
The following theorem makes this statement definite in the case
when k =2. We find later, however, that, if the interpolation points are
specified before the knots are chosen, then it may not be possible to
achieve a small norm.

Theorem 21.2
For any fin €[a, b], let s = Lf be the quadratic spline in the space
L2, &, &1, ..., &) that is defined by the interpolation conditions
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(21.18), where the knots are in ascending order

a=§<86<6<...<& =), (21.20)
and where the interpolation points have the values

x1=¢6o

xi=35(& 2+ &1), i=2,3,...,n+11%. (21.21).

Xn+2=€n

Then the norm of the interpolation operator satisfies the bound
I} <2. (21.22)

Proof. Let s; be the quadratic function that is equal to s on the interval
[&5 &+1]- Because x;., is the mid-point of this interval, the quadratic can
be expressed in terms of the function values s{(¢), f(x;+2) and s(&+1).
Hence the equations

(&+1—&)s; (&) = =3s(&) +4f (xj12) — 5(&+1) }
(&i+1— &5 (&41) = 5(&) —4f (xj12) +35(&41)

are satisfied. Therefore the first derivative continuity conditions
{si(&+1) =sjr1(£41);7=0,1,..., n—2} give the recurrence relations

§(&)hier +3s(&) B+ hia ]+ s(€22) Ry
=4f(x;s2)hy1 +4f(xj2a)h,  j=0,1,...,n—2, (21.24)

where h; is the length of the interval [£, &+1). Let M =|s(&;)| be the
largest of the numbers {s(¢&)|;j=0,1,...,n}. If 1<g<n-—1, then
expression (21.24) implies the bound

3M (hg—1+hy) < (4| fllo+M)(hg—1+hy), (21.25)

which shows that M is not greater than 2| .. Alternatively, if g is O or ,
then the equation s(&,) = f(£,) holds. It follows that the inequalities

Is)<2flos =0,1,...,m, (21.26)

(21.23)

are obtained. Moreover, equations (21.18) and (21.21) give the condi-
tions

lsGl& + & DI<Ifle,  j=0,1,...,n~1. (21.27)

The required bound on ||L|| will be derived from the last two inequalities
and the fact that s is a quadratic function on each of the intervals
{(& &41);7=0,1,...,n—1}

In order to simplify notation, we suppose that ¢ =0 and &1 = 1. Then
the Lagrange interpolation formula and expressions (21.26) and (21.27)
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imply that, if 0 < x <3, the condition
s (o) =12(x =3)(x = 1) s(0) +4(x —x?) s3) +2(x*—3x) s(1)|
<4 fllo [(x = D(x = D)+ (x =x*) + (Gx —x7)]
=4||flo - x*1< 2} flw (21.28)
is satisfied. Similarly this condition holds when 3<x=<1. The same
technique may be used to bound [s(x)] on each of the intervals
{{&, &+1);7=0,1,..., n—1}. Hence |5 is not greater than 2||f|l«, which
is the required result. 0
Unfortunately there is no constant bound on ||L||., when s is a quadratic
spline, and when, instead of placing the interpolation points midway
between the knots, the procedure of Section 18.4 is followed, which
places the knots midway between the interpolation points. There is not
even a constant upper bound on the norm of the interpolation operator if
the knot positions are chosen to minimize the norm. This result is easy to
prove if there are only three interpolation points, because then s is just a
quadratic polynomial. It is more interesting, however, to consider a case
when the maximum distance between adjacent interpolation points can be
made arbitrarily small. We find that it is still possible for the distribution of
interpolation points to prevent a bounded norm. The demonstration
depends on an elementary property of quadratic splines, which is proved
in the following theorem, in order to separate it from the main argument.

Theorem 21.3
Let s be any quadratic spline, and let (a, 8) be any interval of the
real line that contains at most two knots. Then the inequality

Jnax_ Is(x)|=26(8 — ) |s'Gla + B8] (21.29)

is satisfied.

Proof. 1f s is a quadratic polynomial on the interval [, v], then straight-
forward algebra shows that the bound

max [s(x)|=§(v —u) max [|s'(w)], s'(0)]] (21.30)

holds in general, and that the bound
max |s(0)] (o — ) min [Is'(w)], |s'()] (21.31)
is obtained in the particular case when the signs of the derivatives s'(u)

and s'(v) are the same. If there is no knot in the interval (a, 3la +B)), then
expression (21.30) implies that inequality (21.29) is satisfied, with the
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factor 25 replaced by 1. Similarly this inequality holds when there is no
knot in the interval 3[a + B8], B). Therefore it remains to consider the
case when there are two knots in (@, 8), & and &.; say, such that
LE<3a+B)< & +1. Because the derivative {s'(x); & < x < &1} is a linear
function, we may assume without loss of generality that s'(&.1)=
s'Gla + B1), and that s'(3[a + B]) is non-negative. It follows from expres-
sions (21.30) and (21.31) that the bounds

max ls(x)lzs(B 1) s'Gla +B))

§ir1=x=<

max ls(x)|= 2(§1+1 Ha+B) s'Gle +8)

Ha+B)=x=¢

(21.32)

are obtained. Because the greater right-hand side is least when &, =
0.4a +0.68, the inequality

|s(x)| =26(8 —a) s'Gla +B]) (21.33)

Yathrox<s
holds, which completes the proof of the theorem. 0
Inordertoshow that,if s = L(f)isthesplinein (2, &, &1, . . . , &) thatis
defined by the interpolation conditions (21.18), then ||~ may be large,
even if the knot positions are chosen carefully, we consider the case when
the spacings between the interpolation points are the distances

B __{ h, iodd,
Y1 T X = 8h, ieven,

where h and § are positive constants, and where § is much smaller than
one. Itis sufficient to show that ||s|l. is large when the data have the values
{f(xi)= (D)"Y i=1,2,...,n+2L If q is any even integer in the range
[2, n], then the mean value theorem implies that there is a point 7, in the
interval (x,, x4+1) that satisfies the equation
§'(nq) = [5(xq+1) = 5(x5)1/ (xq+1—x4)
=2/(6h). (21.35)
Because the intervals {(n, —3n, Nq +3n); q=2,4,6,...}are disjoint, and
because the number of internal knots of the spline is only (n —1), it
follows that, when n is large, there are fewer than three knots in several of
the intervals {(n, —1n, Nq +3h);9=2,4,6,...). We apply Theorem 21.3
to any one of them, where (a, 8)= (7, —1n, Na +%h). Hence equation
(21.35) gives the bound
lIsllo=1/(108). (21.36)

This inequality holds for all choices of knots, and § can be arbitrarily
small. Therefore some distributions of interpolation points make it

i=1,2,...,n+1, (21.34)
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inevitable that the norm of the interpolation operator is large. Hence it is
important sometimes to choose the positions of the knots before the
positions of the interpolation points, and then Theorem 21.2 gives a
convenient way of achieving a small norm.

21.3 The approximation of functions to prescribed accuracy
This section considers the problem of calculating automatically a
cubic spline function s that satisfies the condition

If—sllo<e, (21.37)

where f is a given function in €[a, b], and where ¢ is a given constant
tolerance. One reason for this study is that, if a computer program
requires the value f(x) for many thousand different values of x, and if each
evaluation takes several seconds of computer time, then it is necessary to
replace f by an approximation that can be calculated easily. We let s be a
cubic spline approximation, because cubic splines give a good balance
between smoothness and flexibility.
First we consider a spline whose knots are equally spaced

§i=§0+]'h’ ]=0’ 1"--7ny (2138)
and that satisfies the interpolation conditions
s(fi)=f(§i), j=0’ 1,""n' (21-39)

We suppose that the technique that fixes the two end conditions, dis-
cussed in Section 18.3, is such that, if f is a quartic polynomial, then s'(a)
and s'(b) are equal to f'(a) and f'(b) respectively. For example, Exercise
18.3 shows that it is sufficient to satisfy the equations d,=d, and
dn_>=d,_1, Where d; is the third derivative discontinuity
d;=s"(&+)—s" (&), i=L2,...,n—1. (21.40)
If the number of knots of s is to be chosen automatically, then it is
necessary to predict whether the accuracy (21.37) is obtained.
In order to derive an error estimate, we follow an approach that is often
successful. It is to analyse the error of the spline approximation when fis a

polynomial of the lowest degree that gives a non-zero error. Therefore we
assume that f is in 2,4, and we note that Exercise 18.3 implies the values

5(&)=f(&) B

s'(&) =f’(§,)}’ =0,1,...,n, (21.41)
and

di=hf¢), j=1,2,...,n-1, (21.42)

where ¢ is any point of [a, b]. Because the function {f(x)—s(x); & sx <
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&,+1} is a quartic polynomial, where q is any integer in [0, n — 1], it follows
from expressions (21.41) and (21.42) that the equation

fx)—s(x)= 512(X — &)’ (x = &) fP(8)

24h (x fq) (x —§q+1)2dj, fq =x= §q+la
(21.43)

is satisfied. Because the greatest error occurs at the point x = %(fq +&541)s

it has the value
3

max |f(x)—s(x)| == 1d|l, (21.44)

£a=x<£541 384

where d; is any one of the third derivative discontinuities of s, and where f
is a fourth degree polynomial.

The next stage of the derivation of the error estimate is to let f be an
infinitely differentiable function, and to consider the error of the spline
approximation to the Taylor series expansion
=5 &8

=0
where £ is any fixed point of [a, b]. Because the interpolation method for
calculating the spline approximation is a linear operator, the error (f —s)
is the sum of the errors that occur when the separate terms of the Taylor
series are approximated by splines. It is important to note that, because
the cardinal function of Figure 18.2 decays exponentially, the error
{f(&)—5(£); a<¢<b}is dominated by the form of {f(x);a<x<b}ina
neighbourhood of £ Therefore, for sufficiently small A, the error at £ is
mostly due to the fourth derivative term of expression (21.45). A similar
argument shows that, if 4 is sufficiently small, and if ¢ is close to &, then
the main contribution to the third derivative discontinuity (21.40) also
comes from the fourth derivative term of the Taylor series. By combining

these remarks with equation (21.44), we obtain the error estimate
3

——==f¢), as<x<b, (21.45)

max |f(x)—s( x)|~ max [|d,|, |dg+1]]. (21.46)

La<x=<éyi1 384

It maybe usedforg=1,2,...,n—2. When g =0 the term |d,| is deleted
from the right-hand side, and when q =n —1 the term |d,.,| is deleted,
because s does not have third derivative discontinuities at &, and &,.
The approximation (21.46) is usually adequate in practice, even when f
has some mild singularities. It is easy to calculate the right-hand side of
the approximation from the parameters of s. Because there are separate
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error estimates for each of the intervals {[&,, £&,41); ¢ =0,1,...,n—1},a
computer program can find automatically when it is advantageous to give
up the condition that the spacing between knots is constant.

The example of Section 21.1 shows that changes in knot spacing can
give large gains in efficiency, but one loses the advantage that is
mentioned in the opening sentence of this chapter, error control is more
difficult when there are frequent changes of knot spacing, and also, if a
sequence of trial approximations to f is calculated, then it is more difficult
to control the positions of interpolation points so that full use is made of
all calculated values of f(x). A successful compromise is to keep each knot
spacing for several consecutive intervals, and to allow only halving and
doubling where the knot spacing changes. Therefore we consider the case
when the knots have the values

&=&+(j—nh, i=0,1,...,r }
&E=&6+2(j-nh,  j=rr+1,...,n)’

where ¢, is remote from the ends of the range [a, b]. In particular, we ask
whether the error estimate (21.46) is suitable if q is close to r.

Because of the importance of the fourth order term of the Taylor series
(21.45), we again let f be a quartic polynomial, and we let e = f — s be the
error function of the spline approximation that is defined by interpolation
at the knots (21.47). In order to analyse this error function, we compare it
with e, and e,;, which are the error functions that would be obtained if the
spacing between knots were the constants 4 and 2k respectively. The
solid line of Figure 21.1 is the function e, and the dotted line is composed
of the functions {e,(x); & _s<x<¢) and {exn(x); & <x=<¢&.3). The
differences {e(x)—en(x); x <&} and {e(x) — ez, (x); x = &} are similar to
the tails of the cardinal function of Figure 18.2.

(21.47)

Figure 21.1. The effect on the error of a change in step-length.
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Therefore, assuming that the effects from the ends of the range [a, 5]
can be neglected, there exist parameters A and u such that the equation

en(x)+A o((&—x1/h), x<¢
exn(x)+u o((x —£1/2h), x=¢,

holds, where o is the function

e(x)={ (21.48)

(21.49)
that is studied in Section 19.1. Because ¢’ and " are continuous at x = £,,
the conditions u = -2 and

TR fO&) = 2V3A/ R = 3R P(&) - 3V3u/h? (21.50)

are satisfied, where £ (¢) is the constant fourth derivative of f. It follows
that the parameters have the values

__ R
A= mf €3]
y (21.51)

_h
12 _6~/3f (f)

It is now straightforward to obtain from expression (21.48) the third
derivative discontinuities of s, and the maximum value of | f — s| on each of
the intervals {[¢;, &.1];j=r—4,r—3,...,r+2}. These numbers are
given in Table 21.1.

The table shows that the expression

43
max £ -sCl=E 8 ma gL ldyl]  @2152)

Table 21.1. Errors and derivative discontinuities at a
change in knot spacing

i d; Jmax [f(x)=s(x)
r—4 1.0052hf (&) 0.0028h*f“(&)
r—3 0.9808hf (&) 0.0021A*F (&)
r—2 1.0718hf¥(¢) 0.0047h%f“(¢&)
r—1 0.7321hf (&) 0.0060h*f@(£)

r 1.6585hf¥(¢) 0.0571h*f¥(¢)
r+1 2.0670hf (&) 0.0376h°%f4(¢)
r+2 1.9821hf“(¢) 0.0428h*f¥(¢)
r+3 2.0048hf (&)
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overestimates the error when ¢ =r—3 and r+1, and it underestimates
the error whenq=r—4,r—2,r—1,randr+2,by 7%, 41%, 28%, 25%
and 23% respectively. The discrepancies for ¢ <r do not matter very
much because they occur in errors that are much smaller then the errors
when g=r. The 2;% discrepancy can usually be ignored, but a
modification is needed when q = . The table suggests that the approxi-
mation
max |f(x)=s(x)|

&r=x={41

3
z%max [1.65|d,|, |d,+1]] (21.53)
is suitable. Moreover, in order to avoid the possibility that the error
estimate predicts incorrectly that the interval [£._4, &] is too long,
it is advisable to delete the term |d,+| from expression (21.52) when
q=r—1.

These ideas give an automatic method of estimating the local error of
an interpolating cubic spline approximation to a function f, provided that,
where the knot spacing changes, it only halves or doubles, and provided
that each new knot spacing is used for several consecutive intervals. The
error estimate is usually adequate when f is a general function, even
though the analysis is based on the assumption that f is a quartic
polynomial. If it is applied to a trial cubic spline approximation, then the
estimate indicates the parts of the range [a, b] where the accuracy is
insufficient. By reducing the knot spacing only in these parts of the range,
the spacing between knots can be adapted automatically to the form of f.
Hence a general algorithm has been developed for solving the problem
that is stated at the beginning of this section. The algorithm begins by
calculating an interpolating cubic spline that has a few equally spaced
knots in [a, b). This spline is the first of a sequence of trial approxima-
tions. If it is predicted that a trial approximation is not sufficiently
accurate, then the knot spacing is halved where the error is too large, and
a new trial spline is calculated. The procedure finishes when the error
estimate indicates that the required accuracy is achieved. Two features
that are worth including in the algorithm are to insert extra knots only in
the parts of the range [a, b] where it is predicted that the error of the
current trial approximation is within one-sixteenth of its maximum value,
and to allow for an effect that is shown in Figure 21.1, namely that in the
interval [£,, £ +1] the error given by the solid line is about 1.4 times larger
than the error shown by the dashed line. This increase in error is due to
the change in interval length at £, Many trial approximations can be saved



Knot positions and the calculation of spline approximations 266

sometimes by anticipating this effect when the algorithm chooses the
intervals in which to place new knots.

211

21.2

21.3

214

21.5

21.6

21 Exercises

If a linear spline approximation s to a function f in €‘”[a, b]
satisfies the condition {|f —s| <&, and if s interpolates f at the
knots, then Theorem 4.2 shows that, in a neighbourhood of a
point x of [a, b], the knot spacing A is at most about |8¢/f"(x) 4
This remark suggests the density of knots that is needed to
approximate a given function to prescribed accuracy. Hence
estimate the minimum number of knots that are necessary to
achieve the condition ||f — s|lx =< & when f is the function {f(x) =
x*; 0=<x =<1} where the constant u is greater than two. Show
that, if the knot spacing has to be constant, then the number of
knots increases by a factor of about %p,.

Apply the interpolation method of Theorem 21.2 to calculate a
spline approximation from the space ¥(2, 0, &, 8,25 1) to the
function {f(x)=x2;0=<x=<1}. You should find that the maxi-
mum error at a knot is equal to 0.000 254.

Let &, be the space of cubic splines on the infinite range (—0c0, )
that have knots at the points {£3;=jh, &j-1=jh—¢€, &j41=
jh+e; j=0,+1,£2, ...}, where h is a positive constant, and
where ¢ is a positive parameter that is less than 3h. For any f in
@ (—00, ), let s, be the bounded spline in &%, that interpolates
f at the points {x; =3(&_1+& +&41); i=0,+1,£2,...}. Prove
that, as ¢ tends to zero, s. tends to the function s* that, on each
of the intervals {{jh,jh+h];j=0,+1,+2,...}, is the cubic
polynomial that is defined by the interpolation conditions
{s*(jh +3Ih) = f(jh +3Ih);1=0,1,2, 3}.

Let s be the cubic spline that interpolates the function {f(x) =
|x|; —0o < x < oo} at the knots {¢ =jh;j=0,+1,+2,...}. Show
that the error estimate (21.46) underestimates the error in the
interval [£, &1] by a factor of about 7.4.

Let the knots of a cubic spline s on (—o0, 00) have the values
{¢& =jh;j=0} and {¢ = jnh; j <0}, where 7 is a small positive
constant. Prove that, if s is the bounded spline that satisfies the
cardinality conditions {s(&) = 8;0;j =0, +1, £2, ...}, then there
is no upper bound on ||s||l that is independent of 1.

Let f be a function in €®[a, b] such that the derivative
{f"(x); a < x < b} has no zeros. For any small positive number ¢,
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let s be a linear spline with fewest knots that gives the accuracy
|f —sllo <, subject to the condition that s interpolates f at its
knots. Investigate the positions of the knots of s, {¢[e];j=
0,1,...,n[e]} say, in the limit as ¢ tends to zero. You should
find that asymptotically £[e] has the value ¢(j/n[e]), where
{#(0); a = 6 < b} is the monotonically increasing differentiable
function that satisfies the equations ¢(0)=a, ¢(1) = b, and

[¢'(6))*f"[#(6)]= constant, 0s0=<1.

Use Exercise 21.6 to explain why the knots (21.6) are parti-
cularly suitable for the approximation of the function {f(x)=
x%; O<x=<1} by a linear spline. Similarly, find good knot
positions for the approximation of the function {f(x)=x";
0=<x <1}, where u is a constant in (0, 1), and bound the number
of knots that are needed to achieve a given accuracy.

Apply the method that gives the error estimate (21.46) to deduce
that, if s is a quadratic spline with equally spaced knots {£; = jh},
that interpolates a function f at the points that are midway
between the knots, then the error estimate

h2
max |f(x)—s(x)|z'7—27§max [dal, |dg+1l]

Eqsx<{g+

is appropriate, where d,, is the second derivative discontinuity of
s at &,.

Let #(k, &o, &1, - . ., &) be the space that is defined in the last
paragraph of Section 21.1, where inequality (21.17) holds. Let s
be any fixed function in #(k, &, &1, - - ., &), and let € be any pos-
itive constant. Prove that there exists a positive number & such that,
if{n;;/=0,1,..., n}is any set of numbers that satisfies the con-
ditions {|n;—&|<8; j=0,1,...,n} and a=ne<n<m2<...
<m,=b, then there is a function, o say, in the space
&k, Mo, N1, - - - , Mn) such that ||s — ol is less than .

Extend the definition of B-splines and the four theorems of
Chapter 19 to the case when ¥(k, &, &1, . . ., &) is the extended
space of splines that is defined in the last paragraph of
Section 21.1.
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The Peano kernel theorem

22.1 The error of a formula for the solution of differential

equations

The Peano kernel theorem gives a general and highly useful
technique for expressing the errors of approximations in terms of deriva-
tives of the underlying function of the approximation. For example, let

the coefficients {w,; t=1,2,..., m} and the points {x,;t=1,2,..., m}
be such that the quadrature rule
b m
[ rwrax~§ worex) @2.1)
a t=1
is exact when f is in @, where the points {x,; t=1,2,..., m} are all in

[a, b]. The theorem defines a function {K (9); a < 8 < b}, that is indepen-
dent of f, such that the equation

b " b
[ rerax- £ wi f(x) = [ k@70 d0 (22.2)

=

holds for all functions f in €“*"[a, ]. One useful consequence of this
equation is that the error of the approximation (22.1) is bounded above
by c[lf'**llo, where c is the number

b
c=I K (6)] de. (22.3)

Because ¢ is independent of f, it provides a convenient measure of the
accuracy of formula (22.1), that may be useful to a comparison of
integration methods.

In order to introduce the theorem, we consider the problem of
expressing the error of the formula

flxe+2h)=f(x,+h)+hBf (x.+ h)— 3 (x,)] (22.4)
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in terms of the third derivative of f. This formula is a standard technique
for the step-by-step solution of ordinary differential equations. We solve
the problem by making use of the Taylor series. In Section 22.2 the
method of solution is generalized, which gives the Peano kernel theorem.
The remainder of the chapter describes some applications of the
theorem.

The simplest way of estimating the error

L(f)=f(x,+2h) = f(xc+ h) = h[3f (x,+ B) =3 (x))], (22.5)

when f is sufficiently differentiable, is to make the Taylor series approx-
imations

Flre+2h) = f(x) +2hf (x) + 2R°f"(x) + 3R f"(x) +. ..

flee+h) = Fx) +hf () +3hPF"(x) +5R°F"(x) +. . »(22.6)
Foec+h)=F(x)+hf' () +3R°f"(x) +. . .
ignoring the higher order terms that are represented by ‘.. .". By substi-
tuting expression (22.6) in equation (22.5) we obtain the estimate
L(f)=1zh*f"(x). (22.7)

It is better, however, to use the Taylor series with explicit remainder,
because then the exact value of L(f) is found. We express f(x, + k), for
example, in the form

fec+h) = fx)+ hf'(x) +2h*f"(x.)

x,+h
+3 I (xe+h — 0)°f"(8) d6. (22.8)
Hence equation (22.5) implies the identity

x,+2h

L(f)=1 J' (xo+2h — 6)2F"(8) d8

t+h

= i+ h—0717(6) do

t

+h

~3h J‘x‘ (x.+h—6)f"(6)d6

x,+2h
- J K(0)f"(8)de, (22.9)
where K (0) has the value
%h(e_xr), x<f0<x+h
K©0)={; , (22.10)
3(x,+2h—0)", x+th=s=60=<x,+2h.
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Because the function {K(6); x, < 8 < x,+2h} does not change sign, the

mean value theorem gives the equation
x,+2h

L(f)= f'"(g)j K(0)d6
=R’ f"(8), (22.11)

where ¢ is a point in the interval [x,, x, +2k]. This result is stronger than
the approximation (22.7).

22.2 The Peano kernel theorem

The notation L(f) is used in equation (22.5), because the right-
hand side is a linear functional of f. We let L be a general linear functional
such that L(f) is zero when fisin @,. If fisin € *+Drg. b], we write it in
the form

"(x a)

fx)=X

S a) e [ -0 0e) do,
<o
asx<bh (22.12)
When L is applied to this equation, the contribution from the sum on the
right-hand side is zero. Hence Lf is expressed in terms of f (k1)

The Peano kernel theorem states a useful form of this construction. It
depends on a function {K(8); a < 6 < b} that is defined in the follow-
ing way. For any value of 6, which in fact need not be in [a, b], we let s,
be the function

se(x)=(x—0)%, asx<b. (22.13)

The number K () is obtained by applying the operator L to the function
so/ k!, which gives the value

1
K(0)=FL(SG), a<@<b. (22.14)

It is convenient to introduce a notation that allows expressions (22.13)
and (22.14) to be combined. Therefore we write the equation

K(G)— L{(x 0)%}, a<0<b, (22.15)

where the notation L,{. . .} indicates that the expression in the braces is to
be regarded as a function of x on which L operates.

Because it is sometimes useful to let k = 0 in equation (22.15), it may be
necessary for L(f) to be defined when f is in the space ¥[a, b], which is
the space of real-valued functions on [a, b] that are of bounded variation.
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This condition is assumed in the next theorem, and it is assumed also that
L is bounded, which means that there is a constant ||L|w such that the
inequality

IL(AI<IL§olfl  fe¥Ta, b, (22.16)

holds, where ||f|| is the norm
Iflo= sup |[f(x)l,  fe¥Ta,b]. (22.17)

asx<b

These conditions on L, however, are too restrictive for general use,
because they do not allow L to depend on derivatives. Therefore another
version of the Peano kernel theorem is given later.

Theorem 22.1 (Peano kernel)

Let k be any non-negative integer, and let L be a bounded linear
functional from ¥[a, b]to R", such that L(f) is zero when f is in #,, and
such that the function {K(6); a < 6 < b}, which is defined by equation
(22.15), is of bounded variation. Then, if f isin €“*"[a, b), the functional
L(f) has the value

b
L(f)=I K(0)f**"(8) de. (22.18)

Proof. By applying L to expression (22.12) we obtain the equation
1 b N
L) = L [ x=0)5r**(6) as). (22.19)

Therefore it is sufficient to show that the operator L, can be exchanged
with the integration sign. The bounded variation conditions in the
statement of the theorem, and also the fact that the variation of the
function {(x — 6)%; a < 6 < b} is uniformly bounded for all x in [a, 5], are
needed in order to approximate integrals by Reimann sums. Thus, for any

€ >0, there exist points {6,;¢t=1,2,...,m} in [a, b] such that the
expression
b k p(k+1) (b a) " k p(k+1)
[ G-0srv) do-=2 § (= 0)5 % 0)| =nia)
(22.20)
say, is less than ¢ for all x in [a, b], and such that the inequality

Lo g £ K@ e)|<

b
j K(0)f* 1(0) do - (22.21)

a




The Peano kernel theorem 272

holds. Because the linearity of L and the definition (22.15) give the
identity

L £ (= 0057 00} = £ Ldx— 605760
k! él K (6%, (22.22)
it follows from the accuracy of the Riemann sums that, if the equation
L Jb (x=6)% 1% (6) do} = k1 Ib K@)f“6)ds  (22.23)

is not satisfied, then the difference between the two sides is bounded by
the number

IL{n ()} +k'le <(ILjjo+ke. (22.24)

Since £ can be arbitrarily small, equation (22.23) is valid. It follows from
expression (22.19) that L(f) does have the value (22.18), which is the
required result. 0

This theorem gives useful expressions for the errors of many inter-
polation and integration procedures. We have noted, however, that if L
depends on some derivatives of f, which is the case in example (22.5), and
which is usual when one analyses the local truncation errors of linear
multistep methods for solving ordinary differential equations, then L is
nct bounded, nor is it a mapping from ¥Ta, b]to #'. A suitable extension
to Theorem 22.1 can be obtained by expressing L(f) in terms of a
derivative of f. For example, we can write equation (22.5) in the form

x,+2h

L(f)= j £(xe) dx — hBF (xo+ B) =5 (x)]

x+h
=M(f"), (22.25)

say. It is important to notice that the linear operator M is bounded, even
though L is not. Therefore it is valid to replace L by M and f by f' in the
statement of Theorem 22.1. Thus M (f') = L(f) can be expressed in terms
of f, where f is any function in €®'[a, b].

This technique applies generally to operators L that have the form

L(H)y=M(f?"),  feV"a,b], (22.26)

where ¥""[a, b] is the linear space of functions whose jth derivatives are
of bounded variation, and where M is a bounded linear operator from
YTa, b] to R'. The generalization is given in the following theorem.
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Theorem 22.2

Let L be the operator (22.26), where M satisfies the conditions
that have just been stated, and let k be any integer that is greater than or
equal to j. If L(f) is zero when f is in 2, and if the function (22.15) is of
bounded variation, then, for all functions f in €**"[a, b], the linear
functional L(f) has the value that is given in Theorem 22.1.

Proof. Equations (22.15) and (22.26) give the relation

K(@)=%Lx{(x—o)i}

(k M {(x—6)c1h, a<0<b. (22.27)
Because, by hypothesis, this function is of bounded variation, and
because of the conditions that are satisfied by M, we may replace L by M, f
by £ and k by (k —j) in the statement of Theorem 22.1. Hence we obtain
the value

b
M(f?)= f KO P(6)d6,  fe€“ Va,bl (22.28)

It follows from equation (22.26) that the theorem is true. 0

The refinements of bounded variation and the differences between
Theorems 22.1 and 22.2 are usually ignored in practice. The standard
way of applying the Peano kernel theorem is to check first that L is a
linear operator, that L(f) is zero if f is any polynomial of degree k, and
that L does not depend on any derivatives of degree greater than k. If
these conditions hold, then {K (6); a < 6 < b} is calculated from equation
(22.15). This function, which is called the ‘kernel function’, is substituted
into equation (22.18). Thus L(f) is expressed in terms of the derivative
{f“""(8); a<@=<b}.

There is a neat way of verifying that the condition

L(f)=0, fe®, (22.29)

holds. It is the reason for the remark, made immediately before equation
{(22.13), that the value of 8 need not be in the range [a, b]. We consider
the definition

K(0)=%Lx{(x—0)’i}, —00< g <00, (22.30)

If 6 < a, then the function {(x —68)%; a <x <b}isin Py, and, if 6 > b, then
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it is the zero function. Hence the equations

K(0)=0,0<a}

K(6)=0,0>b (22.31)

should be obtained. Because the space 2, is spanned by the polyncmials
{(x—8)*; —0o<x<00;r=0,1,...,k}, where{6,;t=0,1,..., k}isany
set of distinct real numbers that are less than q, the first line of expression
(22.31) is both a necessary and a sufficient condition for L(f) to be zero
when f is in 2.

When k =2, and when L is the functional (22.5), the definition (22.30)
is the equation

K@) =H(x,+2h-0):—(x,+h—0)>
—h{3(x;+h—0)s—(x,—6).]}, —00<h<c0. (22.32)

Itis straightforward to verify that K () is zero when 8 is less than x,. If 8 is
increased through the value 8 = x,, then the term (x, — 6). in expression
(22.32) is the only one that causes a discontinuity in K (). This remark is
useful, because it provides a convenient way of calculating the first line of
equation (22.10).

22.3 Application to divided differences and to polynomial

interpolation

Theorem 5.1 states that, if f is in €“""[a, 5], then the divided
difference fxo, x1,. .., xc+1] is equal to f**V(¢&)/(k+1)! for some
number £ Hence f[xo, X1, . . . , Xx+1] is zero when f is in 2.1t follows from
Theorem 22.1 that the following useful and interesting relation is
obtained between divided differences and B-splines.

Theorem 22.3
If fis in €*“"V[a, b], and if {x;;i=0,1,...,k+1} is a set of
distinct points in [a, b], then the equation

1 b
flxo i, xenl=1; [ BOF(0) do (22.33)

is satisfied, where B is the B-spline
k+1

B(6)= Y {(G—x,-)ﬁ kﬁl (x,-—x,-)}, as@<b. (22.34)
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Proof. By equation (5.2) the divided difference is the expression

k+1 k+1
fxo,x1, .o xeml= T {fe) [ T1 i)
jEi
=L(f), (22.35)
say. Therefore, for any fixed and distinct points {x;; i =0,1,...,k+1},
L is a bounded linear operator from ¥{a, b] to ®', and the function
(22.15) is of bounded variation. It follows from Theorem 22.1 that
equation (22.18) is satisfied, where K () has the value
k+1

1 k+1
K@®)=— 3 {(x,-—o): 0 (x,-—x,-)}, a<o<b (22.36)
k' i=0 j=0
jEi
Equation (22.18) shows that the required relation (22.33) is valid if and
only if the function (22.34) is equal to k! K. We substitute the identity

(=0 =(u—0)+ (-1 (6-x)% (22.37)

into expression (22.36) for i =0, 1, ..., k +1, which gives the equation
1

K(6)=1;[LAx—0)}+B(6)], a<6<b. (22.38)

The term L,{(x — 6)*} is zero, because the function {(x — 6)*; a <x <b}is
in P,. Therefore the theorem is true. 0

This theorem is more general than Theorem 5.1, because equation
(22.33) does not depend on the unknown number £ Further, Theorem
5.1 can be deduced from Theorem 22.3 in the following way. We recall
that B-splines are non-negative. Therefore, by applying the mean value
theorem to equation (22.33), the relation

b
flxoy x1s -« - xk+l]=$ [ j B(6) o] (e) (22.39)

is obtained, where ¢ is in the interval [a, b]. Because this relation holds in
the particular case when f is the polynomial {f(x) = x**'; a <x <5}, and
because of the original definition of a divided difference, the integral of

the B-spline has the value
b
I B(6)do=1/(k +1). (22.40)

Hence Theorem 5.1 is true.

Theorem 22.3 is also useful to the main subject of Chapters 23 and 24,
which is the problem of obtaining good approximations from the function
values {f(x,);t=1,2,..., m}when m is large. For example, we may have
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to choose the weights {w,; =1, 2, ..., m}in formula (22.1), and it may
be suitable to force the approximation to be exact only when f is a
polynomial of degree k, where k is much smaller than m. In this case a
suitable technique, for taking up the freedom in the weights, is to apply
the Peano kernel theorem to express the error of the approximation in
terms of the derivative {f**"(8); a < 6 < b}, and then to use the freedom
to make the kernel function {K(8); a < 6 < b} small. It is convenient to
write the approximation (22.1) in the form

I f(x)dx = kil u,f(x,)+m Zk 1 O fLxn Xie1y o v vy Xerrer1)y, (22.41)

because then the freedom in the welghts allows arbitrary values of the
parameters {v,;t=1,2,...,m—k—1}. Theorem 22.3 shows the change
to the kernel function that is caused by adjustments to the parameters
{v;t=1,2,..., m—k—1}.

This theorem also gives an expression for the error of polynomial
interpolation. As in Theorem 5.2, we let {pi(x); a<x<b} be the
polynomial in &, that satisfies the interpolation conditions

pi(x;) = f(x;), i=0,1,...,k, (22.42)
and we let x;.; be any point of [a, b] that is not in the set {x;; i =0,
1,..., k}. Because Theorem 5.2 implies the equation

k
Flren) = percen) +{ T Goees =) Lo, 310y wicr], - (2249

it follows from Theorem 22.3 that the difference {f(x.+1) — px(xx+1)} has
the value

k b
i) =petree) = { 1 =)} [ B/ (0) 0

1
(k+1)'

{ I (=) 100,
é€la, b), (22.44)

where the last line depends on the condition {B(8) =0; a < # < b}, on the
mean value theorem, and on equation (22.40). Both lines of this expres-
sion are useful, and we see that the second one is the same as the
statement of Theorem 4.2.

It is important to note that often the linear functional L and the value of
k are such that the kernel function {K(8); a < § < b} of equation (22.18)
changes sign. For example, the possibility that L(f) is zero when f is in
Py+1 does not impair the validity of Theorem 22.1. If this possibility
occurs, and if we let f be the function {f(x)= x**1 a<x<b), then
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equation (22.18) implies the identity

b
J- K(6)de=0. (22.45)
In general, therefore, one should not expect the equation
b
L(f)=J' K(8)dof 1 (¢) (22.46)

to be satisfied for some value of £ in [a, b].

22.4 Application to cubic spline interpolation

In order to show the usefulness of the Peano kernel theorem, it is
applied in this section to bound the error of a cubic spline approximation
that is defined by interpolation. We consider the procedure, described in
Section 18.2, where the knots of the spline have the values

x; =jh, j=0,+1,+2,..., (22.47)
and where the interpolation conditions are the equations
s(x)=f(x), j=0,%1,£2,.... (22.48)
We recall that s can be expressed in the form
s(x)= Y Lx)f(x), —00< x <00, (22.49)
j=—oc0

where the cardinal spline {/;(x); —o0 <x < oo} is symmetric about x = x;,
and has the properties that are shown in Figure 18.2. In particular, the
fact that the tails of the cardinal function reduce by the factor («/ 3-2)per
knot gives the conditions

Lx—h)=(3-2)(x), «x sx,-_,}
Lx+h)=(3-2)i(x), x=x.°
Because the Peano kernel theorem concerns linear functionals, we

study the error of the interpolation procedure for a particular value of the
variable x. Therefore we let L be the functional

L(F)=f(®)-5(&)
—fO- T LOf), (22.51)

=-—00

(22.50)

where £ is a fixed real number, which, for convenience, is chosen in
the interval [0, h]. Although the range of the variable is infinite, it is
assumed that the Peano kernel theorem can be applied. Hence, if f is in
€“(—00, ), then the equation

f(&)—s(&) =I K(6)f®(6)de (22.52)
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is satisfied, where K is the function
1 [e ]
K(6) =§[(§— 0)i- T L&)(x— 0)1], —00< <00,
H j=—00
(22.53)
We derive some properties of this kernel function, in order to obtain
bounds on the error (22.52).
First it is proved that the form of {K(8); —c0 < § <o} is similar to the
form of a cardinal function when || is large. Because the behaviour of the
cardinal functions that gives expression (22.50) also implies the equation

(&) =W3-2).(8), =3, (22.54)
it follows from the definition (22.53) that, for 6 = x;, the relation

K@+h)=—1 % L&) —0-h)}
j=3

= —H3-2) T 11 (O-1-0)%

=(3-2)K(6) (22.55)
is obtained. A remarkable result can now be deduced from the fact that, if
p is any cubic polynomial, then the identity

12[ p(x;+1) = p(x))] = (6 +2V3)A[ p'(x;+1) — (V3 ~2)p' (x))]
—(V3+ DA p"(xj01) — (V3 —2)p"(x;)]
(22.56)
holds. We let j be any positive integer, and we let p be the polynomial
{K(8); x;<0=<x;.1}. Because equation (22.55) implies that the right-
hand side of expression (22.56) is zero, the numbers K (x;) and K (x;.1)
are equal. However, condition (22.55) has to hold when 6 = x;. Hence the
equations
K(xj)=0, i=1,2,3,..., (22.57)

Figure 22.1. A kernel function for cubic spline interpolation.
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are satisfied. By symmetry, or by applying the technique that depends on
expression (22.37) in the proof of Theorem 22.3, we also deduce the
conditions {K (x;)=0;j=0, =1, =2,.. .} and {K (6 —h) = (V3 -2)K (6);
0 < xo}. These properties are displayed in Figure 22.1, but the form of K
in the interval [0, A ] requires further analysis.

Equation (22.53) and the figure imply that there exist parameters A, u
and d such that K is the function

Ao(—6/h), #=<0
no(0/h)+5¢—0Y+sd(h—6), 0<@<¢
pna(8/h)+sd(h—06)°, ¢<6<h
wo(6/h), 0=h,
where {o(x); 0 =< x <o} is defined in equation (21.49). Because K, K’ and
K" are continuous at § = 0, it follows that the parameters have the values
d=-¢/h
A=H[—V3er*+38h-(3-V3)E] ¢ (22.59)
u=1aV3Eh*+38h — (3+V3)¢%]
We note that, for all ¢ in (0, k), A is negative and u is positive. Hence
K (6) has the correct sign in Figure 22.1, except perhaps when 0 <6 <h.
In this interval K(#) is positive, but there seems to be no short way of
proving this statement. One method begins with the remark that, because
K(0)=0,K'(0)>0and K"(0+) <0, there is at most one zero of K in the
interval (0, £]. Direct calculation gives K (£) > 0. Hence K has no zeros in
(0, £]. Similarly there are no zeros in [ h), which completes the

justification of the signs that are shown in Figure 22.1.
It is now straightforward to calculate the integral

K(6)= (22.58)

> o)

I(§)=L |K (8)| d6, 0<¢s<h, (22.60)

in order to bound the error (22.52) by a multiple of |f“/. Because the
function (21.49) satisfies the equation

ox+1)="3-2)a(x), x=0, (22.61)
expression (22.58), Figure 22.1, and the definition of o give the value

=] oo -

3 h
+%L (5—0)3d0+édj0 (h—6)°de

= (A +|u))BV3h + (£ + dn®). (22.62)
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It follows from equations (22.52) and (22.59) that the bound

[f(©)—s@®<I©&)If )
=5 -28n+ &) |f Ve,  O<és<h,  (22.63)
is obtained. Therefore, because the right-hand side takes its maximum
value when &=3h, and because all intervals between data points are

similar, the error of the spline approximation is bounded by the inequality
Sh*

lv—sliw\ﬁlv“”nw. (22.64)

In order to check most of the work of this section, we let f be a quartic
polynomial, and we deduce the error f(¢)—s(£) from equations (22.52),
(22.58) and (22.59). Because f(4)(x) is constant the equation

fE)—s© =T fPx), 0<¢s<h, (22.65)

is satisfied, where J(¢) is the integral
h

1©=0+w)| [ oemas]| § /3-2]

3 h
+gJ1) (§—9)3d9+édjo (h-6)*de

= (A +p)1zh +24(&" +dh*)
=584 (¢ —h)% (22.66)

The check on the calculation is that we have verified the first line of
expression (21.43).

Inequality (22.64) provides a substantial improvement on the bound

(20.52), where ¥ is the space of cubic splines whose knots are the points

& =¢&+jh, j=0,1,...,n, (22.67)
and where f is any function in €&, &,]. The analysis for the infinite
range is applicable to this case, because we may extend f to the infinite
range in any way that does not increase |[f*“||l, and we may let s be the
spline (22.49). The restriction of s to the interval [£, &,] is an element
of &. Hence d*(¥,f) is bounded above by |f—s|w. It follows from
inequality (22.64) that the constant in expression (20.52) can be reduced
from % to %.

One unusual feature of the example of this section is that all the zeros of
the kernel function (22.53) occur at points where a derivative of K is
discontinuous. In general, if equation (22.18) holds, and if one requires
the value of the constant (22.3) in the bound

ILOI<cllF* oy (22.68)
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then it is necessary to find the values of @ at which {K(0); a <8 <b}
changes sign by solving a polynomial equation. Some examples are given
in the exercises.

22.1

22.2

223

22.4

22.5

22.6

22.7

22 Exercises
Let p(3) =3[ f(0)+f(1)], where f is a function in €*[0, 1]. Find
the smallest constants c¢g, ¢; and ¢, such that the error bounds

f@-pGl=sclfle,  k=0,1,2,

are valid.

Let f be any function in 4‘“[0,2]. Show that the error of
Simpson’s integration rule satisfies the equation

jo £(x) dx =L £0) +4F(1) +£(2)] = — 5£“(&),

where ¢ is a point of the range [0, 2].

Calculate the values of the coefficients wgo, wy and w; such that
the inequality

|£(2)=[wo f(O) + w1 F(1)+ w3 F3)] < llf'll.

holds for all functions f in €*[0, 3], where the degree of freedom

in the coefficients is used to minimize the constant u. You should
obtain the bound

[F@)+3 £0) =F F) =3 fB) < V@@ "Il

Prove Theorem 22.3 by integrating the right-hand side of equa-
tion (22.33) by parts.

Show by an example that the constant 333 in expression (22.64)
cannot be reduced. There exists a suitable function f that is zero
at all the knots.

Let f be a function in €‘“[0, 1]. Calculate the third derivative of
the cubic polynomial p that interpolates the data {f(0), f'(0),
f(1), f'(1)}. Prove that the inequality

@ =p"@)<G-£+26 - )l

is satisfied, where ¢ is any point in [0, 1]. Find a function f with a
piecewise continuous fourth derivative for which this inequality
holds as an equation.

Calculate the values of the parameters wq, w,, w3 and w, that
minimize the number u in the bound

J:) f(x) dx = w1 f(0) = w5 (0) = w3 f(1) = wa f (1) < pll o,




22.8

22.9

22.10
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where f is any function in €’[0, 1]. Show that the least value of u
is 33.

Prove that the right-hand side of the final inequality of Exercise
22.3 can be replaced by the expression

Y@ [lIfIE-9(f10, 1, 3]°T,

which is a useful improvement because the divided difference
f10, 1, 3] can be calculated from the function values f(0), f(1) and
f(3). One method of proof comes from expressing f” in the form
f(0)=aB(6)+{f"(0)—aB(8)}, 0=6<3,

where B is the kernel function that occurs when Theorem 22.3 is
used to express f[0, 1, 3] in terms of f”, and where the multiplier
«a is such that the term in the braces is orthogonal to f”. Verify
that the two sides of the new inequality are equal when f is the
function {f(x)=x>—3(x —2)3; 0<x <3} and explain why this
happens.

Investigate the validity of the assumption, made immediately
before equation (22.52), that the Peano kernel theorem can be
applied when the range of the variable x is infinite, given the
condition that the derivatives of f are bounded.

For any bounded function f in € (-0, 00), let s be the quadra-
tic spline with knots at the points (18.35), that satisfies the
interpolation conditions {s(x;)=f(x;)=f(jh); j=0, £1, £2,
...}, and that is studied in Section 18.4. Prove that the value of
the spline at a knot is bounded by the inequality

h3
1£6) = @] <71/ ko-



23

Natural and perfect splines

23.1 A variational problem

A very early result in the study of spline approximations is that a
cubic spline is the solution of the following variational problem. Given
the points {x;; i =1, 2, ..., m}in the interval [a, b], satisfying the condi-
tions

asx<x<...<xm<b, (23.1)

and given the function values {f(x;);i=1,2,...,m}, calculate the
function {s(x); a < x =< b} that minimizes the integral

b
[ [s"(0)T? dx, (23.2)

subject to the interpolation equations
s(x;) =f(x), i=1,2,...,m. (23.3)

If one knows the solution to this problem in advance, then there is a short
way of showing that one has the required function, which is given in the
proof of Theorem 23.2. In this section, however, the solution is derived
without foresight or intuition, because the method that is used has other
applications.

We assume that m >2, because otherwise the integral (23.2) can be
made zero, by letting s be any straight line that interpolates the data.
When m >2, then it is necessary to identify the restrictions that the
conditions (23.3) impose on the second derivative {s"(x); a <x <b}.
Because Theorem 22.3 shows that divided differences can be expressed in
terms of derivatives, the equations

S[xpy Xpa1s Xpr2]= flXp, Xpa1, Xp+2], p=12,...,m-2,
(23.4)
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which follow from condition (23.3), are really constraints on s".
Specifically, applying the theorem to expression (23.4) gives the con-
straints

b

I B,(0)s"(8) d6 = flxp, Xp+1, Xp+2)s p=12,...,m-2,
(23.5)
where B, is the first degree B-spline

B,,(e)- {(0 x0) H 5 —x: )} a<0<b. (23.6)
[#l
Therefore we seek the function {u(x); a <x < b} that minimizes the

integral
b

I(u) I [u(x)] dx, (23.7)

subject to the conditions
b

J B,(0)u(6) d6 = f[x,, xp+1, Xp+2], p=12,...,m-2.

(23.8)
If u is not of the form
m-—2
u(x)= Y A;jB;x), asx<b, (23.9)
ji=1

then there is a function, v say, that is orthogonal to the splines {B;;j =
1,2,...,m—2}, but that is not orthogonal to u. Hence the equations
(23.8) hold if u is replaced by (u + av), where « is any real number, but «
can be chosen so that I (u +av) is less than I (u). It follows that equation
(23.9) is satisfied.

In order to calculate the values of the parameters {A;; j=1,2,...,
m —2} of expression (23.9), we note that the conditions (23.8) give a
square system of linear equations in the parameters. If the matrix of the
system is singular, then there exist numbers {u;;j=1,2, ..., m —2}, that
are not all zero, such that the equations

b

m-—2
J B,,(o)[ v M,-B,.(e)] 49=0, p=1,2,...,m-2, (23.10)
a i=1

hold. These equations, however, imply the identity
b

L [E “fo(e)]z d¢ =0, (23.11)
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which contradicts Theorem 19.2. Therefore the parameters of the
function (23.9) are defined by the constraints (23.8).

The function {s(x); a < x < b} is obtained by integrating {u(x); a<x <
b} twice, where the constants of integration are chosen so that s(x;) and
s(x,) are equal to f(x;) and f(x,) respectively. By applying the conditions
(23.4) in sequence, it follows that the equations {s(x,+2) = f(x,+2); p =1,
2,...,m—2} are obtained. Hence s is the function, interpolating the
data {f(x;);i=1,2,..., m}, that minimizes the integral (23.2). It is a
cubic spline, because its second derivative is the continuous piecewise
linear function (23.9). It is called a natural spline because it solves the
variational problem of this section. The characteristic properties of
natural cubic splines, which are implied by equation (23.9), are that their
second derivatives are zero at x; and x,,, and that, if x, and x,,, are interior
points of [a, b], then the cubic polynomial pieces degenerate to straight
lines on each of the intervals [a, x;] and [x,,, &].

The degree of a natural spline is always odd. A spline s of degree
(2k +1) on the interval [a, b] is called a natural spline if it satisfies the
conditions

sP) =sPx)=0, k+1<j<2k, (23.12)
where x; and x,, are the extreme knots. Further, when a < x; and when
X, < b, then s must be a polynomial of degree k on the intervals [a, x;]
and [x,,, b] respectively. It is shown in the next section that natural splines
give solutions to two variational problems.

If the points {x;;i=1,2,..., m} satisfy condition (23.1), then the
notation $n(2k +1, x4, X2, . . ., X,,) is used for the linear space of natural
splines of degree (2k + 1) that have these points as knots. Sometimes we
shorten the notation to %n. It is proved in Theorem 23.1 that, if
m =k +1, then the dimension of %y is equal to m.

23.2 Properties of natural splines

Natural spline approximations to functions are calculated by
interpolation at the knots. The following theorem states that, except
when m <k, the interpolation problem has a unique solution.

Theorem 23.1

Let {x;;i=1,2,..., m} be any set of real numbers that satisfy
expression (23.1), and let k be any integer in the range [1, m —1]. Then,
for any f in €[a, b), there is exactly one function s in the space $n(2k +1,
X1, X2, . . ., Xm) that satisfies the interpolation conditions

s(x)=1(x), i=1,2,...,m. (23.13)
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Proof. 1f a <x1,then the form of a natural spline on the interval [a, x1]is
defined uniquely by the form of the spline on [x;, x,]. A similar condition
holds at the other end of the range [a, b]. Therefore there is no loss of
generality in assuming that x; = a and x,, = b. It has been noted already
that the dimension of the space ¥(2k+1, x1, x2, ..., x») of ordinary
splines is equal to (2k +m). Natural splines, however, are splines that
satisfy the linear homogeneous conditions (23.12). Therefore the
dimension of $n(2k +1, xq, X2, . . ., X,m) is not less than m. If the dimen-
sion exceeds m, then the equations

5(x:)=0, i=1,2,....,m,. §e%¥n, (23.14)
have a non-trivial solution. Therefore we ask whether these equations
imply that § is the zero function.

We evaluate the integral

I(f(k+l))=jxm [s—(k+1)(x)]2 dx (2315)

by parts. It follows from conditions (23.12), from the fact that §2**? is

constant on each of the intervals {(x;, x;+1); i=1,2, ..., m—1}, and from
equation (23.14), that the integral has the value

IGE*) = (—1), J'xm §(x)5%* V(x) dx

m—

PRI S j " ) dx

= DR T S5~ 5C20)]

1

_o, (23.16)

. . . . =(k+1) .
where x;+ is any point in the interval (x;, x;.1). Therefore, because §**Dis

a continuous function, equations (23.15) and (23.16) imply that §ED s
identically zero. Hence § is in &, but § also satisfies the conditions
(23.14). Thus, because m =k + 1, § is the zero function, which completes
the proof that the dimension of the space $n(2k +1, x1, X2, ..., Xm) IS
equal to m.

We now know that the number of conditions (23.13) on s is equal to the
dimension of $y. It follows from the method of proof of Theorem 5.4 that
these conditions define s uniquely, unless the equations (23.14) have a
non-trivial solution. Because we have shown already that § can only be
the zero function, the theorem is proved. 0O

The next theorem shows that interpolating natural splines are the
solution to the kind of variational problem that is studied in Section 23.1.
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Theorem 23.2

Let the function values {f(x;); i=1, 2, ..., m}begiven,andlet k
be an integer in [1, m —1]. The function s in € *+Drg b] that minimizes
the integral

b
J [s“P)T dx, (23.17)

subject to the interpolation conditions (23.13), is the natural spline that is
defined in Theorem 23.1.

Proof. Welet s be the natural spline that is the subject of Theorem 23.1,
and we let g be any function in €**"[a, b] that interpolates the data.
Hence the equations

g(x;)—s(x;) =0, i=1,2,...,m, (23.18)
are satisfied. Because the definition of the 2-norm gives the identity
”g(k+1)"% — "S(k+1)”22; + ”g(k+1) _ S(k+1)“§+ 2(g(k+1) _ s(k+1) s(k+1))

(23.19)

where the last term is twice the scalar product

b
I [ P(0)~s“ )] s“ P (x) dx, (23.20)

a
it is sufficient to show that this scalar product is zero. By applying
integration by parts, by using the conditions

sPa)=s"(b)=0, k+1<j<2k, (23.21)
which are obtained because s is a natural spline, and by noting that

s%*D(x) is zero if x is in the interval (a, x;) or (x., b), it follows that the
integral (23.20) has the value

(-1)* rm [g'(x)=s'(x)] s®**V(x) dx. (23.22)

1

Therefore, because of condition (23.18), thé method that gives the last
three lines of expression (23.16) implies also that the present integral is
zero, which completes the proof of the theorem. 0

One result that can be deduced from the proof is useful later. It is
obtained from equation (23.19) and the fact that expression (23.20) is
zero. It is that, if f is in (€(k+1)[a, b], and if s is the natural spline that is
defined in Theorem 23.1, then the identity

7D = s B % - sVl (23.23)

is satisfied.
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The most remarkable property of natural splines is their relevance to
an approximation problem that is mentioned in Section 22.3. In this
problem a linear functional L is estimated by the expression

L(f)= _21 wif (xi), (23.24)
where the values {f(x;);i=1,2,...,m} are given, but the weights
{wi;i=1,2,..., m}have to be chosen. We recall that, if the estimate is to

be exact when f is in P, and if m is much larger than k, then a suitable way
of fixing the degrees of freedom in the weights is to minimize a norm of
the kernel function

KO =Ll -05- £ wim-0%],  a<o=s,

(23.25)
of the relation
m b
L(H-3 w,-f<x,~)=j K@O)F*10)do, fe€*[a,b].
i=1 a
(23.26)

Natural splines give a direct and convenient method of calculating the
approximation (23.24), when the weights {w;; i=1,2,..., m} have the
values that minimize the 2-norm

Ikte={[ k@) ao)

1
2

(23.27)

The importance of natural splines to this calculation is shown usually by
a detailed analysis of the conditions for the least value of ||[K|l,. However,
because a similar analysis is given in Chapter 24, we prefer a different and
much shorter approach, that depends on knowing that the required
approximation to L(f) is L(s), where s is the natural spline that is defined
in Theorem 23.1. This approximation does have the form (23.24),
because, if the natural splines {s;;i=1,2,...,m} are the cardinal
functions of the interpolation procedure of Theorem 23.1, then L(s) is
the expression

L(s)=L

M3

= ¥ wflx), (23.28)
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say. We let {K(6); a < 6 < b} be the kernel function that is obtained by
setting {w;=w;;i=1,2,..., m} in equation (23.25). The following
theorem shows that L(s) is the required approximation.

Theorem 23.3

Let L be any linear functional from €[a, b]to ®', and let K be
the kernel function that has just been defined. Let expression (23.24) be
any approximation to L(f), thatis exact when f is in 2. Then the norm of
the kernel function (23.25) is bounded below by the inequality

1Kl < |IK .. (23.29)

Proof. Equation (23.26) implies the bound

L(f)—i1 wif ()| <KL IF l  Fe€* la, b]. (23.30)

By replacing f by f — s, where s is defined in Theorem 23.1, we obtain the
relation

/L(f)—L(s) = £ wilfe) = s )| <IK L 1770~ s
(23.31)

Because s satisfies the interpolation conditions (23.13), and because
equation (23.23) shows that [|[f**"—s%**V|, is bounded above by
[l£**|l,, it follows that the inequality

ILH-L$) =<K If*“ Ny fe€“ ™ a, b], (23.32)

is satisfied. The proof is completed by making a particular choice of f,
namely a function f such that F** is equal to K. Hence expressions
(23.28) and (23.32) give the relation

<|K . IK L. (23.33)

L(H~ T wiflx)
Because the kernel function K is defined by the equation
m b -
L(-E wfe)=| ROFM@)d6,  fe€"ab)
i=1 a

(23.34)
the choice of f implies the identity

L(f)- gl wif(x:) = K. (23.35)

It follows from condition (23.33) that the theorem is true. 0O
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If ¢ is any constant that can replace |K||, in inequality (23.30), then
K], may be replaced by c¢ throughout the proof of the theorem.
Therefore, for every set of weights {w;;i=1,2,..., m} that allows an
error bound of the form

L= L wfe)|<clf* ™k, fe€*ab], (2336

the constant c is not less than ||K .. Equation (23.34) shows that the least
value ¢ =||K||, is achieved when the weights have the values {w; = w; =
L(s;);i=1,2,...,m}. Hence the approximation L(s) to L(f) is the one
that minimizes the constant ¢ of expression (23.36).

It is interesting that, if L(f) is the point function value f(£), where £ is
any fixed point of [a, b], then the estimate of f(¢) that minimizes the
right-hand side of expression (23.36) is the same as the value at £ of the
function that solves the variational problem of Theorem 23.2. The fact
that these two different techniques give the same estimate of f(£) is a
consequence of the dependence of the work of this section on the 2-norm
of f(k+1)-

23.3 Perfect splines

Perfect splines are obtained from a variational problem that is
closely related to the one that is the subject of Theorem 23.2. The new
variational problem is to calculate a function s that minimizes ||s** ",
subject to the interpolation conditions (23.3), where m >k, and where
the abscissae of the data {f(x;); i =1, 2, ..., m} satisfy expression (23.1).
We consider this calculation, and we find that, at least on a part of the
range [a, b), s is.a spline function of degree (k +1).

As in Section 23.1, divided differences are used to express the

interpolation conditions in terms of s**". Therefore, letting
{z(x)=s*"P(x); a < x < b}, the least value of the norm

J(z)= max, |z(x)| (23.37)

is required, subject to the conditions

b
[ B@20)d0=k1 flrp 2y, .., Xpric]

= Cps p=1’2,-'-,m_k_1, (23.38)

say, where B, is the B-spline that has the form (19.10) and the knots
{xi;j=p,p+1,...,p+k+1}. Expressions (23.37) and (23.38) cor-
respond to equations (23.7) and (23.8).
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Because there is an unknown function to be found, and because the
number of constraints is finite, it is useful to apply duality theory to the
calculation of z. We note, therefore, that the constraints (23.38) imply
that, for all values of the multipliers {A,;p=1,2,...,m—k—1}, the
inequality

Y Avey= Lb [m;gl A Bp(o)] 2(6) 6

p=1
b
<lzl
a

must hold, which gives the bound

m—k-—} b
lzlo= X " A, CP/J
p=1 a

Because the calculation of z is a continuous version of a linear program-
ming problem, it follows from the duality that necessary and sufficient
conditions for z to be optimal are that the constraints (23.38) are
satisfied, and that there exist values of the parameters {A,; p=1,
2, ..., m—k—1} such that inequality (23.40) becomes an equation. In
this case the two lines of expression (23.39) are equal. Therefore,
provided that equation (23.38) holds, the condition that characterizes the
optimal z is that there is a function

m—k—1

Y A,B,(0)|de (23.39)
p=1

m—k—1

Y A, B,(6)| de. (23.40)
p=1

m—k—1
n@)= Y A,B,(0), a<@<p, (23.41)

p=1
that is not identically zero, such that, if 8 is any point of [a, b] at which
1(8) is non-zero, then z (@) has the value

z2(6) = ||zl sign [n(6)]. (23.42)
The following theorem gives a useful version of this result that depends
on properties of B-splines. In order to state the theorem, we require the
definition of a ‘perfect spline’.
The function s is a perfect spline of degree (k + 1) on the interval [a, 5],
if it is a spline of degree (k + 1), and if the constant sections of s* D an
have the same absolute value. Thus the equation

15D = ls Vs, a<x<b, (23.43)

is satisfied, except perhaps at the knots of s. If s is a perfect spline of
degree (k + 1), we adopt the convention that a point of [a, ] is a knot of s,
only if it is an interior point of the interval, and if s**" actually changes
sign at the point. It is convenient sometimes, for example in the statement
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of Theorem 23.4, to call an element of ?,.; a perfect spline of degree
(k+1).

Theorem 23.4

Let the function values {f(x;);i=1, 2,..., m} be given, where
the abscissae satisfy condition (23.1), and let k be an integerin[1, m —2].
Let of be the set of functions that have bounded (k + 1)th derivatives, and
that interpolate the data. The function s in & gives the least value of the
derivative norm {|ls**"||w; s € o}, if and only if there exist data points x,
and x,, such that r —q =k + 1, and such that, on the interval [x,, x,], s is a
perfect spline of degree (k + 1) that satisfies the following two conditions.
The equation

[s“ PO =11s% Y w,  Xg<x <X (23.44)

holds, except perhaps at the knots of s, where the norm on the right-hand
side refers to the whole interval [a, b], and s has at most (r—q—k —1)
knots in the range (x4, x,).

Proof. First we consider the case when s minimizes {|s**"|l; s € o£}.
The function z = s**" gives the least value of expression (23.37) subject
to the constraints (23.38), because otherwise, if Z is a solution to this
optimization problem, then, by integrating Z (k+1) times, as in the
solution to the variational problem of Section 23.1, we obtain an element
of &f whose (k + 1)th derivative is smaller than s**". It follows from the
discussion at the beginning of this section that there is a function n of the
form (23.41), that is not identically zero, svch that, if 8 is any point of
[a, b] at which (@) is non-zero, then z(8) has the value (23.42). We let x,
and x,,.1 be fixed points that are less than x; and greater than x,,
respectively, and, if necessary, we extend the definition (23.41) to the
range [xo, x+1]). Hence there exist integers g and 7 in the interval {1, m],
such that n has a finite number of zeros in the range (x,, x,), but 5 is
identically zero on [x,_1, x,] and [x,, x,.+1]. Because z = s%*D it follows
from equation (23.42) that s is a perfect spline of degree (k +1) on the
interval [x,, x,], and that condition (23.44) is satisfied, except perhaps at
the knots of s. Further, by applying Theorem 19.1 to 7, the condition
r=(q+k+1) holds, and the number of zeros of 7 in (x,, x,) is at most
(r—q — k —1). Equation (23.42) shows that these zeros are the only points
at which z =s**" can change sign. Hence s has at most (r—q —k —1)
knots in the range (x,, x,), which completes one of the two parts of the
proof.



Perfect splines 293

To prove the second part of the theorem, we let s be an element of &,
that is a perfect spline of degree (k +1) on the interval [x,, x,], where
r—q=k+1, where equation (23.44) holds, and where s has at most
(r—q—k—1)knots in (x,, x,). We have to show that||s“*"|| is as small as
possible. It follows from the remarks on duality, that are made before the
statement of the theorem, that it is sufficient to find a non-zero function of
the form (23.41), such that equation (23.42) is satisfied if n(8) is non-
zero, where z is still the derivative s“*. The relation |z(6)| = |lz|l that is
required by condition (23.42) is obtained from expression (23.44) by
choosing n so that n(8) is non-zero only if 8 is in the interval (x,, x,).
Therefore we have to show that the sign of n(#) can satisfy equation
(23.42).

There is no loss of generality in increasing the integer q and in
decreasing the integer 7, until the difference (r —q) is as small as possible,
subject to the condition r —q =k + 1, and subject to the number of knots
of s in (x4, x,) being not more than (r —q —k —1). We assume that this is
done. The number of knots is equal to (r —q — k — 1), because otherwise a
further reduction in (r —q) can be made. If the number of knots is zero,
then s“*" = z is constant on the interval (x4, x,). Therefore the required
sign of n can be obtained by letting  be a non-zero multiple of the
B-spline {B,(3); a = 6 < b}, which has the form (23.41). Because 7(8) is
zero when 6 is not in (x,, x,), the theorem is proved in the special case
whenr—qg=k+1.

When (r —q — k — 1) is positive, we let the knots of s in (x4, x,) have the
values {§;/=q,q+1,...,r—k—2}. Because the assumption that is
made in the previous paragraph prevents an increase in g to (j + 1), where
jisany one of the integers {q, g + 1, . . ., r — k — 2}, the spline s has at least
(r—j—k—1) knots in (x;,1, x,). Hence the inequality & > x;., is satisfied.
By giving similar consideration also to the possibility of decreasing r, it
follows that the bounds

Xj+1 < & < Xjrk+1 i=q,q+1,...,r—k—-2, (23.45)
are obtained. We require a function of the form
r—k—1
n6)= Y A,B,(8), as<@=<ys, (23.46)
p=q

that changes sign at the knots {¢;; j=q,q+1, ..., r—k —2}. Therefore it
must satisfy the conditions

n)=0, j=q,q9+1,...,r—k-2, (23.47)
where some or all of the parameters {A,;p=q,q+1,...,r—k—1} are
non-zero, which is possible because there are fewer conditions than
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parameters. Expression (23.45) is useful, for it implies that the knots
{¢;i=q,q r1,...,r—k—2} are the only zeros of the function (23.46)
in the interval (x,, x,).

In order to prove this statement, we suppose that £ is another zero, and
we let {{,; p=q,q+1,...,r—k—1} be the numbers ¢ and {£; j=gq,
qg+1,...,r—k—2}, arranged in ascending order. It follows from
expression (23.45) and from the form of B-splines that the numbers
{B,(&);p=q,9+1,...,r—k—1}are all non-zero. Therefore Theorem
19.4 states that there is exactly one set of parameters {u,; p=¢g, q+1,
..., r—k—1} that satisfies the equations

r—k—1

Y wpBy({)=0, i=g,q+1,...,r—k-1. (23.48)
p=a

This is a contradiction, because, in addition to the trivial solution {u, =
0;p=q,q+1,...,r—k—1}, the points {{;;j=qg,q+1,...,r—k—1}
are all zeros of the function (23.46). Hence the zeros of 5 in (x,, x,) are
just the points {§;/=q,q+1,...,r—k—-2}.
Finally, we have to show that i changes sign at the zeros {¢;;j =¢,q + 1,
..,r—k—2}. Because the work of the last paragraph rules out the
possibility that n is identically zero on a subinterval of (x,, x,), and because
7 has the form (23.46), the method of proof of Theorem 19.1 may be
applied to n on [x, x,]. Hence the total number of zeros inside the
interval does not exceed (r —q — k — 1), even if zeros at which » does not
change sign are counted twice. It follows that the points {£; j=gq,
q+1,...,r—k—2} are all simple zeros. Hence, in (x4 x,), the sign
changes of the function (23.46) occur at the same points as the sign
changes of s%**Y Therefore, because 7 is identically zero outside (x,, x,),
and because equation (23.44) is satisfied, it is possible to choose 7 so that
condition (23.42) is obtained for all values of 8 in [a, b] at which %(8) is
non-zero. The theorem is proved. [

Although the variational problem of Theorem 23.2 always has a
unique solution, there can be many functions s in the set & of Theorem
23.4 that minimize [ls**"|l. For example, if k =0, and if the data have
the values that are shown by the small circles in Figure 23.1, then both the
dashed and the solid lines of the figure minimize ||s'||c, where the two lines
coincide between the third and fourth data points. The solid line shows
the only perfect spline of degree one on the interval [x1, x,,.], that solves
the variational problem and that has not more than (m —2) krots.

More generally, if k =0, if m = k + 2, and if condition (23.1) is satisfied,
there is a perfect spline of degree (k +1) on the full range [a, b], that
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interpolates the data {f(x;); i =1, 2, ..., m}, and that has not more than
(m —k —2) knots. Theorem 23.4 states that this perfect spline minimizes
{Is“*Vllo; s € o). References to proofs of the existence of the perfect
spline are given in Appendix B. A condition for uniqueness is the subject
of Exercise 23.10.

A strong disadvantage of using a perfect spline of degree (kK +1) to
approximate a function f in €[a, b] is that, if it is necessary for the
(k+1)th derivative of the spline to be large on a part of [a, b], then, by the
definition of a perfect spline, the derivative is large throughout the range.
This disadvantage is shown in Figure 23.1. However, some of the
theoretical properties of perfect splines are useful. In particular they give
error bounds on the interpolation method that is considered in the next
chapter.

23 Exercises
23.1  Prove that, if f is a function in €‘”[0, 1] that has the values
f(0)=0, fG)=1 and f(1) = 1, then the inequality

L [F/(0)F dx =12

holds.

23.2  Letthepoints{&;i=0,1,..., n}satisfy condition (19.1), and let
f be afunction in €“*"[a, b]. Prove that there is a spline, s* say,
in the space ¥(2k +1, &, &1, . . ., &) that satisfies the equations
{s*(&)=f(&);i=0,1,...,n}{s*"(a)=f"(a);j=1,2,..., k},

Figure 23.1. Two solutions to a variational problem.
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and {s*(b)=f"(b);j=1,2,..., k}. Prove also that s* mini-
mizes the integral

b
j [ D(0)—sE V)P dx,  sePQk+1, o e, &)

Verify that the coefficients wo, w; and w; that solve Exercise 22.3
are such that [wof(0)+ w; f(1)+ w3 f(3)] is the value at x =2 of
the natural cubic spline that interpolates f(0), f(1) and f(3).
Let f be a function in €®[—2, 2] that has the values f(—2)=
f(1)=f(1)=f(2)=0 and f(0)=1. Show that the inequality
"]l = 4.5 is satisfied. If it is known also that f'(—2) = f'(2) =0,
show that the lower bound on ||f"||. may be increased to
6.425 ..., which is the number (231 +9+/33)/44.

Let m =4 and k = 1 in the statement of Theorem 23.4, and let s*
be the function in & that minimizes {|s"||«; § € #}. Prove that the
inequality

||S*””°°$4 max {lf[xl’ X2, X3:”, [f[x2’ X3, x4]|}

holds, and that, if f can be any function in €[a, b], then the
constant 4 on the right-hand side cannot be replaced by a smaller
number.

Calculate the function s in 4[0, 2] that minimizes the integral

[ wr/aexax

subject to the conditions s(0)=0, s(1)=0 and s(2)=16. You
should find the piecewise polynomial

-3x +2x°+x*, O0=sx=1
6-19x +12x>+2x>—x*, 1sxs<2.

Let o be the spline in SL(k, &, &1, ..., &) that minimizes the
integral

s(x)={

b
"g_S”%= !‘ [g(x)_s(x)]z dx, Sey(k, an £1, vy £n),

-

where inequality (19.1) holds, and where g is any fixed function
in €[a, b). If f is a (k + 1)-fold integral of g, and if s* is the spline
in 2k +1, &, &, ..., &) that is defined in Exercise 23.2, then
o is equal to s*** V. Prove that, if it is not possible to reduce the
error ||g—cl» by altering the positions of the interior knots
{&;i=1,2,...,n—1}, then, not only does s* satisfy the equa-
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tions of Exercise 23.2, but also the derivative conditions
{s¥&)=f'(&);i=1,2,...,n—1} are obtained.
Let the points {x;; i =0, 1, ..., n} of the quadrature formula

Ix"f(x)dxz S wif(x),  fe€®lxoxa)
X0 i=0

satisfy the conditions {x;=x¢+ih;i=1,2,...,n}, and let the
weights {w;;i=0,1,..., n} have the values that minimize the
multiple of ||f”||; that bounds the error of the quadrature formula.
Show that wy = w,, and that the equations

wi=h[1+B(3-2)+B(3-2)"", i=1,2,...,n—1,

are obtained, where 8 is a number that does not depend on 1.
Prove the necessary and sufficient conditions that are stated in
the sentence that follows inequality (23.40).

Let the conditions of Theorem 23.4 be satisfied, and let # be the
set of perfect splines of degree (k + 1) on the full range [a, b], that
interpolate the data {f(x;);i=1,2,..., m}, and that have not
more than (m —k —2) knots. Let § be an element of &, let z be
the derivative §**", and let the function (23.41) have the
property that equation (23.42) is satisfied for all points 6 in [a, b]
at which 7(6) is non-zero. Prove that, if n has only a finite
number of zeros in [a, b1, then § is the only element of . Express
this condition as a relation between the knots of § and the
positions of the data points {x;;i=1,2,...,m}. Investigate
relations between the knots of § and the data points that allow ¢
to contain more than one element.
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Optimal interpolation

24.1 The optimal interpolation problem

If one is given many values {f(x;); i =1, 2, ..., m} of afunction f
in €%*V[a, b}, if it is known that ||f**"|. is not very large, and if an
estimate of f(£) is required, where ¢ is any point of [a, ], then one may
make an approximation of the form

&)= ,i wif (xi), (24.1)

where the multipliers {w;; i =1, 2, ..., m} are such that the approxima-
tion is exact when f is in 2,. In this case the Peano kernel theorem shows
that there is a number c, that is independent of f, such that the bound

m

fO- Y wfa)|<clf* e,  fe€“ Vla,b], (4.2)
i=1

is satisfied. When m >k + 1, there is some freedom in the values of the
multipliers. If this freedom is used to minimize ¢, the approximation

(24.1) is said to be ‘optimal’. We reserve the notation {w;(£); i =1, 2,
.., m} for the optimal multipliers, we let s(£) be the optimal estimate

s@= % w(efx), as¢sb, (24.3)

of f(£), and we let c(£) be the least value of ¢. We find later that the
optimal multipliers are unique for each &

Because the optimal interpolation procedure can be applied for all
values of £ in [a, b], the function (24.3) can be regarded as an approxima-
tion to the function {f(x); a <x < b}. It is shown in Section 24.3 that this
approximation is a spline of degree k that has (m —k —1) knots whose
positions are independent of f. It is highly satisfactory that s is a spline of
the lowest degree that is allowed by an error bound of the form (24.2). We
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recall, however, that natural splines that are obtained by minimizing the
number c; in the bound

£©O- T wif)| <call Vs (24.4

are less convenient, because they are of degree (2k + 1), and because their
end conditions force errors to occur when f is in 5, but not in %y

Another remark that we recall from Section 23.2 is that the minimiza-
tion of ¢, gives the same estimate of f(£) as the solution to the variational
problem of Theorem 23.2. If an analogous result were true when [[f**"),
is replaced by || f** V||, then, by Theorem 23.4, the function (24.3) would
be a perfect spline of degree (k +1) on a subinterval of [a, b], but the
degree of s is only k. Nevertheless, the properties of perfect splines are
important to optimal interpolation. In particular, it will be shown that the
function {c(£); a <¢<b} is the modulus of a perfect spline of degree
(k+1).

When ¢ is a variable whose range is [a, b], then the functions {w;; i =1,
2, ..., m} in expression (24.3) are the cardinal functions of the optimal
interpolation procedure. We have called w;(£¢) a multiplier, however,
instead of a cardinal function, because, from now until the beginning of
Section 24.3, £ is treated as a fixed point of [a, b]. The main properties of
optimal interpolation are derived from the following theorem.

Theorem 24.1

Let the points {x;; i =1, 2, ..., m} satisfy the conditions
Aasx1<x2<...<xXn<b, (24.5)
let ¢ be any point of [a, b], and let {w;;i=1,2,..., m} be multipliers,

such that the estimate (24.1) is exact when f is in ?,. Let K be the kernel
function

K(0)=%[(§—6)'i—§1 w,-(x,-—a)i], a<@<b. (24.6)

Then the multipliers have the values that minimize the constant ¢ in
inequality (24.2), if and only if they minimize the norm

b
1K = j 1K (6)] 6. (24.7)

Proof. Theorem 22.1 implies the equation

m b
fe-x wif(xi)=J K(©)f“(6)ds,  fe€“"[a,b].
i=1 a
(24.8)
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Hence, for any particular choice of the multipliers, the least constant ¢ in
inequality (24.2) has the value (24.7). It follows that the problems of
choosing the multipliers to minimize ¢ and to minimize ||K|; are
equivalent. [

In order to minimize |K|;, we make use of an idea that is given in

Chapter 22. It is to express the approximation (24.1) in the form
k+1 m—k—1

flé)= '§1 uif(x;)+ z=:1 Vpf [Xps Xps1s - - - s Xprk+1ls (24.9)

where f[x,, Xp+1, - - - » Xp+k+1] is @ divided difference. This approximation
is exact when f is in @y, if and only if the coefficients {u;; i=1,2,...,
k + 1} satisfy the condition

k+1

o= -‘:"1 uif(x:),  feP (24.10)

Because the right-hand side of this condition can only be the value at ¢ of
the polynomial in @, that interpolates the data {f(x;);i=1,2,...,k+1},
it follows that, as in equation (22.43), the identity

k+1 { k+1

£O- % wfw)={ T €= }flvs xa . ooxeer €] @411

holds for all functions f in €[a, b]. Therefore the error of the estimate
(24.9) is the expression

k+1
[ H (f_xi)}f[xl, X2y 0o 5 Xk+1, f]

i=

m—k—1

- Z Upf[xp, Xp+1s e+ o xp+k+1]- (2412)

p=1
Theorem 22.3 shows that, when fis in €"** V[ a, b], this expression may be
written in the form

1 Jb Hkﬁl (‘f""f)}B(@)—m_Zk_1 Up Bp(e)]f“‘*”(e) do, (24.13)

E a i=1 p=1
where the knots of the B-splines are the arguments of the corresponding
divided differences. It follows from Theorem 24.1 that the approximation
(24.9) is the optimal interpolation formula, if and only if the coefficients

{vtp;;p=1,2,..., m—k —1} minimize the norm
b

|

Thus the optimal interpolation problem is equivalent to calculating the
best L; approximation to the function {B(6); a<#<b} by a linear
combination of the B-splines {B,; p=1,2,...,m—k—1}.

k+1 m—k—1
{H (.f—x,-)}B(O)— Y v, B,(8)|dé. (24.14)

; p=1

i=1
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24.2 L, approximation by B-splines

The main result of this section is that the required parameters
{vp;p=1,2,...,m—k—1} in expression (24.14) are defined by the
linear equations

m—k—1 k+1

L uB@={1 €-x)|BE. j=1.2....m-k-1,

P

(24.15)
where the points {¢; j=1,2,...,m—k —1} are independent of £ The
result is a corollary of Theorem 14.4, but this theorem requires the set of
approximating functions to be a Chebyshev set. Therefore it is necessary
to show that the B-splines {B,; p=1,2,..., m —k — 1} are sufficiently
close to a Chebyshev set for Theorem 14.4 to be useful.

Theorem 24.2
Let k and m be positive integers such that m >k +1, let the
points {x;; i=1,2,...,m} satisfy condition (24.5), and for 1<sp=<
m —k —1 let B, be the B-spline
p+k+1 p+k+1
B,(6)= ¥ {(G—xi)'i 1 (x,-—xi)], a<@<b.
i=p 1=p

ji
(24.16)

For any e >0, there exists a Chebyshev set of functions {¢,; p=1, 2,
.., m—k — 1} such that the inequalities

IB, —dplo<e, p=1,2,...,m—k-1, (24.17)
hold.

Proof. Letq=m—k—1, and let ¢ be the function

v(a)=M e ™ —o<a <00, (24.18)
where M is a parameter. Forp=1,2,...,q, we let ¢, have the form
¢,,(0)=I ¢(a —0) B,(a) da, a<s@s<b, (24.19)

where B,(a) is zero if « is outside [a, b]. Because the area under the curve
{¢(a); —00 < a < 0} is one, because ¢ tends to a delta function as M tends
to infinity, and because the functions {B,;p=1, 2, ..., q} are continuous
and bounded, we can choose M to be so large that the conditions (24.17)
are satisfied for any fixed positive value of e. Therefore it is sufficient to
prove that the set {¢,; p=1,2, ..., q}is a Chebyshev set. We show that
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property (4) of Section 7.3 is obtained, which is that, if the numbers
{6;;7=1,2,..., q} satisfy the inequalities

a<6,<6,<...<6,<b, (24.20)
then the g X g matrix A, whose elements have the values A,; = ¢,(6;), is
non-singular.

Because B, () is zero unless « is in the interval (a, ), the matrix A has
the form

b b
J Ylay—6y) Bi(a,y) da; J- Y(ar—62) Bilaz)das . ..

b b
J' Y(a1—61) By(ay) da, I Y(ar—6) Ba(az)da, . ..
: (24.21)

We consider the value of its determinant. If all of the columns of A are
fixed except for the jth column, then the determinant is a linear functional
of the jth column. It follows that the integral over «; can be taken outside
the determinant, and this can be done for each j. Hence we obtain the

identity
b

b
det A =I . J [ 1 (/,(a,—oi)} det Hdai...day  (24.22)
a a ‘j=1

where H is the g X q matrix whose elements are H,,; = B,(«;). Because the
numbers {¢/(a; — 8,);j =1, 2, ..., q} are all positive, and because det H is
a continuous function of the variables {a;; j =1, 2,..., g}, it is sufficient
to prove that det H is not identically zero and does not change sign in the
range of integration of expression (24.22).

The matrix H is similar to the one that occurs in the linear system of
equations (19.37) of the Schoenberg—Whitney theorem. It follows from
the proof of Theorem 19.4 that det H(a, s, . .., a,) is non-zero if and
only if the numbers {B,(a,); p=1,2,...,q} are all positive. If
det H(ay, as, . . ., a,) is positive, but det H(B1, B2, - - . , Bq) is negative,
then, by continuity, there exists a number r in [0, 1] such that
det H(y1, v2,..,7v4) is zero, where {y,=ra,+(1-r)B,; p=1,2,

.., q}. However, because B,(«,) and B,(B,) are both positive, and
because B, is a B-spline, the number B,(y,) must also be positive for
p=1,2,...,q, which gives a contradiction. Hence det H does not
change sign in the range of the integral (24.22). The theorem is
proved. 0O

In order to apply Theorem 14.4 to the minimization of expression
(24.14), we let ¢ be a point of [a, b] that is not in the set {x;; i =
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1,2,...,m}, we let M be a large number, we define the functions
{¢p;p=1,2,...,m—k—1} by equation (24.19), and we let ¢ be the
function

b
¢(0)=I Y{a—0) B(a)da, as@=<bh. 24.23)

By inserting £ into the sequence {x;; i=1,2,...,m}, it follows from
Theorem 24.2 that the linear space that is spanned by the functions ¢
and {¢,; p=1,2,...,m—k—1} satisfies the Haar condition. We
deduce from Theorem 14.4 that there exist points {£&(M); j=1,2,...,
m —k — 1}, that are independent of &, such that a necessary and sufficient
condition for the coefficients {v,; p =1, 2, ..., m —k — 1} to minimize the

norm
b

I

is that the interpolation conditions
m—k—1 k+1

L o @M)={ 1T €-x)sem,

p=1

k+1 m—t—1
{-EI, (5‘)"')}4’(")‘ LY ¢p(0)|d0 (24.24)

p=

i=1,2,....,m—k—-1, (24.25)
are satisfied. Because {¢,; p=1,2,...,m—k—1}and ¢ tendto{B,; p =
1,2,..., m—k—1} and B respectively as M tends to infinity, it seems to
be appropriate to let the interpolation points {¢;;7=1,2,...,m—k—1}
of equation (24.15) be a limit of the set {¢&;(M);j=1,2,...,m—k —1}as
M becomes large, where the inequalities

as&HM)<E M. <Epowa(M)<b (24.26)

hold. The remainder of this section shows that it is suitable to define the
points {£&;j=1,2,..., m—k—1} in this way. First it is proved that the
matrix of the system of equations (24.15) is non-singular.

Theorem 24.3

Let the conditions of Theorem 24.2 hold, let {M,; t=1,2,3,...}
be a monotonically increasing divergent sequence of positive real
numbers, and let {£;j=1, 2, ..., m —k —1} be a limit of the sequence of
sets[{¢&(M,);j=1,2,...,m—k—1};¢t=1,2,3,...], where the numbers
{&M);j=1,2,..., m—k—1}have just been defined. Then the numbers
{¢;7=1,2,...,m—k—1} are all different, and they satisfy the condi-
tions

X <& <Xjrr+, i=1,2,...,.m—k-1. (24.27)
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Proof. Let M be any positive number, for 1 <p<sm —k —1let ¢, be the
function (24.19), and let z), be the sign function

1, as0<¢&(M)

(-1, &M)<b<&EaM),  I<sjsm—k-2
(=D GeaM)<6<b

0, otherwise. (24.28)
Theorems 14.1, 14.4 and 24.2 imply that the equations

zrm(0) =

b
J zr(0)d,(6) d6 =0, p=12,.... m—k—-1, (24.29)

hold. By taking the limit as M tends to infinity, it follows that the
conditions
b

I z(0)B,(6)de =0, r=12,....m—k-1, (24.30)

are obtained, where z is the function

1, as6<§&

(-1, &<0<&i, I1sjsm—-k-2
(" Enk1<0<b

0, otherwise.

z(0)= (24.31)

We let o be a perfect spline of degree (k + 1) that satisfies the equation
oc“(0)=2(6), a=<6o<b, (24.32)
except perhaps when @ is in the set {¢;;/=1,2,...,m—k—1}.

The notation z is chosen for the (k +1)th derivative of the perfect
spline, in order to make use of the second half of the proof of Theorem
23.4. This proof shows that, if there are data points x, and x, such that
r—q =k +1, and such that o has at most (r —q — k — 1) knots in the range
(x4 x), then there is a function of the form

r—k~—1

n@)= Y A,B,(6), a<é@<b, (24.33)
p=q

that is not identically zero, and that has the property that equation (23.42)
holds when 7 () is non-zero. Hence the inequality

b b
j z(e)n(o)d0=J In(6) d6

>0 (24.34)
is obtained. This inequality, however, contradicts equations (24.30) and
(24.33). Hence there is a relation between the knots of o and the



L, approximation by B-splines 305

positions of the data points {x;; i =1, 2, ..., m}, which we find is sufficient
to complete the proof.

Specifically, because of the possibility that g = 1 and r = m, the spline o
must have more than (m —k —2) knots, which proves that the points
{¢;7=1,2,...,m—k—1} are all different. Moreover, if there is an
integer j in the range [1, m — k — 1] such that & < x;, then letting g = j and
r=m also gives a contradiction. Similarly, by letting g=1 and r=
j+k +1, there is a contradiction if ¢ = x;...1. Hence inequality (24.27) is
satisfied. The proof is complete. 0O

We let the points {¢;;j =1, 2,..., m —k —1} satisfy the conditions of
Theorem 24.3. It follows from Theorem 19.4 that the system of equations
(24.15) defines the parameters{v,; p =1, 2, ..., m —k — 1} uniquely. We
have to show that these parameters are the ones that minimize ||K||;,
where K is the kernel function

1 k+1 m—k—1
K@O={ 11 ¢-w}BO-"2 v B,®)] a<o=s
i B g o=
(24.35)
Theorem 14.1 states that it is sufficient to prove that, for any values of the
parameters {A,; p=1,2,..., m—k —1}, the function
m—k—1
n(0) = Zl Ap B,(9), a<=0<b, (24.36)
pm
satisfies the inequality
b
[ @6 6| nio)ls, (24.37)
a %
where ¢ is the sign function
1, K(6)>0
H)=< O, K(6)=0 as<@<b, (24.38)
-1, K(6)<0,
and where Z is the set
Z={0:K(0)=0,a<6=<b}. (24.39)

Inequality (24.37) is not a direct consequence of equation (24.30),
because of the possibility that K is identically zero on some subintervals
of [a, b]. We have to apply Theorem 19.1 again. Therefore we let xo, and
Xx.+1 be fixed points such that the conditions

xo<min x4, £] }

(24.40)
Xm+1 > max [xm, f]
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hold, and if necessary we extend the range of 6 in the definition (24.35) so
that it includes the points x¢ and x,,,+1-

The kernel function (24.35) is a spline of degree k whose knots are
{xi;i=1,2,...,m}and £ and, due to equation (24.15), it has zeros at {¢;;
j=1,2,...,m—k—1}.If p and q are integers such that K is identically
Zero on [x,-1, x,] and [x,, x4+1], but if K has a finite number of zeros in
(x5, x4), then condition (24.27) implies that the number of zeros in (x,, x,)
is not less than (q —p — k). It follows from Theorem 19.1 that K has at
least (¢ —p) knots in (x,, x,;). Because only (¢ —p —1) of the points

{x;;i=1,2,...,m} are in this interval, £ is also in (x,, x;). Therefore,
either K is identically zero, which happens when ¢ is in the point set
{x;;i=1,2,..., m}, or there exist numbers « and 8 in [a, b] such that K

is non-zero only in (e, 8), and in this interval the number of zeros of K is
finite. In the first case inequality (24.37) is satisfied because {¢(8) =0;
a < 6 < b}, but the second case requires further consideration.

The only zeros of K in the interval (@, 8) are in the set {§; j=1,
2,...,m—k—1}, and all these zeros are simple, because otherwise, by
extending the argument of the previous paragraph that depends on
Theorem 19.1, we find that K has insufficient knots. It follows from the
definitions (24.31) and (24.38) that either {¢(8)=2z(0); a <8 <B} or
{t(0) =—2(0); a <60 <B}. Therefore, because ¢ is zero on (a, ) and
(B, b), and because equations (24.30) and (24.36) imply the value

b
j 2(8)n(8)d6 =0, (24.41)

the identity
b

|

t(0)n(0) d0| = ”;B z(0)n(0) de’

[+ 3 b
j z(O)n(O)d0+L z(e)n(())del (24.42)

is satisfied. We note that the set (24.39) contains the intervals (a, «) and
(B, b), and that ||z||- is one. Hence inequality (24.37) is a consequence of
equation (24.42). Therefore equation (24.15) does define the parameters
of the optimal interpolation formula.

We require later that the definition (24.38), and the properties of K, ¢

and z that are given in the previous two paragraphs, imply the equation
b
Kl = [ K©)(6)do

b
J. K (8)z(6)dg|. (24.43)
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24.3 Properties of optimal interpolation

Instead of calculating the parameters {v,;p=1,2,...,m —k —1}
of the optimal interpolation formula from equation (24.15), and then
obtaining the coefficients {w;(£); i =1, 2, ..., m}from the equivalence of
the approximations (24.1) and (24.9), it is better to determine {w;(£);
i=1,2,...,m} directly from the properties that define the optimal
valuesof {u;; i=1,2,...,k+1}and{v,;p=1,2,...,m —k —1}. These
properties are that equation (24.10) must hold, and that the kernel
function (24.35) is zero when {6 = ¢;; j =1, 2, ..., m —k — 1}, where the
points {¢;j=1,2,...,m—k-1} are independent of £ Because equa-
tion (24.10) states that the approximation (24.1) is exact when f is in 2, it
is equivalent to the conditions

S owxi=¢,  r=01,....k (24.44)
i=1

and, because expressions (24.6) and (24.35) must be the same, the
relations that determine {v,; p=1,2,..., m —k —1} are the equations

'Zl wi(f)(xi_fj)i=(§_§i)§—y j=1’2""’m_k_l-
‘ (24.45)
The formulae (24.44) and (24.45) give a square system of linear
equations in the unknowns {w;(£); i=1,2,...,m}, which is non-
singular, because equivalent equations define {u;;i=1,2,..., k+1}and
{vp;p=1,2,..., m—k—1}uniquely. The matrix elements of the system
are the numbers {xi; r=0,1,...,k} and {(x,-—gj)'f,; i=1,2,...,
m —k —1}, where 1<i<m. They are mentioned explicitly, because it is
important to notice that they are independent of £ Therefore, if the
system is multiplied by the inverse matrix, which is also independent of £,
it follows that each of the coefficient functions {w;(§¢); a<§¢<b;
i=1,2,...,m}is in the linear space that is spanned by {¢";a<¢<b;
r=0,1,...,k} and {(£—¢)%; a<é&<b;j=1,2,..., m—k—1}. Thus,
letting £, =a and &, = b, the functions {w;; i=1,2,..., m} are all in
the space that we call #(k, &, &1, . .., &n—k). It follows that the optimal
interpolating function (24.3) is also a spline of degree k. Because there is
no error in the optimal interpolation formula when ¢ is one of the data
points {x;;i=1,2,..., m}, the optimal interpolating function satisfies
the conditions
s(x;)=f(x), i=1,2,..., m. (24.46)

The number of equations is equal to the dimension of
F(k, o, €15 - - . » Em—r}. Therefore, instead of calculating {w;(¢£); i=1,
2,..., m} in order to determine s, one can calculate s directly from the
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system (24.46), provided that the knots {¢;; j=1,2,...,m—k —1} are
known. Because the indirect procedure defines s uniquely, the equations
(24.46) are non-singular. Alternatively, one can turn to Theorem 19.4 to
check whether the equations have a solution. We find that the conditions
on{§; j=1,2,...,m—k—1}, that are required by Theorem 19.4, are
equivalent to the ones that occur in Theorem 24.3.

In order to determine the knots of s, we consider the conditions that
they have to satisfy. Theorem 24.1 states that it is necessary and sufficient
for the points {¢;;j =1, 2, ..., m — k — 1} to have the property that, if the
parameters {v,; p=1, 2, ..., m —k —1} are defined by equation (24.15),
then the norm (24.14) is minimized. It follows from the discussion that
follows the proof of Theorem 24.3 that it is sufficient if the points
{¢&:7=1,2,..., m—k—1} satisfy the bounds (24.27), and if equation
(24.30) holds, where z is the sign function (24.31). Moreover, Theorem
24.3 shows that such points exist. However, instead of calculating
{¢;7=1,2,...,m—k—1} directly from the non-linear equations that
are implied by expressions (24.30) and (24.31), it is usually easier to seek
a perfect spline o of degree (k +1) whose knots are {£;j=1,2,...,
m —k —1}. The relation (24.32) between o and z has to be satisfied,
but this relation allows any polynomial from %, to be added to o.
Therefore we impose the conditions {o(x;)=0; i=1,2,...,k+1}.
Hence, because equation (24.30) implies that the divided differences
{o[xps Xp+1s- - - s Xp+r+1); P=1,2, ..., m—k —1} are all zero, it follows
that all the data points {x;;i=1,2,..., m} are zeros of o. Thus the
required knots {¢;; j=1,2,..., m—k—1} of the optimal interpolating
function (24.3) are the knots of a perfect spline o of degree (k + 1) that
satisfies the equations

o(x;)=0, i=1,2,...,m}
”o_(k+1)H°o=1 ’

It'is particularly useful that the converse of the last remark is true. In
other words, if o is a perfect spline of degree (k + 1) that has (m —k —1)
knots, and that satisfies condition (24.47), then its knots {&; j=1,
2,...,m—k—1} are suitable knots for the spline s of the optimal
interpolation procedure. In order to prove this statement it is sufficient to
show that expressions (24.27) and (24.30) are valid, where z and B, are
the functions (24.31) and (24.16). The first line of equation (24.47) and
Theorem 22.3 imply the identities

(24.47)

b
ja<k+‘>(o)3p(0)de=o, p=1,2,...,m—k—1. (24.48)

a
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Therefore, because the function (24.31) is a multiple of ok, equation
(24.30) is satisfied. It follows from the last two paragraphs of the proof of
Theorem 24.3 that inequality (24.27) is also valid.

The next theorem summarises these properties of optimal inter-
polation, and it gives one new result.

Theorem 24.4

Let k and m be positive integers such that m =k +1, let the
points {x;; i =1, 2, ..., m} satisfy condition (24.5), and let o be a perfect
spline of degree (k+1) on [a, b] that has (m —k —1) knots {¢; j=1,
2,...,m—k—1}, and that satisfies equation (24.47). If f is any
function in €*“* [, b], then the interpolation conditions (24.46) define a

unique approximation s in $(k, &, &1, €2, - o v s Em—t—1, Em—k), Whose
error is bounded by the inequality
1f©)~s@|=lo@Ilf* Vo, a=¢=<b, (24.49)

where & =a and &,._x =b. Further, if the parameters {w;; i=1,2,
.., m} and ¢ have any values such that condition (24.2) is valid for
all f in €“*"[a, b], then c is not less than | (¢)|.

Proof. The only result that has not been proved already is that, if £ is any
fixed point of [a, b], then |K |, is equal to |o(£)|, where the kernel function
K is defined by the equation

m b
f@- £ w@ s =[ KO @) d6,  fe 6 la,b)

(24.50)
and where the notation (24.3) is used for the optimal interpolating
function in order to show its dependence on f. We express |K ||; in terms of
o. The sign function z, defined by equation (24.31), changes sign at the
knots of ¢, and the absolute values of z and o **" are equal to one almost
everywhere. Therefore equation (24.43) gives the value

b
1Kl =|[ K@) o™ (6) o] (24.51)

The proof is completed by obtaining an identity from equation (24.50) in
the particular case when f = ¢. The equation is valid in this case, even
though o™ is not continuous, because otherwise one can deduce a
contradiction by letting f be a function that satisfies the conditions

{fx)=0ox);i=1,2,...,m}, f(£)=c(£) and the inequality

J' K@% 0)— 0% (9)] db| <e, (24.52)
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where ¢ is a sufficiently small positive constant. Because the terms {o (x;);
i=1,2,...,m}areall zero, substituting f = o in expression (24.50) gives
the value

b
a’(§)=J K () o“*P(0) de. (24.53)

It follows from equation (24.51) that the numbers ||K||; and |o(&)] are
equal. The theorem is proved. 0

Some examples on the use of the optimal interpolation procedure are
given in the exercises. They show that the error bounds of optimal
interpolation are not much smaller than those that are obtained by
simpler algorithms. Therefore the value of the optimal interpolation
method may be questioned. One good reason for studying optimal
procedures is that they can indicate directly whether it is possible to make
substantial improvements to more convenient algorithms. Moreover, the
work of this chapter gives excellent theoretical support to the strong
practical reasons for employing spline approximations in computer
calculations.

24 Exercises
24.1  Let{B(8); 0= 6 <3} be the linear B-spline of the form (24.16)
that has knots at the points {x; =0, x, =1, x3 = 3}. Calculate the
value of ¢; that satisfies the equation
3

&
I B.(6) d0=j B(0) de.
0 &1
Let {o(¢); 0= ¢ =<3} be a perfect spline of degree two that has
only one knot, and that has zeros at the points {x;; i =1,2, 3}.
Verify that the knot of ¢ is at &;.
24.2  Calculate from Theorem 24.4 and from Exercise 24.1 the
numbers w,, w,, wi and ¢, such that the value of ¢ is as small as
possible in the inequality

|f(2) = w1 fO)—wa f(1)— w3 FB) < c|lf'l»  fe€?[0,3]

Compare the term on the right-hand side with the error expres-
sion of Theorem 4.2 for the approximation f(2) =3[ f(1)+f(3)].

24.3  Find the form of the optimal linear spline approximation to the
function values {f(—1), f(—=1+¢), f(1—¢), f(1)}, where ¢ is a
constant from the open interval (0, %). Show that the co-norm of
the optimal interpolation operator has the value [~3+¢ " '].
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Extend Theorem 24.4 to the case when the data points satisfy the
condition

A<SX1Sx<...<Xx,<bh

instead of inequality (24.5), assuming that no number is repeated
more than (k+1) times in the set {x;;i=1,2,...,m}. If
repeats occur, then the conditions (24.46) on s are replaced
by the equations {s”(x)=f"(x); j=0,1,...,r()—~1;
i=1,2,..., m}, where r(i) is the number of occurrences of the
number x; in the set of data points.

The values £(0), f'(0), f"(0) and f(1) of a function f in €*[0, 1]
are given. For any £ in [0, 1], let s(£) be the estimate of f(£) that
minimizes the value of ¢(¢) in the error bound

|£(&)=s(OI<c(O "o

Calculate the functions {s(¢); 0s¢=<1}and {c(¢); 0sé<1}.
Let f be a function that is defined on the range (— 0, o) and that
has a bounded and continuous fourth derivative, and let the
function values {f(x;) =f(ih);i =0, £1, £2,.. .} be given, where
h is a positive constant. Let {s(£¢); —o0< ¢ <0} be the best
estimate of {f(£¢); —oo < ¢ < oo} that can be obtained from the
data, in the sense that the multiple of | /)l that bounds the error
|f(€) — s(&)| is minimized. Prove that s is the cubic spline that has
knots at the points {x; =ih; i=0, £1, £2,...} and that inter-
polates f at its knots. Obtain the analogous property of the
quadratic spline interpolation procedure whose cardinal
functions have the form that is shown in Figure 18.4.

Let the conditions of Exercise 24.6 be satisfied except that only
the function values {f(x;)=f(ih); i=1,2,...,m} are given,
where m =4. Hence the optimal interpolating function {s(¢£);
x1<£<x,}is a cubic spline that has (m —4) knots. Let § be the
cubic spline in the space ¥(3, x1, x2, . .., x,,) that interpolates
the data, and whose third derivative is continuous at x, and at
xm—1. Let %, be the two-dimensional subspace of & that contains
splines that are zero at the knots {x;; i =1, 2, ..., m}. Lets, and
sg be the elements of ¥, whose third derivative discontinuities at
x> and x,,-1 are one and zero and zero and one respectively. By
comparing s and § with the cubic spline that is considered in
Exercise 24.6, prove that there exists a number w, independent
of f, h and m, such that the bound

(&)= 5&)| <{o O+ uhllsa )] +|ss @I s X1 < E<Xms

is satisfied, where o is defined in Theorem 24.4.
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The argument that follows Theorem 24.3 proves that the equa-
tions (24.15) define the parameters {v,; p=1,2,..., m—k—1}
that minimize the norm (24.14). Another way of obtaining this
result depends on the fact that the system (24.15) is the limit as M
tends to infinity of the system (24.25). Make this alternative
argument rigorous.

Show that, except for an overall change of sign, there is only one
perfect spline o that satisfies the conditions of Theorem 24.4. It
is suitable to combine the method of proof of Theorem 14.4 with
the orthogonality conditions (24.48).

Let f be a function in €*“*"[a, 4], let the function values {f(x);
i=1,2,...,m}be given, where m =k +1, and let L be a linear
functional. The approximation to Lf by a linear combination of
the function values is required, such that the error of the approx-
imation is bounded by the smallest possible multiple of ||f**")|co.
Investigate conditions on L that imply that Ls is the required
approximation to Lf, where s is the spline function that is defined
in Theorem 24.4.
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The Haar condition

Let o be an (n+1)-dimensional linear space in 4[a, b]. In Section 7.3 & is
defined to satisfy the Haar condition if the following property is obtained.

Condition (1). If ¢ is any element of & that is not identically zero, then the
number of roots of the equation {¢(x)=0; a <x <b}is less than (n +1).

The purpose of this appendix is to prove that the following three conditions are
implied by Condition (1), and also that Condition (3) and Condition (4) are each
equivalent to Condition (1).

Condition (2). If k isanyintegerin[1,n],andif{{;; /=1, 2,..., k}isanysetof
distinct points from the open interval (a, b), then there exists an element of & that
changes sign at these points, and that has no other zeros. Moreover, there is a
function in & that has no zeros in [a, b].

Condition (3). If ¢ is any element of &/ that is not identically zero, if the number
of roots of the equation {¢(x) =0; a <x < b} is equal to j, and if k of these roots
are interior points of [a, b] at which ¢ does not change sign, then (j+k) is less
than (n +1).

Condition (4). 1f{¢;;i=0,1,...,n}isanybasisof &, andif {£;j=0,1,..., n}
is any set of (n + 1) distinct points in [a, ], then the (n + 1) X (n + 1) matrix whose
elements have the values {¢;(£);i=0,1,...,n;j=0,1,..., n}is non-singular.

It is clear that Condition (3) implies Condition (1). First it is proved that
Conditions (1) and (4) are equivalent. Secondly it is shown that Conditions (1) and
(4) together imply Condition (3). Finally we deduce Condition (2) from Condition
(3). The final stage depends on limits of sequences of functions.

The equivalence of Conditions (1) and (4). Suppose that Condition (1) holds but
Condition (4) fails. Then there exist (n + 1) distinct points {£&;7=0,1,...,a}in
[a, b], such that the matrix {¢:(£);i=0,1,...,n;j=0,1,...,n} is singular.
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where {¢:;i=0,1,...,n} is a basis of &. Therefore there exist multipliers
{A;;i=0,1,..., n}, that are not all zero, and that satisfy the equations

_;0)\.-:15,-(5,-)=0, j=0,1,...,n (A.1)
It follows that the function
d(x)= % Aii(x), asx<bp, (A.2)
i=0

has zeros at the points {¢;; j =0, 1, . .., n}, but this conclusion contradicts Condi-
tion (1).

Conversely, if Condition (1) fails, then there is a function of the form (A.2) that
is not identically zero, and that has zeros at the points {¢&;j=0, 1, ..., n}, say.
Hence equation (A.1) is satisfied, which implies that the matrix {¢:(£); i =0,
1,...,n;j=0,1,...,n} is singular. Therefore there is also a contradiction if
Condition (1) fails but Condition (4) holds, which completes the proof that
Conditions (1) and (4) are equivalent.

Conditions (1) and (4) imply Condition (3). It is sufficient to show a contradic-
tion if Conditions (1) and (4) hold, but Condition (3) is not satisfied. When
Condition (3) is not obtained, there is a function ¢ in & that is not identically zero,
that has double zeros at the points{n;; i =1, 2, ..., k} and that has simple zeros at
the points {n;; i=k+1,k+2,...,/}, where (j +k)=(n+1), and where a zero is
said to be simple if it is a point at which ¢ changes sign, or if it is one of the ends of
the range [a, #]. Because Condition (1) is contradicted if j=(n +1), we only
consider the case when j < n. Therefore there is at least one double zero. We let ¢
be a positive number such that, for each integer i in the range 1<i<k, the
function ¢ is zero at only one point of the interval [n; — €, n; + £ ], namely the point
7, and we let ¢; be any non-zero number whose sign is the same as the sign of the
function ¢ on the interval [n; — ¢, n; + €]. Further, we let {£,;¢=0,1,...,n} be
any set of distinct points of [a, b] that includes the points {& =n.; =0,
1,...,j—-1}%

Condition (4) implies that there is a unique element of &, ¢ say, that is defined
by the equations

1, t=0,1,..., k-1
2 0, t=kk+1,...,n (A.3)

We consider the function {¢*(x) = ¢ (x)— 8¢/(x); a < x < b}, where 6 is a small
positive number that satisfies the inequalities

0|t//(17.»—e)|<|¢(n.~—£)|}
0|d/(n.~+6)|<|¢(m+e)l ’

By construction ¢* changes sign in each of the intervals {(n;—¢, n)); i=1,
2,...,k}and {(n;, mi +€); i=1,2,...,k}, and also it has zeros at the points
{ni;i=k+1,k+2,...,/}. Hence it has at least (j + k) zeros, which contradicts
Condition (1). The proof that Condition (3) is a consequence of Conditions (1)
and (4) is complete.

i=1,2,...,k (A.4)
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Proof that Condition (2) is satisfied. Let{{;;j=1,2,..., n}be any set of distinct
points in [a, b]. Because the dimension of & is (n + 1), there exists a function ¢ in
A that is not identically zero and that satisfies the equations

¥()=0, i=12,...,n (A.5)

It follows from Condition (3) that ¢ has no other zeros in [a, ], and that it changes
sign at those zeros that are interior points of [a, b]. Therefore Condition (2) holds
when k = n.

When k=n—-1,welet{{;;j=1,2,..., k} be interior points of [a, b], and we
let ¢, and ¢, be non-zero functions in & that have zeros at the points {{;; j =
1,2,..., k} and at one other point, namely a and b respectively. Condition (3)
implies that the overall sign of ¢, may be chosen to satisfy the inequality
{.(x)¥p(x) =0; a < x < b}. Hence the function ¢ = 3(¢,, + ¢,) shows that Condi-
tion (2) is valid when k =n —1.

The method of proof for smaller values of k depends on the following
statement. If k and ¢ are non-negative integers such that k+2¢=n, and if
{¢&;7=1,2,...,k}and {n;;j=1,2,...,t} are distinct points of [a, b], where all
the points {n,; j=1,2, ..., t} are in the open interval (q, b), then there exists a
function ¢ in & that has simple zeros at {{;; /=1, 2, ..., k} and that has double
zeros at {n;; j=1,2,...,t}. In order to prove it we let £ be a positive constant
such that, for each integer i in [1, t], n; is the only one of the points {£;; j=1,
2,.... kL {n;; j=1,2,...,t}, a and b that are in the interval [n; - &, 7, +£].
Further, for any ¢ in (0, £), we let ¢, be a function in & that has zeros at the points
{&i=1,2,. .,k {n;j=1,2,...,t}and{n;+¢;j=1,2,..., t}). This function
is scaled so that the coefficients of the expression

W)= I M),  a=x<b (A.6)

satisfy the condition

n

Y [A(e)P =1, (A.7)

i=0

where {¢;;i=0,1, ..., n}is a basis of &/. Because Condition (3) implies that all
the zeros of ¢, are simple, the products {¢.(n;, —8)¢.(m; +8);j=1,2,...,t} are
all positive, where & is any number in (e, £).

We let {e,;9=1,2,3,...} be a sequence of numbers from the interval (0, &)
that tends to zero. Condition (A.7) implies that the sequence of parameters
[{Ailey);i=0,1,...,n};9=1,2,3,...]has alimit point {A};i=0,1,...,n}. It
will be shown that it is suitable to let ¢ be the function

d/(x)=i Afei(x), a<x<b (A.8)

Equation (A.7) implies that ¢ is not the zero function. Moreover, the definition
of each ¢, implies that ¢ has zeros at the points {¢;;7=1,2,...,k} and {n;;j =
1,2,...,t}. It remains, therefore, to rule out the possibility that one or more of
the points {n;; f=1,2,..., }aresimple zeros. If n; is a simple zero, there exists §
in (0, €) such that the product [(n; — §)¥(n; + 8)] is negative. However, we have
noted already that the product [y, (n; — 8)i.(n, + )] is positive if ¢ is less than &,
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so it is non-negative in the limit as ¢ tends to zero. This contradiction completes
the proof that the function (A.8) has the required zeros.

In order to show that Condition (2) holds when n —k = 2¢ is a positive even
integer, we choose interior points {n;; j =1, 2, ..., t} of [a, b] that are different
from the points {f;; j=1,2,..., k} and we let ¢ be a function in & that has the
zeros that have just been considered. It is important to notice that, because of
Condition (3), ¢ has no other zeros. Furtherwe let (n; ;j=1,2,..., t}be asetof
points in (a, b) that has no points in common with the sets {¢;;j =1, 2, ..., k}and
{nj;i=1,2,...,t}and we let " be a function in & that has simple zeros at {(;;
i=1,2,..., k}and double zeros at {n; ;j =1, 2, ..., t}. This function also has no
other zeros: Because both ¢ and ¢ change sign only at the points {;; j=1,
2,...,k}, either the function (¢ —¢™) or the function (¢ +¢*) proves that
Condition (3) is obtained when (n — k) is an even integer.

Alternatively, if n —k = 2¢+1 is an odd integer, we follow the method of the
last paragraph, except that we add the point a totheset{{;; /=1, 2, ..., k} before
defining ¢, and we add b to the set {{;; /=1, 2, ..., k} before defining ¢*. The
remainder of the proof is as before. Because these techniques can be used even
when k =0, it follows that the last statement of Condition (2) is valid. The proofs
of the relations between Conditions (1), (2), (3) and (4) are now complete.
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Related work and references

Many excellent books are published on approximation theory and methods. The
general texts that are particularly valuable to the present work are the ones by
Achieser [2], Cheney [35], Davis [50], Handscomb (ed.) [74], Hayes (ed.) [77],
Hildebrand [78], Holland & Sahney [81], Lorentz [100], Rice [132] and [134],
Rivlin [138] and Watson [161]. Detailed references and suggestions for further
reading are given in this appendix.

Most of the theory in Chapter 1 is taken from Cheney [35] and from Rice [132].
If one prefers an introduction to approximation theory that shows the relations to
functional analysis, then the paper by Buck [32] is recommended. We give further
attention only in special cases to the interesting problem, mentioned at the end of
Section 1.1, of investigating how well any member of & can be approximated
from &f; a more general study of this problem is in Lorentz[100] and in Vitushkin
[160]. The development of the Polya algorithm, which is the subject of Exercise
1.10, into a useful computational procedure is considered by Fletcher, Grant &
Hebden [57].

In Chapter 2, as in Chapter 1, much of the basic theory is taken from Cheney
[35]. For a further study of convexity the book by Rockafellar [142] is recom-
mended. Several excellent examples of the non-uniqueness of best approximation
with respect to the 1- and the co-norms are given by Watson [161]. An interesting
case of Exercise 2.1, namely when 9 is the space " and the unit ball {f: ||f|<1;
fe B} is a polyhedron, is considered by Anderson & Osborne [5].

The point of view in Chapter 3 that approximation algorithms can be regarded
as operators is treated well by Cheney [35], and more advanced work on this
subject can be found in Cheney & Price [37]. Several references to applications of
Theorem 3.1 are given later, including properties of polynomial approximation
operators that are defined by interpolation conditions. A comparison of the
advantages of preferring rational to polynomial approximations is made by
Hastings [76]. There is now a vast literature on spline functions, including
interesting books by Ahlberg, Nilson & Walsh [4], de Boor [26], Prenter [127]
and Schultz [151]. For a short introduction to splines the papers by Birkhoff & de
Boor [15] and by Greville [70] are recommended. An excellent summary of more
advanced properties of spline functions is given by Schoenberg [149].
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The theory of Lagrange interpolation, considered in Chapter 4, is in most
text-books on numerical analysis; see Hildebrand [78], for instance. These books
include also many properties of Chebyshev polynomials. A careful analysis of
Runge’s example (4.19) is given by Steffensen [155]. The norms of polynomial
interpolation operators are used by Powell [121] to draw attention to some of the
advantages of the Chebyshev interpolation points. Further properties of the
Lebesgue function {3 |/, (x)|; a < x < b}, when the Chebyshev interpolation points
are used, are derived by Brutman [31]. The solution to the problem of Exercise
4.10 was conjectured by Bernstein in 1931, but the conjecture was not proved
until 1977, by de Boor & Pinkus [28] and by Kilgore [89] independently.

Because the divided difference theory and methods of Chapter 5 were used
extensively for the construction of tables, some of the best accounts of this work
are in the older numerical analysis text-books, such as Steffensen [155]. The use
of divided differences to detect errors in equally spaced data is explained by Miller
[115], and an extension to allow unequal spacing between data points is made by
Blanch [16]. More recent applications of divided differences are included in our
study of spline approximations. A comparison of methods of representing
polynomials in terms of coefficients is given by Gautschi [64]; the criterion of the
comparison has several other applications. An algorithm for the Hermite inter-
polation method of Section 5.5 is described by Krogh [93]. A particularly elegant
solution to Exercise 5.9, on the divided difference of a product, is in the book by
de Boor [26]. Further information on the rational interpolation problem of
Exercise 5.10 can be found in Mayers [110], Meinguet [111] and Wuytack [165].

The method of proof of the Weierstrass theorem, given in Chapter 6, is taken
from Cheney [35]. The advantages of the Bernstein approximation method in
interactive computing are explained by Gordon & Riesenfeld [68]. The con-
vergence of the derivatives of the Bernstein approximations to the derivatives of
the function that is being approximated is proved by Davis [50], and the variation
diminishing properties of Bernstein approximations are studied by Schoenberg
[143]. Many further properties of Bernstein polynomials are given by Lorentz
[99].

The theory of Chapter 7 on minimax approximations is similar to the treatment
in Rice [132]. An alternative approach, which is preferred by Cheney [35], by
Rivlin & Shapiro [141] and by Watson [161], makes use of the properties of
convex hulls. This approach is based on a necessary and sufficient condition for
best minimax approximation, given by Kirchberger [90], that depends only on the
extreme values of the error function. Therefore our remark, that one only need
consider extreme values of the error function to decide whether an approximation
is optimal, has been known for many years. For further information on Chebyshev
systems the book by Karlin & Studden [85] is recommended. A paper by Stiefel
[156] directed attention to the usefulness of the bounds of Theorem 7.7. An
extension of the result of Exercise 7.2 to the case when & is not a linear space is
given by Curtis & Powell [47]. A good discussion of non-uniqueness of best
approximations when the linear space & does not satisfy the Haar condition,
which is the subject of Exercise 7.9, is in Watson [161].

It is mentioned in Chapter 8 that there are several versions of the exchange
algorithm. The version that we give most attention to, that exchanges only one
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point of the reference on each iteration, and that brings into the reference a point
where the current error function takes its maximum value, is due to Stiefel [156].
Another one-point method, which is proposed by Curtis & Frank [49] for
minimax approximation on a discrete point set, is to alter the points of the
reference in rotation. The version that can alter all of the reference on each
iteration is studied by Murnaghan & Wrench [116]. Methods for updating matrix
factorizations, in order to reduce the work of solving the system (8.4) on every
iteration, are reviewed by Gill, Golub, Murray & Saunders [65]. For further
reading on telescoping, the book by Lanczos [95] is recommended. Moreover, the
gain in accuracy that can be obtained by calculating directly the best polynomial
approximation of degree m to a polynomial of degree n, where m <n —2, instead
of using the telescoping technique (n — m) times, is considered by Clenshaw [38],
Lam & Elliott [94] and Talbot [158]. In order to apply the work of Section 8.5,
one may replace a continuous interval [a, b] by a set of discrete points; the effect
of this replacement on the best minimax approximation is studied by Chalmers
[33], Dunham [51]and Rivlin & Cheney[140). The relations between the discrete
exchange algorithm and linear programming are explained by Rabinowitz [129],
and a Fortran subroutine that is suitable for discrete minimax approximation is
given by Barrodale & Phillips [9].

The proof of the convergence of the exchange algorithm, given in the first two
sections of Chapter 9, is similar to the theory of Dunham [52]. The analysis of the
rate of convergence of the one-point exchange algorithm is new, but the quadratic
rate of convergence of the version of the exchange algorithm that can alter all the
reference points on each iteration was established by Veidinger [159]. The zero
off-diagonal elements of the final second derivative matrix of the levelled
reference error, which are stated in Exercise 9.8, were found by Curtis & Powell
[48]. The presence of these zero second derivatives is implied by the convergence
rate of the one-point exchange algorithm.

The book by Achieser [2] is recommended for the basic theory of rational
approximation that is omitted from Chapter 10. Many descriptions of the
exchange algorithm for the calculation of minimax rational approximations have
been published, for instance see Curtis [44] and Maehly [105], because both of
these papers give attention to the practical difficulties of the algorithm. An Algol
listing of the algorithm is given by Werner, Stoer & Bommas [162]. A good
solution to the problem of replacing the eigenvalue calculation (10.16) by a
suitably accurate finite calculation is proposed by Curtis & Osborne [46].
Methods for determining whether a system of linear constraints is consistent,
which are required by the elementary linear programming methods of Section
10.4, are reviewed by Wolfe [164]. The differential correction algorithm is due to
Cheney & Loeb [36], and the advantages of expression (10.38) over expression
(10.36) are shown by Barrodale, Powell & Roberts [10]. A numerical comparison
of several algorithms for minimax rational approximation is made by Lee &
Roberts [98], but more recently a procedure has been proposed by Kaufman,
Leeming & Taylor [86], that combines the advantages of the exchange and the
differential correction methods. Some of the difficulties that arise, if one prefers
best rational approximations with respect to the 1-norm or 2-norm, are explained
by Barrodale [8] and by Fraser [60].
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The basic material of Chapter 11 is in many books on approximation theory and
on numerical analysis, for example see Cheney [35], Davis [50], Lawson &
Hanson [97] and Rice [132]. There are also many publications on the numerical
solution of discrete linear least squares problems without forming the ncrmal
equations, in particular the paper by Golub [67]is recommended. The application
of the three-term recurrence relation of Theorem 11.3 to data fitting by poly-
nomials was proposed by Forsythe [58].

Most of the results of Chapter 12 are in Hildebrand [78], which is an excellent
book for further reading on Gaussian quadrature and special families of ortho-
gonal polynomials. More properties of orthogonal polynomials are given by
Szegd [157]. The practical difficulties of adaptive quadrature are discussed by de
Boor [20], and he gives a suitable algorithm for this calculation. The material of
Section 12.4 is one of the main topics of books on Chebyshev polynomials, for
instance see Fox & Parker [59], Rivlin [139] and Snyder [153]. The behaviour of
the coefficients of the expansion of R, f in terms of Chebyshev polynomials when f
is analytic is studied by Elliott [53], and the relations between R, f and the best
minimax approximation from %, to f are considered by Clenshaw [38]. The
expression for ||L,|lx in Exercise 12.6 is derived by Powell [121], and the
Erdos-Turan theorem, which is the subject of Exercise 12.7, is proved in Cheney
[35]. The calculation of polynomials that are orthogonal with respect to some
‘non-classical’ weight functions is studied by Price [128], who suggests a tech-
nique that is similar to the one that is mentioned in Exercise 12.8.

The work of Chapter 13 is in most text-books on approximation, for instance
see Cheney [35] and Rice [132]. For further reading on the theory of the Fourier
series operator the book by Lanczos [96] is recommended. Interest in the FFT
method has been strong during the last fifteen years, due to the wide range of
applications that were stimulated by the fundamental paper of Cooley & Tukey
[39]. There is a book on Fast Fourier Transforms by Brigham [30], an error
analysis of the main procedure is given by Ramos [130], recent developments for
the case when the number of data is not a power of two are in Winograd [163], and
extensions for vector computers are considered by Korn & Lambiotte [91].

Except for Rice [132] and Watson [161], approximation books give little
attention to the theory of best L, approximations. These two books, however,
cover the theory of Chapter 14. Further, the characteristic property that best L,
approximations depend on the sign of the error function is shown well by
Barrodale [7]. The calculation of best L, approximations by interpolation to f at
points that are independent of f, which is suggested at the end of Section 14.3, is
not restricted to the case when & satisfies the Haar condition, because Hobby &
Rice [79] show the existence of interpolation points that may be suitable when &/
is any finite-dimensional linear space.

The proof of Jackson’s first theorem, given in the first two sections of Chapter
15, is taken from Cheney [35], and the theory of discrete L, approximation is in
Rice [132], for instance. The application of linear programming methods to the
solution of discrete L, calculations was proposed by Barrodale & Young[13], and
it is now an active field of research. The geometric view of linear programming,
taken in Section 15.4, can be found in Abdelmalek [1] and in Bloomfield &
Steiger [17]. The linear programming test for optimality, which is composed of a
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finite number of linear inequalities, is expressed in terms of the original L,
approximation problem by Powell & Roberts [126]. The by-passing of vertices,
recommended in Section 15.4, is included in the algorithm of Barrodale &
Roberts [11], which has since been extended to allow general linear constraints on
the parameters of the approximating function [12]. This algorithm defines each
trial approximation by interpolation conditions, but Bartels, Conn & Sinclair [14]
prefer a technique that reduces the L, error on each iteration without the
restriction of moving from vertex to vertex of the feasible region. A solution to
Exercise 15.7, on the number of zeros of a best L, approximation in the
continuous case, is in Ascher [6].

The material of Chapter 16 can all be found in Cheney [35]. The optimality of
the constant 7/2(n + 1) in inequality (16.2) is due to Achieser & Krein [3] and to
Favard [54]. It is shown by Korneicuk [92] that the constant 3 in the bound (16.11)
can be reduced to one. Substantial improvements to expression (16.50) are made
by Fisher [55]; he considers the construction of the least number c(k, n) such that
d*(g) is bounded above c(k, n)|lg"), and he finds that the optimal value
depends on properties of perfect splines, which are considered in Chapter 23. The
optimal value of c(k, n) when k = n + 1, which is the subject of Exercise 16.5, is
given by Phillips {119] and by Riess & Johnson [137].

The elementary theory of the first section of Chapter 17 can be found in most
text-books on analysis, but the proof of the uniform boundedness theorem in
Section 17.2 is new. Theorems 17.3 and 17.4 are taken from Cheney [35], who
states that the minimum norm property of the Fourier series operator is due to
Lozinski [101]. The problem of finding the linear projection operator from
%la, b] to P" of least norm, which is suggested in Section 17.4, is considered
briefly by Chalmers & Metcalf [34]. Because Theorems 17.2 and 17.4 imply that
no prescribed interpolation method for calculating a sequence of polynomial
approximations can give uniform convergence for all continuous functions, it is
interesting that the Erdos-Turan theorem, stated in Exercise 12.7, shows that
some interpolation methods give convergence in the 2-norm; similar convergence
properties for other norms are studied by Nevai [118].

Due to the construction and the use of tables of function values, the methods of
Section 18.1 are a small sample from the techniques that are proposed in the older
numerical analysis books for piecewise polynomial interpolation. Most of the
material on spline functions in Chapter 18 can be found in de Boor [26]. The
papers by Curtis [45] and Lucas [102] are also recommended for consideration of
the two end-conditions of cubic spline interpolation. There are many publications
on interpolation by splines of degree greater than three: for instance, in the case of
equally spaced data, Richards [136] studies the norm of the interpolation
operator, and Powell [123] draws attention to the deterioration of the localization
properties. The unboundedness of the interpolation operator for unevenly spaced
data points, mentioned in Exercise 18.2, is shown by Marsden [108] to apply also
to cubic spline interpolation, but Kammerer & Reddien [83] prove that the
accuracy of cubic spline interpolation is excellent, even for irregularly spaced
data, when the approximand has a continuous fourth derivative. The bicubic
splines of Exercise 18.10 are highly useful for surface approximation; many of
their properties are studied by de Boor [18] and [26].
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The theory of the first three sections of Chapter 19, on the properties of
B-splines and on the important idea of using them as a basis of a space of spline
functions, is in Curry & Schoenberg [43]. A stronger form of Theorem 19.1, on
the number of zeros of spline functions, is given by Schumaker [152]. The
recurrence relation of Section 19.4 for the stable evaluation of B-splines was
proposed by de Boor [21] and Cox [40]; in later papers Cox [42] suggests another
stable technique for the calculation of a linear combination of B-splines, and de
Boor [25] gives Fortran programs that calculate B-splines and their derivatives.
Theorem 19.4, on conditions for the solution of the general spline interpolation
problem, is due to Schoenberg & Whitney [150]. An algorithm for general spline
interpolation is described by Cox [41], and de Boor [23] studies the norm of the
general spline interpolation operator. The geometric interpretation of B-splines,
given in Exercise 19.1, was found by Curry & Schoenberg [43]. Rice [133] proves
the theorem of Exercise 19.6 on the characterization of a best minimax approxi-
mation. The expression for the indefinite integral of a B-spline that is stated in
Exercise 19.8 is due to Gaffney [61]. Exercise 19.10 shows some of the features of
least squares spline approximations. There are several publications on this useful
subject; for instance, the localization properties are studied by Powell[124]in the
case when the knot spacing is constant, Reid [131] describes a way of organizing
the calculation to take full advantage of the band matrices that come from the use
of B-splines, and de Boor [26] gives some computer programs.

So much has been published on the accuracy of spline approximations, that
Chapter 20 gives only a small sample of the convergence theorems and the
techniques of analysis. Many of our theorems have been proved in other ways. For
example de Boor [19] uses divided differences to establish Theorem 20.1, and
Marsden [107] strengthens Theorem 20.2 by applying Schoenberg’s [147] ‘varia-
tion diminishing method’. This technique sets each variable x, in the definition
(20.11) to the average of the non-trivial knots of N,, in order that s is equal to f for
any fin ?,, see Marsden [106]. Thus the accuracy and some variational properties
of s are similar to those of a Bernstein polynomial approximation to f, but s has
the advantage that each s(x) depends only on the form of f in a neighbourhood of
x. Therefore Gordon & Riesenfeld [69] recommend the use of spline approxima-
tions in computer aided design. The method that is used in Section 20.2, to
establish the order of convergence of best spline approximations when f is
differentiable, is taken from de Boor [19]. For further reading on the construction
and applications of local spline approximations, which are studied in Section 20.3,
the papers by de Boor & Fix [27] and Lyche & Schumaker [103] are recom-
mended. Substantial improvements to the error bounds of Section 20.4 are given
in Chapter 22, and in Kammerer & Reddien [83] and Lucas [102].

The advantages of suiting the knot positions of spline approximations to
singularities of the approximand, which are considered in Section 21.1, are shown
well by Rice [135]. Moreover, Rice [134] explains clearly the behaviour of the
functions in the space #(k, &, &,,..., &) when the knots tend to coincide.
Theorem 21.2, on the norm of a quadratic spline interpolation operator, is due to
Marsden [109]. The adaptive method for the calculation of a cubic spline
approximation, given in Section 21.3, is described by Curtis [45]. An algorithm
that uses a similar disposition of knots is proposed by Powell [125] for least
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squares approximation to discrete data. An alternative to inserting knots near a
singularity is to adjust the positions of a fixed number of knots; Jupp [82]
considers the application of general optimization procedures to this calculation,
and de Boor & Rice [29] present a tailored algorithm, where in both cases the
least squares norm of the error function is minimized. Some theoretical properties
of optimal knot positions in minimax and least squares approximation are given
by Handscomb [75] and Powell [122] respectively.

Conditions for the validity of the Peano kernel theorem, which is studied in
Chapter 22, are in Davis [S0] for instance. Applications of this important theorem
are plentiful in the numerical analysis literature; in particular the analysis of the
accuracy of Bernstein polynomial approximation that is given by Stancu [154],
and Kershaw’s [88] results on estimating derivatives of a function by differentiat-
ing a spline approximation to the function, are both highly relevant to our studies.
Theorem 22.3, stating that a B-spline is the Peano kernel of a divided difference,
is in Curry & Schoenberg [43]. The calculation of Section 22.4 is not new, the
constant 333 of expression (22.64) being derived by both Hall [71] and Schultz
[151]. An interesting generalization of a property that is shown in Figure 22.1
is proved by Hall & Meyer [73]; it is that the Peano kernel function of cubic
spline interpolation changes sign at the data points even when the spacing of
the data is irregular, provided that the knots of the spline remain at the data
points.

Many publications are relevant to the work of Chapter 23. The solution of the
variational problem of Section 23.1 is due to Holladay [80], and it was generalized
by Schoenberg [144] to give the properties of natural splines that are stated in
Theorems 23.1 and 23.2. Theorem 23.3 is also due to Schoenberg [145], but a
different approach to functional approximation by Golomb & Weinberger [66]
had already established a similar result. This theorem is applied in many papers to
calculate the weights of quadrature formulae; see Schoenberg [148] for a review
of this field. The accuracy of natural spline interpolation is analysed by Schoen-
berg [146], but not making full use of the degree of the spline at the ends of the
range is a disadvantage. However, both Hall [72] and Kershaw [87] show that, for
cubic spline interpolation to equi-spaced data, the disadvantage is negligible at
any interior point of the range in the limit as the interval between data points
tends to zero. The norm of the natural spline interpolation operator for general
data points is studied by Neuman [117]. The fact that perfect splines solve the
variational problem of Theorem 23.4 was proved by de Boor [22] and [24] and
Karlin [84] independently, allowing for the Hermite interpolation case where
suitable derivatives of f are given if data points coincide. For further reading on
perfect splines, including results on uniqueness, the papers by Fisher & Jerome
[56], Karlin [84], McClure [104] and Pinkus [120] are recommended.

The optimal interpolation problem, that is studied in Chapter 24, was solved
independently and differently by Gaffney & Powell [63] and by Micchelli, Rivlin
& Winograd [114], but several properties of the solution were known already, see
Meinguet [112] for instance. Most of the theory of Section 24.2 is in Karlin &
Studden [85], including the relation between B-splines and Chebyshev sets that is
stated in Theorem 24.2. An algorithm that calculates the optimal interpolating
function in the way that is suggested by Theorem 24.4 is given by Gaffney [62].
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The uniqueness of the perfect spline o, stated in Exercise 24.9, is proved by Karlin
[84] and by Micchelli [113].
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algebraic polynomial, see polynomial

B-splines
basis of space of splines 231-4
calculation of values and recurrence
relation 234-6
definite integral 275
definition 229
derivation by divided differences 236
Haar condition 301-2
in analysis of optimal interpolation
300-6
in analysis of perfect splines 2904
indefinite integral 240
in minimization of ||s”|}, subject to
interpolation conditions 283-5
in proof of uniform convergence of
spline approximation 241-3
non-negativity conditions 229-31
Peano kernel of divided difference
274-6, 283-5, 290-1, 300
basis functions
in least squares calculations 126-31,
240
in polynomial approximation 33, 51-3,
131-3
in spline approximation 29-30, 227-8,
231-4
Bernstein approximation 65-9
Bessel’s inequality 155
best approximation
characterization, see characterization
theorems
continuity of operator 16-17
definition and existence 4-6
geometric view 9-11
uniqueness of solution 14-16
bicubic splines 226

bounds, see error bounds and norm of
operator

cardinal functions in
analysis of Gaussian quadrature 138-40
piecewise polynomial interpolation
214-15
polynomial interpolation 33-5
spline interpolation 216-19, 222-3
characterization theorems for
L, approximation 165-9, 181-2
least squares approximation 125-6, 296
minimax approximation 75-7, 79, 112-
13, 120-1, 239-40
orthogonal polynomials 141
Chebyshev interpolation points 39-41
Chebyshev polynomials
definition and recurrence relation 38-9,
142
in telescoping 92
in the Chebyshev least squares operator
R, 144-5
minimal property 78
orthogonality conditions 144

Chebyshev set, see Haar condition
continuity of best approximation operator

16-17

convergence, see also order of

convergence and uniform
convergence

of Fourier series 155-6, 193

of the differential correction algorithm
120-2

of the exchange algorithm 93, 101-2,
105-8, 116-17

convexity 13-19
cubic polynomial defined by Hermite

interpolation 213

cubic spline, see spline



Index

defect in rational approximation 117
derivative
approximation by Bernstein derivative
67-9

approximation by spline derivative 253

conditions in Hermite interpolation
53-7

discontinuities of spline functions 220,
224, 261-5

minimal property of natural spline 283

S, 287-90
minimal property of perfect spline
292-5
relation to divided difference 47
difference, see divided difference
differential correction algorithm 119-22
Dini-Lipschitz theorem 193
discrete approximation
by a rational function 112-13, 117-20
by a trigonometric polynomial 156-61
by the exchange algorithm 92-4, 117
in the L;-norm 18-19, 181-6
in the least squares norm 124-5, 133,
157-8
in the minimax norm 19, 79, 92-4,
112-13, 118-20

linear programming methods, see linear

programming
to continuous problems 118-19, 156,
186
distance function 4-5, 11
divided difference
checking of tables 47, 59
definition 46
derivation of B-splines 236
expression from the Peano kernel
theorem 274-6, 283-5, 290-1, 300
for Newton’s interpolation method
48-9
of equi-spaced data 59
of product 59, 236
recurrence relation 49-51
relation to derivative 47
when there are repeated arguments
55-7

eigenvalue problem in rational exchange
algorithm 113-15
end conditions in spline interpolation
216, 219-21, 223-5, 285
equivalence of operators 201-2
Erdos-Turan theorem 148
error bounds, see also order of
convergence
for linear projection operators 24-5
in cubic spline interpolation 277-81
in optimal interpolation 309-10
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in the exchange algorithm 81-2, 86, 90,
113
error estimates in cubic spline inter-
polation 261-5
error expressions
derived by the Peano kernel theorem
268, 276-82
for Gaussian quadrature 147
for polynomial interpolation 35-6, 276
in the exchange algorithm, see levelled
reference error
Euclidean, see least squares
exchange algorithm, see also levelled
reference error
adjustment of reference 87-8, 93, 112
bounds on the minimax error 81-2, 86,
90, 113
description 85-8, 93, 112-15
initial reference 85, 90-1
in the discrete case 92-4, 117
in the rational case 112-18
minimax approximation on a reference
79, 85-6, 112-13
numerical example 88-90
proof of convergence 93, 101-2,
116-17
rate of convergence 105-8
separation of reference points 100-1
existence of
best approximations 4-6
minimax rational approximations 12,
113
extended space of spline functions 255-7

fast Fourier transform 158-61

Fejer operator 162-3

first derivative recurrence relation of

cubic spline 216

Fourier series
Bessel’s inequality 155
convergence properties 155-6, 193
Dini-Lipschitz theorem 193
fast Fourier transform 158-61
in the continuous case 152-6
in the discrete case 156-8
minimal property of norm 206-8
norms and their bounds 155, 192-3

Gaussian quadrature
derivation 138-9
error expression 147
positive coefficients 140
geometric view of
linear programming 184-6
norms and best approximation 9-11



Index

Haar condition
definition and properties 76-7, 313-16
in analysis of the exchange algorithm
98-108
in L, approximation 169-72, 175
in minimax approximation 77, 79-82,

of space of B-splines 301-2
Hermite interpolation by

a cubic polynomial 213

an extension of Newton’s method 53-7
Hermite polynomials 143
Hilbert space 17, 123-6

ill-conditioning
of a spline basis 227-8
of normal equations 127-8, 134
increase in levelled reference error 87,
97-9, 116-17
integrals and integration, see quadrature
interpolation
by a piecewise polynomial 29, 212-15
by a polynomial, see polynomial
interpolation
by a rational function 44-5, 59-60
by a spline, see spline interpolation
by a trigonometric polynomial 161
cardinal functions 33-5, 214-19, 222-3
optimal, see optimal interpolation
points for L; approximation 170-4,
301-6

Jackson’s theorems
extension to algebraic polynomials
195-8
for a continuous function 189-93,
196-7
for a differentiable function 179-81,
197-8
for a highly differentiable function 194-
5, 197-8
for a Lipschitz continuous function 190,
196-7
Jacobi polynomials 142

kernel functions
Fejer kernel 162-3
Fourier series kernel 154-5
Peano kernel 270-4
knots of spline functions
algorithm for choosing them
automatically 261-6
change of spacing in cubic spline
interpolation 263-5
coincident knots 255-7
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definition 29-30

extra knots for B-spline basis 231-4

fitting to a singularity 254-7, 266-7

in best least squares approximation 296

in optimal interpolation 308-9

in perfect spline interpolation 294-5

in quadratic spline interpolation 2214,
257-61

relation to zeros of spline 230-1, 237-
8, 2934, 306

L, approximation
by algebraic polynomials 1724
by linear combination of B-splines
300-6
by trigonometric polynomials 176
characterization theorems 165-9,
181-2
definition of L,-norm 6-7, 164
example for proof of Jackson’s theorem
177-9
interpolation points 170-4, 301-6
in the discrete case 18-19, 181-6
methods of calculation 171-2, 177-9,
183-6
non-uniqueness of best approximation
18-19, 187
relation to least squares approximation
168
uniqueness of best approximation 170,
175
when the Haar condition holds 169-72,
175
L, approximation, see least squares
approximation
L, approximation, see minimax
approximation
L, approximation
condition for best approximation 168-9
definition of norm 6-7
uniqueness of best approximation 16
Lagrange interpolation
description 33-5
discussion of stability 52-3
Laguerre polynomials 143
least maximum approximation, see
minimax approximation
least squares approximation
basis functions 126-31, 240
by algebraic polynomials 131-3
by spline functions 240, 296
by the Chebyshev operator R, 143-7
by trigonometric polynomials 152-61
characterization theorem 125-6
definition of norm 6-7, 123-5
Erdos-Turan theorem 148
in the discrete case 124-5, 133, 157-8
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least squares approximation (cont.)
methods of calculation 126-33, 158-61
normal equations 127-9
uniqueness of best approximation 17—
18, 123-4, 126
Lebesgue constants and functions 24-5,
41-3, 218-19
Legendre polynomials 142, 149
levelled reference error
bounds on its value 81-2
definition 87
diagonal second derivative matrix 110
explicit expression and its multipliers
97-9, 101
in analysis of exchange algorithm
101-2
in rational approximation 112-17
methods of calculation 85-6, 113-15
monotonic increase 87, 97-9, 116-17
linear programming
duality 94, 291
for L, approximation 183-6
for minimax approximation 94, 118-20
for rational approximation 118-20
geometric view 184-6
to derive minimal property of perfect
spline 291
local spline approximation
by a combination of B-splines 243,
248-51
by interpolation 225, 246-8

metric space 3-5, 16
minimal properties of
Chebyshev polynomials 78
natural splines 287-90
perfect splines 290-5
the norm of S, 206-8
minimax approximation
by algebraic polynomials 26-8, 76-9
by rational functions 111-21
by spline functions 23940
by trigonometric polynomials 162, 196
characterization theorems 75-7, 79,
112-13, 120-1, 23940
definition of norm 7, 72
in the discrete case 19, 79, 92-4, 112~
13, 118-20
methods of calculation 12, 85-8, 924,
112-15, 118-20
non-uniqueness of best approximation
18-19, 83
on a reference 79, 85-6, 112-13
uniqueness of best approximation 79—
81, 108-9, 113
when Haar condition holds 77, 79-82,
90
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monotone operator 62-5, 162-3
multivariate approximation 71, 226

natural spline
definition 285
interpolation conditions 219, 285-6
minimal properties 287-90
Newton’s method for polynomial
interpolation
description 48-51
discussion of stability 52-3
extension to Hermite interpolation
53-7
non-uniqueness of
best approximations 11
best L, approximations 18-19, 187
best minimax approximations 19, 83
normal equations in least squares
calculations 127-9
normed linear space 5-6, 9-11, 13-15,
17-19
norm of operator
definition 23
for polynomial interpolation 23-4,
41-3
for spline interpolation 218-19, 225,
257-9
in the error bound that depends on the
least maximum error 24
in the uniform boundedness theorem
2034
values and bounds for |R,|| and ||S, |
145-7, 155, 192-3
norm of space
definition 5
geometric view 9-11
relation between norms 7-9, 11
strictly convex norm 14-19
the L,-norm 6-7, 18-19, 164
the L,-norm 6-7, 16
the least squares norm 6-7, 17-18,
123-5
the minimax norm 7, 18-19, 72
numerical integration, see quadrature

one-point exchange algorithm, see
exchange algorithm
operator
best approximation operators 16-17
equivalence of operators 201-2
linear operators 22-3
monotone operators 62-5, 162-3
norm, see norm of operator
projection operators 22-5, 206-10
the Bernstein operator 65-9
the Chebyshev least squares operator
R, 143-7, 155, 208-9



Index

operator (cont.)
the discrete Fourier series operator
156-8
the Fejer operator 162-3
the Fourier series operator S, 152-6,
192-3, 206-8
optimal interpolation
definition 298
derivation of interpolation formula
299-309
error bounds 309-10
knot positions 308-9
method of calculation 307-8
order of convergence
of polynomial approximation 26-8,
195-8
of spline approximation 30, 241-6
of trigonometric approximation, see
Jackson’s theorems
orthogonality
definition 125
in least squares approximations 125-31
of algebraic polynomials 131-3, 141-3
of Chebyshev polynomials 144
of trigonometric polynomials 153, 158
orthogonal polynomials
characterization theorem 141
Chebyshev, see Chebyshev polynomials
elementary theory 136-8
Hermite polynomials 143
in Gaussian quadrature 138-40
in least squares approximation 131-3
Jacobi polynomials 142
Laguerre polynomials 143
Legendre polynomials 142, 149
properties of zeros 137-8, 147
recurrence relation 131-3
Rodrigue’s formula 142

Peano kernel theorem
description and proof 2704
discussion and applications 268-70,
273-81
for cubic spline interpolation 277-81
for divided differences 274-5
for polynomial interpolation 276
minimization of the L,-norm of the
kernel 299-306
minimization of the least squares norm
of the kernel 288-90
perfect splines
definition 291-2
error bound and knots for optimal
interpolation 308-10
minimal property 2924
uniqueness 294-5, 297, 312
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piecewise polynomials, see also spline
approximation
discussion of applications 28-9
interpolation procedures 29, 212-15
Polya algorithm 12
polynomial approximation
basis functions 33, 51-3, 131-3
Bernstein operator 65-9
best in the L, norm 166-7, 1724
best in the least squares norm 125-6,
131-3
best in the minimax norm 26-8, 76-9
by interpolation, see polynomial
interpolation
characterization theorems 77, 125-6,
166-7
methods of calculation 34, 48-51, 55—
6, 65, 85-8, 92-3, 131-3, 174
order of convergence 26-8, 195-8
orthogonality of polynomials 131-3,
141-4
telescoping 92, 148
trigonometric, see trigonometric
polynomials
uniform convergence 61-7, 196-7
polynomial interpolation
by a straight line 234, 29, 213-14
cardinal functions 33-5
choice of interpolation points 3741
effect of data errors 34
error expressions 35-6, 276
Hermite interpolation 53-7
Lagrange formula 33-5, 52-3
Newton’s method 48-57
norm of operator 41-3, 208-10
to obtain convergence in the least
squares norm 148
uniqueness of solution 334, 54-5
product divided difference formula 59,
236
projection operator 22-5, 206-10

quadratic spline interpolation 221-5,
257-61, 282
quadrature
Gaussian 138-40, 147
of B-splines 240, 275
of trigonometric functions 156-7

R,, operator (Chebyshev least squares)
143-7, 155, 208-9
rational approximation
by interpolation 44-5, 59-60
comparison with polynomial
approximation 28, 111-12
differential correction algorithm 119-22
exchange algorithm 112-18
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rational approximation (cont.)
minimax approximation on a reference
112-13
minimax theory 12, 111-13, 117,
120-1
recurrence relation for
B-splines 234-6
Chebyshev polynomials 39
divided differences 49-51
Legendre polynomials 149
orthogonal polynomials 131-3
spline interpolation 216, 222-3, 258
reference, see exchange algorithm and
levelled reference error
Remes’ algorithm, see exchange
algorithm
Rodrigue’s formula 142
Rolle’s theorem 35-6, 47
Runge’s example 37-41

S, operator (Fourier series) 152-6, 192-
3, 206-8
scalar product 17, 123-5, 168
Schoenberg-Whitney  theorem 223,
236-8, 294, 302, 305
sign alternation in minimax
approximation 77, 79, 87-8, 98, 112
spline approximation
B-splines, see B-splines
basis functions 29-30, 227-8, 2314
best in the least squares norm 240, 296
best in the minimax norm 239-40
bicubic splines 226
definition of a spline function 29-30
derivative discontinuities 220, 224,
261-5
extended space of spline functions
255-7
interpolation, see spline interpolation
knots, see knots of spline functions
local methods 225, 243, 246-51
methods of calculation 215-16, 220,
222-4,238-9, 257, 261-6, 307-8
natural splines, see natural splines
near a singularity 254-7
order of convergence 30, 241-6
perfect splines, see perfect splines
uniform convergence 241-3
zeros of spline functions 230-1
spline interpolation
by a cubic spline 215-21, 224, 261-6,
277-81
by a natural spline 219, 285-6
by a perfect spline 294-5
by a quadratic spline 221-5, 257-61,
282
cardinal functions 216-19, 222-3
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end conditions 216, 219-21, 223-5,
285
error bounds 277-82, 309-10
error estimates for cubic splines 261-5
general data points 236-9, 259-61
localization properties 218, 220-4,
246-7
norm of operator 218-19, 225, 257-9
on an infinite range 216-19, 221-3,
277-80
optimal, see optimal interpolation
recurrence relations 216, 222-3, 258
Schoenberg-Whitney theorem 236-8
to surfaces 226
uniqueness of solution 216, 237-8,
285-6
strict convexity 13-19
surface approximation 71, 226

Tchebycheft, see Chebyshev
telescoping 92, 148
third derivative discontinuities of cubic
splines 220, 224, 261-5
three term recurrence relation for
orthogonal polynomials 131-3
trigonometric polynomials, see also
Fourier series
approximation to discrete data 156-61
best in the L;-norm 176
best in the least squares norm 152-3,
157-8
best in the minimax norm 162, 196
interpolation 161
methods of calculation 156-61
order of convergence, see Jackson’s
theorems
orthogonality conditions 153, 158
quadrature 156-7
relation to algebraic polynomials 151~
2, 195-8
uniform convergence 151-2, 162-3,
190-1
zeros of trigonometric polynomials 150,
161

unicity, see uniqueness
uniform approximation, see minimax
approximation
uniform boundedness theorem 2034
uniform convergence of
Bernstein approximations 66
linear operators 2024
monotone operators 62-5, 162-3
polynomial approximations 61-7,
196-7
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uniform convergence of (cont.)
spline approximations 241-3
trigonometric approximations 151-2,
162-3, 190-1
uniqueness of
best approximations 13-17
best L, approximations 170, 175
best least squares approximations 17—
18, 1234, 126
best minimax approximations 79-81,
108-9, 113
general spline interpolation 237-8
L, interpolation points 170-2
natural spline functions 285-6
orthogonal polynomials 136-7
perfect splines 294-5, 297, 312
polynomial interpolation 334,
54-5
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variational problems
minimal properties of natural splines
287-90
minimal property of perfect splines
290-5
minimization of ||s"|l, subject to
interpolation conditions 283-5

Weierstrass theorem 25, 61-2, 66-7, 191

zeros of

error function in best L, approximation
169-72, 182-3

functions in a Chebyshev set 76-7,
313-16

orthogonal polynomials 137-8, 147

spline functions 230-1

trigonometric polynomials 150, 161



Most functions that occur in mathematics cannot be used directly
in computer calculations. Instead they are approximated by
manageable functions such as polynomials and piecewise poly-
nomials. The general theory of the subject and its application to
polynomial approximation are classical, but piecewise polynomials
have become far more useful during the last twenty years. Thus
many important theoretical properties have been found recently
and many new techniques for the automatic calculation of
approximations to prescribed accuracy have been developed.

This book gives a thorough and coherent introduction to the
theory that is the basis of current approximation methods. Professor
Powell describes and analyses the main techniques of calculation
supplying sufficient motivation throughout the book to make it
accessible to scientists and engineers who require approximation
methods for practical needs. Because the book is based on a course
of lectures to third-year undergraduates in mathematics at
Cambridge University, sufficient attention is given to theory to
make it highly suitable as a mathematical textbook at under-
graduate or postgraduate level.
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