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PREFACE 

There are several reasons for studying approximation theory and 
methods, ranging from a need to represent functions in computer cal­
culations to an interest in the mathematics of the subject. Although 
approximation algorithms are used throughout the sciences and in many 
industrial and commercial fields, some of the theory has become highly 
specialized and abstract. Work in numerical analysis and in mathematical 
software is one of the main links between these two extremes, for its 
purpose is to provide computer users with efficient programs for general 
approximation calculations, in order that useful advances in the subject 
can be applied. This book presents the view of a numerical analyst, who 
enjoys the theory, and who is keenly interested in its importance to 
practical computer calculations. It is based on a course of twenty-four 
lectures, given to third-year mathematics undergraduates at the Uni­
versity of Cambridge. There is really far too much material for such a 
course, but it is possible to speak coherently on each chapter for about 
one hour, and to include proofs of most of the main theorems. The pre­
requisites are an introduction to linear spaces and operators and an inter­
mediate course on analysis, but complex variable theory is not required. 

Spline functions have transformed approximation techniques and 
theory during the last fifteen years. Not only are they convenient and 
suitable for computer calculations, but also they provide optimal 
theoretical solutions to the estimation of functions from limited data. 
Therefore seven chapters are given to spline approximations. The classi­
cal theory of best approximations from linear spaces with respect to the 
minimax, least squares and L 1-norms is also studied, and algorithms are 
described and analysed for the calculation of these approximations. 
Interpolation is considered also, and the accuracy of interpolation and 
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other linear operators is related to the accuracy of optimal algorithms. 
Special attention is given to polynomial functions, and there is one 
chapter on rational functions, but, due to the constraints of twenty-four 
lectures, the approximation of functions of several variables is not 
included. Also there are no computer listings, and little attention is given 
to the consequences of the rounding errors of computer arithmetic. All 
theorems are proved, and the reader will find that the subject provides a 
wide range of techniques of proof. Some material is included in order to 
demonstrate these techniques, for example the analysis of the con­
vergence of the exchange algorithm for calculating the best minimax 
approximation to a continuous function. Several of the proofs are new. In 
particular, the uniform boundedness theorem is established in a way that 
does not require any ideas that are more advanced than Cauchy 
sequences and completeness. Less functional analysis is used than in 
other books on approximation theory, and normally functions are 
assumed to be continuous, in order to simplify the presentation. Exercises 
are included with each chapter which support and extend the text. All 
references to related work are given in an appendix. 

It is a pleasure to acknowledge the excellent opportunities I have 
received for research and study in the Department of Applied Mathema­
tics and Theoretical Physics at the University of Cambridge since 1976, 
and before that at the Atomic Energy Research Establishment, Harwell. 
My interest in approximation theory began at Harwell, stimulated by the 
enthusiasm of Alan Curtis, and strengthened by Pat Gaffney, who 
developed some of the theory that is reported in Chapter 24. I began to 
write this book in the summer of 1978 at the University of Victoria, 
Canada, and I am grateful for the facilities of their Department of 
Mathematics, for the encouragement of Ian Barrodale and Frank 
Roberts, and for financial support from grants A5251 and A7143 of the 
National Research Council of Canada. At Cambridge David Carter of 
King's College kindly studied drafts of the chapters and offered helpful 
comments. The manuscript was typed most expertly by Judy Roberts, 
Hazel Felton, Margaret Harrison and Paula Lister. I wish to express 
special thanks to Hazel for her assistance and patience when I was 
redrafting the text. My wife, Caroline, not only showed sympathetic 
understanding at home during the time when I worked long hours to 
complete the manuscript, but also she assisted with the figures. This work 
is dedicated to Caroline. 

Pembroke College, Cambridge 
January 1980 

M. J. D. POWELL 
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The approximation problem and existence of 
best approximations 

1.1 Examples of approximation problems 
A simple example of an approximation problem is to draw a 

straight line that fits the curve shown in Figure 1.1. Alternatively we may 
require a straight line fit to the data shown in Figure 1.2. Three possible 
fits to the discrete data are shown in Figure 1.3, and it seems that lines B 
and C are better than line A. Whether B or C is preferable depends on 
our confidence in the highest data point, and to choose between the two 
straight lines we require a measure of the quality of the trial approxima­
tions. These examples show the three main ingredients of an approxima­
tion calculation, which are as follows: (1) A function, or some data, or 

Figure 1.1. A function to be approximated. 
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Figure 1.2. Some data to be approximated. 

Figure 1.3. Three straight-line fits to the data of Figure 1.2. 
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more generally a member of a set, that is to be approximated. We call it[. 
(2) A set, .slJ say, of approximations, which in the case of the given 
examples is the set of all straight lines. (3) A means of selecting an 
approximation from .sll. 

Approximation problems of this type arise frequently. For instance we 
may estimate the solution of a differential equation by a function of a 
certain simple form that depends on adjustable parameters, where the 
measure of goodness of the approximation is a scalar quantity that is 
derived from the residual that occurs when the approximating function is 
substituted into the differential equation. Another example comes from 
the choice of components in electrical circuits. The function f may be the 
required response from the circuit, and the range of available 
components gives a set .slJ of attainable responses. We have to approxi­
mate f by a member of .sll, and we require a criterion that selects suitable 
components. Moreover, in computer calculations of mathematical 
functions, the mathematical function is usually approximated by one that 
is easy to compute. 

Many closely related questions are of interest also. Given f and .sll, we 
may wish to know whether any member of .slJ satisfies a fixed tolerance 
condition, and, if suitable approximations exist, we may be willing to 
accept any one. It is often useful to develop methods for selecting a 
member of .slJ such that the error of the chosen approximation is always 
within a certain factor of the least error that can be achieved. It may be 
possible to increase the size of .slJ if necessary, for example .slJ may be a 
linear space of polynomials of any fixed degree, and we may wish to 
predict the improvement in the best approximation that comes from 
enlarging .slJ by increasing the degree. At the planning stage of a numeri­
cal method we may know only that f will be a member of a set £¥J, in which 
case it is relevant to discover how well any member of £¥J can be 
approximated from .sll. Further, given £¥J, it may be valuable to compare 
the suitability of two different sets of approximating functions, .sl/0 and 
.sl/1 • Numerical methods for the calculation of approximating functions 
are required. This book presents much of the basic theory and algorithms 
that are relevant to these questions, and the material is selected and 
described in a way that is intended to help the reader to develop suitable 
techniques for himself. 

1.2 Approximation in a metric space 
The framework of metric spaces provides a general way of 

measuring the goodness of an approximation, because one of the basic 
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properties of a metric space is that it has a distance function. Specifically, 
the distance function d (x, y) of a metric space [YJ is a real-valued function, 
that is defined for all pairs of points (x, y) in ~. and that has the following 
properties. If x >6 y, then d (x, y) is positive and is equal to d ( y, x ). If x = y, 

then the value of d (x, y) is zero. The triangle inequality 

d(x, y)~d(x, z)+d(z, y) (1.1) 

must hold, where x, y and z are any three points in :YJ. 
In most approximation problems there exists a suitable metric space 

that contains both f and the set of approximations .sti. Then it is natural to 
decide that ao E .sti is a better approximation than a 1 E .sti if the inequality 

d(a 0 , f) < d(ai, f) (1.2) 

is satisfied. We define a* E .sti to be a best approximation if the condition 

d(a* ,f) ~ d(a,f) (1.3) 

holds for all a E .sti. 
The metric space should be chosen so that it provides a measure of the 

error of each trial approximation. For example, in the problem of fitting 
the data of Figure 1.2 by a straight line, we approximate a set of points 
{(x;, y;); i = 1, 2, 3, 4, 5} by a function of the form 

p(x) =Co+ C1X, (1.4) 

where c0 and c1 are scalar coefficients. Because we are interested in only 
five values of x, the most convenient space is 9/l 5 • The fact that p(x) 
depends on two parameters is not relevant to the choice of metric space. 
We measure the goodness of the approximation (1.4) as the distance, 
according to the metric we have chosen, from the vector of function 
values {p(x;); i = 1, 2, 3, 4, 5} to the data values {y;; i = 1, 2, 3, 4, 5}. 

It may be important to know whether or not a best approximation 
exists. One reason is that many methods of calculation are derived from 
properties that are obtained by a best approximation. The following 
theorem shows existence in the case when .sti is compact. 

Theorem 1.1 
If .sti is a compact set in a metric space g/J, then, for every fin g/J, 

there exists an element a* E .sti, such that condition (1.3) holds for all 
a E Jti. 

Proof. Let d* be the quantity 

d* = inf d(a, f). 
QE.st/ 

(1.5) 
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If there exists a* in d such that this bound on the distance is achieved, 
then there is nothing to prove. Otherwise there is a sequence {a;; i = 
1, 2, ... } of points in .s4 which gives the limit 

limd(a;,f)=d*. (1.6) 
;_.co 

By compactness the sequence has at least one limit point in d, a+ say. 
Expression (1.6) and the definition of a+ imply that, for any e > 0, there 
exists an integer k such that the inequalities 

d(ak,f)<d*+te (1.7) 

and 

(1.8) 

are obtained. Hence the triangle inequality (1.1) provides the bound 

d(a+,f),z;;_d(a+, ak)+d(ak,f) 

<d*+e. (1.9) 

Because e can be arbitrarily small, the distance d(a\f) is not greater 
than d*. Therefore a+ is a best approximation. D 

When d is not compact it is easy to find examples to show that best 
approximations may not exist. For instance, let f?JJ be the Euclidean space 
~2 and let d be the set of points that are strictly inside the unit circle. 
There is no best approximation to any point of [!JJ that is outside or on the 
unit circle. 

1.3 Approximation in a normed linear space 
The properties of metric spaces are not sufficiently strong for 

most of our work, so it is assumed that d and fare contained in a normed 
linear space, which we call f?JJ also when we want to refer to it. The norm is 
a real-valued function llxll that is defined for all x E f?JJ. Its properties are 
such that the function 

d(x, y) = llx -yll (1.10) 

is suitable as a distance function. Therefore, by letting z be zero in 
expression (1.1) and by reversing the sign of y, we may deduce the triangle 
inequality 

llx + Yll,z;;_llxll+llYll. (1.11) 

Moreover, the norm must satisfy the homogeneity condition 

llAxll = IA I llxll (1.12) 

for all x E f?JJ and for all scalars A. 
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The specialization from metric spaces to normed linear spaces does not 
exclude any of the approximation problems that we will consider. There­
fore mostly we use the distance function (1.10). It occurs naturally in the 
approximation calculations that are of practical interest, and it allows the 
existence of a best approximation to be proved when d is a linear space. 

Theorem 1.2 
If d is a finite-dimensional linear space in a normed linear space 

£?13, then, for every f E :?13, there exists an element of d that is a best 
approximation from d to f. 

Proof. Let the subset d 0 contain the elements of d that satisfy the 
condition 

llall~2ll/ll. (1.13) 

It is compact because it is .a closed and bounded subset of a finite­
dimensional space. It is not empty: for example it contains the zero 
element. Therefore, by Theorem 1.1, there is a best approximation from 
d 0 to f which we call a~. By definition the inequality 

Ila - !II~ Ila~ - /II. (1.14) 

holds. Alternatively, if the element a is in d but is not in d 0 then, because 
condition (1.13) is not obtained we have the bound 

Ila - !II~ Ila 11-11111 
>11111 
~11a~ -/II. (1.15) 

where the last line makes further use of the fact that the zero element is in 
d 0 • Hence expression (1.14) is satisfied for all a in d, which proves that 
a~ is a best approximation. D 

1.4 The Lp·norms 
In most of the approximation problems that we consider, f and d 

are in the space <g[a b ], which is the set of continuous real-valued 
functions that are defined on the interval [a, b] of the real line. Occasion­
ally we turn to discrete problems, where f and dare in Pllm, which is the 
set of real m-component vectors. Both of these spaces are linear and we 
have a choice of norms. 

We study the three norms that are used most frequently, namely the 
Lp-norms in the cases when p = 1, 2 and oo. For finite p the Lp-norm in 
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C€[a, b] is defined to have the value 

[f b ] 1/p 

llfllP = a lf(xW dx , 1 ~p <oo, (1.16) 

and in g'l m it has the value 

l~p<oo, (1.17) 

where { y;; i = 1, 2, ... , m} are the components of f. The oo-norms are the 
expressions 

llflloo = max lf(x )I 
a~x'!!!E;.b 

(1.18) 

and 

llflloo = m_ax I y;j 
l:E.;r~m 

(1.19) 

respectively. 
There are excellent reasons for giving our attention to the 1-, 2- and 

oo-norms. The 1-norm is the least used of the three, but it has one 
remarkable property that makes it highly suitable for fitting to discrete 
data in the case when it is possible that there may be some gross errors in 
the data due to blunders. It is that the magnitude of a blunder makes no 
difference to the final approximation. This statement will be made clear in 
Chapter 14. Further, we find later that an understanding of the conditions 
that are obtained by best approximations in the 1-norm is necessary to 
analyse some error expressions that occur in the approximation of 
functionals. 

The 2-norm, or perhaps a weighted 2-norm of the form 

b ~ 

llfllz = [t w(x)Jf(x)l 2 dx J , (1.20) 

where w is a fixed positive function, occurs naturally in theoretical 
studies of Hilbert spaces. The practical reasons for considering the 
2-norm are even stronger. Statistical considerations show that it is the 
most appropriate choice for data fitting when the errors in the data have a 
normal distribution. Moreover, when dis a linear space, the calculation 
of the best approximation in the 2-norm reduces to a system of linear 
equations, which allows highly efficient algorithms to be developed. 
Often the 2-norm is preferred because it is known that the best approxi­
mation calculation is straightforward to solve. 

The oo-norm provides the foundation of much of approximation 
theory, for our next theorem shows that, if we succeed in finding an 
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approximation a e .s4 such that the oo-norm distance function d(f, a) is 
small, then the 2-norm and 1-norm distance functions are small also. 
However, an example that follows the theorem shows that the converse 
statement may not be true. A practical reason for using the oo-norm is 
that, when in computer calculations a complicated mathematical 
function, f say, is estimated by one that is easy to calculate, p say, then it is 
usually necessary to ensure that the greatest value of the error function 
{jf(x )- p(x )j; a..;; x..;; b} is less than a fixed amount~ which is just the 
required accuracy of the approximation. In other words we have a 
condition on the norm llf- Plloo· 

Theorem 1.3 
For all e in CC[ a, b] the inequalities 

I 

liell1..;; (b-a)2iiell2..;; (b -a)iielloo (1.21) 

hold. 

Proof. The Cauchy-Schwarz inequality provides the bound 

llelh = r ie(x)l Ill dx 

b ! b ! 

... [{ 1e<x>l2dxr[I dxr 
I 

= (h-a>21ielli, (1.22) 

which is the first part of the required result. Moreover, by replacing an 
integrand by its maximum value, we obtain the inequality 

(1.23) 

which completes the proof of the theorem. D 
It is interesting to consider the statement of Theorem 1.3, when e is the 

error in approximating the constant function {f(x) = 1; 0..;; x ..;; 1} by 
{x,\; 0..;; x :o;;; l}, where A is a positive parameter. Straightforward cal­
culation shows that the norms have the values 

lielh = A/(A + 1), 

iieili = [2A 2/(A+1)(2A + 1)]~. 
(1.24) 

(1.25) 
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and 

llelloo = l. (1.26) 

We see that, if A becomes arbitrarily small, then llell1 and llellz tend to 
zero, but lie lloo remains at one. Hence it is not always possible to reduce the 
oo-norm of an error function by making small its 2-norm or its 1-norm. In 
order to develop algorithms that give approximations with small errors in 
the 1-, 2- and oo-norms, we just have to ensure that the algorithm is 
suitable for the oo-norm. 

The oo-norm is sometimes called the uniform or minimax norm, and 
the 2-norm is sometimes called the least squares or Euclidean norm. 

1.5 A geometric view of best approximations 
In the case when f and .sll are contained in a normed linear space 

:?ll, and when we require a best approximation from .sll to f, it is sometimes 
helpful to think of the balls of different radii whose centres are at f. The 
ball of radius r is defined to be the set 

K(f, r) = {g: jjg - !II~ r, g E :?ll}. (1.27) 

It follows that, if r1 > r0 , then K(f, r0 ) c K(f, r1). Hence, if f e .sll, and if r is 
allowed to increase from zero there exists a scalar, r* say, such that, for 
r > r*, there are points of .sll that are in K(f, r ), but, for r < r*, the 
intersection of K(f, r) and .sll is empty. The value of r* is equal to 
expression (1.5), and we know from Theorem 1.2 that, if .sll is a finite­
dimensional linear space, then the equation 

r*= inf 11/-all=ll/-a*ll 
a Est/ 

(1.28) 

is obtained for a point a* in .sll. 
For example, suppose that 9ll is the two-dimensional Euclidean space 

PA 2, and that we are using the 2-norm. Let f be the point whose 
components are (2, 1), and let .sll be the linear space of vectors 

.sll ={(A, A); -oo <A< oo}, (1.29) 
where A is a real parameter. Figure 1.4 shows the set .sll and the three 
balls, centre f, whose radii are t, .J! and 1. If we imagine that the value of r 
is allowed to increase from zero, we see that the best approximation is the 
point where the ball of radius .J! touches .sll. 

The shapes of balls in two-dimensional space for the 1-, 2- and 
oo-norms are interesting, because they indicate some of the implications 
of the choice of norm. The boundaries of the three unit balls centred on 
the origin are shown in Figure 1.5. We note that, if the 2-norm is replaced 
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Figure 1.4. An approximation problem in 9ll 2 • 

.. o/ 

Figure 1.5. The unit balls of the 1-, 2- and oo-norms. 
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by the 1-norm in Figure 1.4, and if the radius of the ball centred at f is 
again allowed to increase from zero, then we find that many points of .s1 
are best approximations to f. The question of the uniqueness of best 
approximations is considered in the next chapter. 

1 Exercises 
1.1 Let .s1 o be a compact set and d 1 be a finite-dimensional linear 

space in a normed linear space @. Prove that there exists at in 
do and a r in d 1 such that the inequality 

is satisfied. 
1.2 Let £1ll be the set of bounded regions in two-dimensional space, 

whose shapes can be cut from a piece of flat card. For any pair of 
elements {x, y} of £1ll, let the number d (x, y) be the area of the 
union of x and y minus the area of the intersection of x and y. 
Show that d (x, y) satisfies the axioms of a distance function. Let 
.s1 be the set of triangular regions in two-dimensional space. 
Prove that every element of @ has a best approximation in .s1 
with respect to the distance function d (x, y). 

1.3 Let .s1 be the set of straight lines in three-dimensional Euclidean 
space g'l 3 • For any point x in g'l 3 and for any line a in d, let d (x, a) 

be the Euclidean distance from the point to the line. Let ff be a 
set that contains a finite number of points of rYI, 3 . Prove that there 
exists an element a* in .s1 that satisfies the inequality 

max d(a*, s) ~max d(a, s), 
SEY' SEY' 

a Ed. 

1.4 Prove that expression (1.16) satisfies the axioms of a norm in 
~[a, b ], when p = 1, 2 and 4. 

1.5 Let .s1 be the set of real continuous functions on the interval 
[a, b] that are composed of straight line segments. Hence .s1 is a 
subspace of ~[a, b ]. Prove that, for any fin ~[a, b] and for any 
positive number e, there exists an element a in .s1 such that 
II!- a !loo is less than e, where the oo-norm is defined by equation 
(1.18). It follows that in general there is not a best approximation 
from d to f with respect to the oo-norm. 

1.6 Let llfll1 and llfllz be the 1-norm and 2-norm respectively of a 
function fin ~[a, b ]. Construct an example to show that the ratio 
llfllz/llflh can be arbitrarily large. 
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1. 7 What point of the plane 3x + 2 y + z - 6 = 0 in three-dimensional 
space is closest to the origin when distance is measured by each of 
the following three norms: (1) the 1-norm, (ii) the 2-norm, and 
(iii) the co-norm. 

1.8 The set st/. is composed of the functions fin ~[O, 1] that have the 
form 

O~x ~ 1, 

where c0 , ci. c2 and c3 are real coefficients such that the 
denominator {c2 + c3x; 0 ~ x ~ 1} is strictly positive. Let !J' be a 
set of points from [O, 1], and let f be a function in ~[O, 1]. Show 
that sometimes there is no element a* in st/. that satisfies the 
condition 

max lf(x)-a*(x)I ~ max lf(x)-a(x)I, 
XEY' xeY 

a Est/.. 

1.9 Let st/. be the set that is defined in Exercise 1.8. Prove that every 
function fin ~[O, 1] has a best approximation inst/., with respect 
to the co-norm distance function. 

1.10 Let st/. be a finite-dimensional linear subspace of ~[O, 1], let f be 
any function from ~[O, 1], and, for all positive integers p, let aP 
be an element of st/. that minimizes the p-norm 

1 l/p 

\\f-a\\P = [fo lf(x)-a(x)!P dx] , a Est/.. 

Investigate whether the sequence of functions {ap; p = 
1, 2, 3, ... } converges to a function that is the best approximation 
from st/. to f with respect to the co-norm. This sequence gives 
'Polya's algorithm'. 



2 

The uniqueness of best approximations 

2.1 Convexity conditions 
In order to approximate a point or a function f by an element of a 

set d, it is usual to choose conditions that define a particular approxima­
tion. Best approximation with respect to an appropriate distance function 
is often suitable, but sometimes there are several best approximations. 
Some general conditions for uniqueness are given in this chapter, that 
depend on the convexity of the distance function and the convexity of the 
set d. Hence it is shown that in many important cases the best approxi­
mation is unique, including best approximation with respect to the 
2-norm when dis a linear space. We find, however, that, if the 1-norm or 
oo-norm is used, then stronger conditions are required on d in order to 
ensure uniqueness. 

The set Y of a linear space is convex if, for all s0 and s1 in Y, the points 
{lls0 + (1- 6)s 1 ; 0 < 6 < 1} are also in Y. The set is strictly convex if, for all 
So"'" Si, the points { llso + (1- ll)s1; 0 < e < 1} are interior points of Y. Thus, 
it is not possible for the boundary of a strictly convex set to contain a 
segment of a straight line. The nature of the ideas that are studied in this 
chapter is suggested by considering the uniqueness of the best approxi­
mation if the circles in Figure 1.4 are replaced by balls that are derived 
from some other norm. Our next theorem shows that these balls are 
convex sets. 

Theorem 2.1 
Let f1J be a normed linear space. Then, for any f E f1J and for any 

r > 0, the ball 

.H(f, r) = {x: llx -fll:;;;; r, x E ~} (2.1) 
is convex. 
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Proof. Let x0 and x1 be in .K{f, r). Then the axioms of a norm and the 
definition (2.1) give the bound 

llt'lxo + (1- e)x1 - /II~ llexo- e/11+11(1- e)x1 - (1- e)/II 
= lel llxo-/ll+ll-el llx1 -/II 
~ r{lel + 11- el} 
= r, O< e < 1, 

which is the required convexity condition. D 

(2.2) 

It is now easy to prove one of the basic properties of best approxima­
tions, which depends on the convexity of the set of approximating 
functions. This convexity condition holds, of course, when .sli is a linear 
space. 

Theorem 2.2 
Let .sli be a convex set in a normed linear space @,and let f be any 

point of i?1J such that there exists a best approximation from .sli to f. Then 
the set of best approximations is convex. 

Proof. Let h * be the error of the best approximation 

h* = min Ila-/~. 
a EslJ 

(2.3) 

The set of best approximations is the intersection of .sli and the ball 
.K(f, h*). The theorem follows from the fact that the intersection of two 
convex sets is convex. D 

The uniqueness theorems of the next section require either .sli or the 
norm of the linear space £1J to be strictly convex. The norm is defined to be 
strictly convex if and only if the unit ball centred on the origin, namely 
.K(O, 1), is strictly convex. Because the general ball (2.1) can be obtained 
from .K(O, 1) by translation and magnification, strict convexity of the 
norm implies that the set (2.1) is strictly convex for any f and r. 

2.2 Conditions for uniqueness of the best approximation 
The two uniqueness theorems that are given below are self­

evident if one takes the geometric view of best approximation that is 
described in Section 1.5. We recall that a ball with centre f is allowed to 
grow until it touches the set .sli of approximating functions, and then the 
radius of the ball has the value (2.3). The two theorems state that there is 
only one point of contact between .sli and .K(f, h *), if the boundary of 
either .sli or .K(f, h *) is curved, and if both sets are convex. 
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Theorem 2.3 
Let d be a compact and strictly convex set in a normed linear 

space g/J. Then, for all f E g/J, there is just one best approximation from .stl. 
to f. 

Proof. Theorem 1.1 shows that there is a best approximation. We 
continue to let h* be the error (2.3). Suppose that s0 and s 1 are different 
best approximations from .stl. to f. Because the triangle inequality for 
norms gives the condition 

ll!Cso + s1)-!II.;; !llso-!II+ !lls1 - fll, (2.4) 

and because d is convex, it follows that !Cso + s1 ) is also a best approxi­
mation, and therefore it satisfies the equation 

ll!Cso+ s1)- fll = h*. (2.5) 

We let A be the largest number in the interval 0.;; A .;; 1 such that the point 

s = !Cso + s1) +A [f-!(so + s1)] (2.6) 

is in d. The value of A is well-defined because .stl. is compact. Expressions 
(2.5) and (2.6) imply the equation 

lls -fll = (1-A)h*. (2.7) 

However, h * is positive because otherwise s0 = f =Si, and A is positive 
because the strict convexity of d implies that !(s0 + s1) is an interior point 
of d. It therefore follows from equation (2. 7) that lls - fll is less than h *. 
This contradiction proves the theorem. D 

Theorem 2.4 
Let d be a convex set in a normed linear space g/J, whose norm is 

strictly convex. Then, for all f E g/J, there is at most one best approxima­
tion from d to f. 

Proof. Suppose that s0 and s1 are different best approximations from .stl. 
to f. Because the strict convexity of the norm implies that the set .H(f, h *) 
is strictly convex, the point !Cso + s 1 ) is an interior point of .H(f, h *),which 
is the condition 

l!!Cso + s1)-!II< h *. (2.8) 
This is a contradiction, however, because !(s0 + s1) Ed. The theorem is 
proved. D 

Theorem 2.4 is much more useful to us than Theorem 2.3, because our 
sets of approximating function's are finite-dimensional linear subspaces. 
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Therefore it is important to know whether the norm of 8?J is strictly 
convex. It is proved in Section 2.4 that the 2-norms in ~[a, b] and in 9/l 11 

are strictly convex, but that the 1- and oo-norms are not. In fact all the 
p-norms are strictly convex for 1 < p < oo. 

2.3 The continuity of best approximation operators 
When there is a unique best approximation from .s4 to f for all 

f E 8?1, we can regard the best approximation as a function of f. Hence 
there is a best approximation operator from glJ to d, which we call X, and 
which, incidentally, must be a projection. It is shown in this section that 
often the operator X is continuous. This result is important to computer 
calculations, because, if it does not hold, then the effect of computer 
rounding errors in the definition off may cause substantial changes to the 
calculated approximation. 

Theorem 2.5 
Let .s4 be a compact set in a metric space gfl, such that for every f 

in q, there is only one best approximation in d, X(f) say. Then the 
operator X, defined by the best approximation condition, is continuous. 

Proof. If the theorem is false, there exists a sequence of points {f;; i = 
1, 2, 3, ... } in q, that converges to a limit, f say, such that the sequence 
{X(f;); i = 1, 2, 3, ... } in .s4 fails to converge to X(f). Therefore, by 
compactness, the second sequence has a limit point, a* say, that is in .s4 
but that is not equal to X(f). It suffices to show that both a* and X(f) are 
best approximations to f, for then we have a contradiction that proves the 
theorem. 

Therefore we consider the distance d(a*,f), and, by applying the 
triangle inequality (1.1) twice, we deduce the bound 

d(a* ,f),,;;; d(a *, X(f;)) + d(X{f;), f;) + d(f;, f). (2.9) 

Moreover, the definition of X(f;) gives the relation 

d(X(f;), f;),,;;; d(X(f), f;) 

,,;;; d(X(f), f) + d(f, [;), (2.10) 

where the last line makes use of the triangle inequality again. Now, for 
any e > 0, there exists i such that the conditions 

d(a*,X(f;)),,;;;te (2.11) 

and 

(2.12) 
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hold. It follows from expressions (2.9) and (2.10) that the bound 

d(a*, f) ~ d(X(f),f)+ e (2.13) 

is obtained. Since e can be arbitrarily small, a* is a best approximation 
from .sd to f, which is the required contradiction. D 

By applying the technique that is used in the proof of Theorem 1.2, it 
can be shown that the following theorem is true also. The proof is left as 
an exercise. 

Theorem 2.6 
If .sd is a finite-dimensional linear space in a normed linear space 

[JJJ, such that for every f in f1J there is only one best approximation in .sd, 
X(f) say, then the operator X, defined by the best approximation 
condition, is continuous. D 

The last theorem is directly relevant to the approximation problems 
that are studied in later chapters. Note that it provides additional 
motivation for giving attention to the uniqueness of best approximations. 

2.4 The 1-, 2- and oe>-norms 
The method that we use to prove that the 2-norm is strictly 

convex in <'€[a, b] and 9/l" makes use of scalar products. It is well known 
that the scalar product of y and z in P/l," has the value 

n 

(y, z) = L y;z;, (2.14) 
i=l 

and in <'€[a, b] the scalar product of the functions f and g is the expression 

(f, g) = r f(x)g(x) dx. (2.15) 

It is important to note that (f, f) is equal to llfll~. Further, the identity 

llt + glJ~ = lltll~ + 2([, g) + llglJ~ (2.16) 

is obtained, either when f and g are in <'€[a, b ], or when they are in 91l ". In 
fact it holds for all Hilbert spaces, but, if the reader has not met Hilbert 
spaces before, it is sufficient for him to recognise that equation (2.16) is 
valid both for <'€[a, b] and for P/l, ". We note also that the scalar product 
(f, g) is linear in f and in g. 

Theorem 2.7 
The 2-norm of the linear space [JJJ is strictly convex when [JJJ is 

either <'€[a, b] or P/l, ". 
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Proof. We let f and g be any two distinct points of PJJ such that 
llflli = llglli = 1. It is sufficient to prove that the bound 

1181 + (1- O)glb < 1 (2.17) 

is satisfied for all 0 < 0 < 1. The identity 

1101+(1-8}gll~ + 8(1- 8)llf- gll~ 
= 02 +20(1- O)(f, g} + (1- 0)2 + 0(1- O)[l -2(/, g) + 1] 

=l, (2.18) 

which holds for all values of 8, gives the required inequality (2.17). D 
It has been stated already that the 1- and oo-norms in "[a, b] and in !n" 

are not strictly convex, and now this statement is proved. We also wish to 
find out whether best approximations from linear subspaces are always 
unique. If we prove first that the norms are not strictly convex, then 
Theorem 2.4 does not answer the uniqueness question. If instead, 
however, we can demonstrate that a best approximation from a linear 
subspace of a normed linear space is not unique, then we may deduce 
from Theorem 2.4 that the norm is not strictly convex. We give examples 
of this kind. In each one there is a linear subspace .stJ and a point f such 
that the best approximation from .stJ to f is not unique, where .stJ and f are 
contained in either "[a, b] or in !n", and where the accuracy of the 
approximation is measured either by the 1-norm or by the oo-norm. 

When the 1-norm is used in"[ -1, l], we let/ be the constant function 
whose value is one, and we let .stJ be the one-dimensional linear space that 
contains all functions of the form 

a(x)=Ax, -l~x~l, (2.19) 

where A is a parameter. It is straightforward to derive the equation 

min J 1 
lf(x )- a (x )! dx = 2, (2.20) 

ae.s4 -1 

and to show that the minimum value is obtained when A is in the range 
- 1 ~A ~ 1. Hence the best approximation is not unique. 

This example for the 1-norm is extended to !n" (n ;;;i: 2) by dividing the 
interval [ -1, 1] by the points -1 = x1 <x2 < ... <x,,=1, which are 
equally spaced 

Xi+1-xi=2/(n-1), i=l,2, ... ,n-1. (2.21) 

We evaluate the function f that we had before at these points to give a 
vector f e !n ". Moreover, corresponding to equation (2.19), we let a e 
.stJ c !n" be the vector whose components have the values 

ai =Axi, i = 1, 2, ... , n, (2.22) 
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where A is still a parameter. Now, instead of equation (2.20), we find the 
expression 

" min L If; -ad= n, (2.23) 
aed i~ 1 

and again the minimum value is obtained for all values of A in the range 
-l~A~l. 

For the oo-norm in cg[ -1, l], we again let f be the constant function 
whose value is one, but now we let .sl/. be the one-dimensional linear space 
that contains functions of the form 

a(x) = ,\ (1 + x), 

We deduce the equation 

min llf-alloo = 1, 
aed 

-l~x~l. (2.24) 

(2.25) 

and we find that the function (2.24) is a best approximation if and only if A 
satisfies the condition 

(2.26) 

Hence we have non-uniqueness once more. We extend the example to~" 
in the way described in the previous paragraph. The components off E ~" 

are the same as before, but, because of equation (2.24), the components 
of a E .sl/. have the values 

a; =A (1 + x;), i = 1, 2, ... , n, (2.27) 

instead of the values (2.22). The range of values of A that give a best 
approximation from .sl/. to f is still the range (2.26). 

The reader is advised to draw figures that show the non-uniqueness of 
the best approximation in these four examples. It should be noted also 
that the examples illustrate the usefulness of Theorem 2.2. 

In many important cases, in particular when the normed linear space is 
cg[a, b ], when the norm is either the 1-norm or the oo-norm, and when .sl/. 
is the space PP,. of algebraic polynomials of degree at most n, then the best 
approximation is unique for all f in cg[a, b ]. This statement is proved 
later. The purpose of the examples, therefore, is to show that, if .sl/. is a 
linear subspace of a normed linear space, whose norm is not strictly 
convex, then the uniqueness of best approximations depends on proper­
ties of .sl/. and f. 

2 Exercises 
2.1 Let .sl/. be a closed, bounded convex set of a linear space [1/J, such 

that the zero element is an interior point of .sl/., and such that if 
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f Ed then - f Ed. Show that the following definition of llfll 
satisfies the axioms of a norm. If f is the zero element we let 
11111 = 0, and otherwise we let 11111 be the smallest positive number 
such that f /llfll is in the set d. 

2.2 Prove Theorem 2.6. 
2.3 Prove that the norm 

b l 

llfll4 = [t lf(x)l4 dx r. f E <€[a, b], 

is strictly convex. 
2.4 Let d be the set {a: llalb,,;;:;: l} in the two-dimensional space fn 2, 

but let the oo-norm be used as a distance function. Draw a 
diagram to show the best approximation in d to a general point 
in £n 2 • Verify that the best approximation operator from £n 2 to d 
is continuous. 

2.5 Let £?lJ be a linear space that has a strictly convex norm, and that is 
such that the unit ball d ={a: Ila 11,,;;:;: 1} is compact. For any f E £?7J, 

let X (f) be the best approximation from d to f. Show that, if 
11111>1, then X(f) is the point f/llfll. Hence prove that the opera­
tor X satisfies the continuity condition 

where f 1 and fi are any two points of £?7J. 

2.6 By considering the approximation of the function {f(x) = x; 
- TT,,;;:;: x,,;;:;: TT} by a multiple of {sin2 x; -TT,,;;:;: x,,;;:;: TT}, show that the 
norm 

llfll = L1T1T lf(x)I dx + _,?!~:1T lf(x)I, f E <€[ - TT, TT], 

is not strictly convex. 
2.7 Let the set din<€[ -1, 1] contain the continuous functions that 

are each composed of one or two straight line segments. Show 
that there is more than one best approximation from d to the 
function {f(x)=x 3 ; -1,,s;x,,s;l}, with respect to the oo-norm. 

2.8 Find a plane in £n 3 that has several closest points to the origin 
with respect to the 1-norm, and that also has several closest 
points to the origin with respect to the oo-norm. 

2.9 Investigate the following hypothesis. If d is a compact set in a 
normed linear space £?7J, and if d is not convex, then there exists a 
point f in £?lJ that has more than one best approximation in d. 
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2.10 Let d be a compact and strictly convex set in a normed linear 
space rJJ. For any a in d, let Y(a) be the set of points in 00 such 
that sis in Y(a) if and only if a is the best approximation from d 
to s. Investigate general conditions that ensure that the set Y(a) 
is convex. 
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Approximation operators and some 
approximating functions 

3.1 Approximation operators 
We continue to let .slJ. be a set of approximating functions in a 

normed linear space :YJ. It was noted in Section 2.3 that if, for every fin @, 
there is a unique best approximation from .slJ. to f, X(f) say, then we may 
regard X as an operator from :YJ to .sl/.. We now take the more general 
point of view that X is an approximation operator if it is any mapping 
from@ to .sl/.. 

Nearly all numerical methods for calculating approximations are 
approximation operators. It is only necessary for the method to select a 
unique element of .slJ. as an approximation to any fin :YJ. We make this 
remark because it is helpful sometimes to relate some fundamental 
properties of operators to algorithms. 

For example, some of the work of Chapter 17 concerns algorithms that 
possess the projection property. Therefore we note that the operator X is 
defined to be a projection if the equation 

X[X(f)] =X(f), /E@, (3.1) 
is satisfied. Hence a sufficient condition for X to be a projection is the 
equation 

X(a) =a, a E .sl/.. (3.2) 

Most of the approximation methods that are considered in this book do 
satisfy condition (3.2), but an important exception is the Bernstein 
operator, which is discussed in Chapter 6. Sometimes X(f) is written 
asX/. 

The idea of a linear operator is also well known; namely, we define X to 
be linear if the equation 

X(Af) =AX(/) (3.3) 
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holds for all f E @3, where A is any real number, and if the equation 

X(f + g) =X(f)+X(g) (3.4) 

is obtained for all f E [lJJ and for all g E @3. Usually, when X is linear and 
when .sli is a finite-dimensional linear space, the calculation of X(f) 
reduces to the solution of a system of linear equations. For example, we 
find in Chapter 11 that this case occurs when X(f) is the best approxima­
tion to f with respect to the 2-norm. However, if X(f) is the best 
approximation in the 1-norm or oo-norm, then X is hardly ever a linear 
operator. 

Also we make frequent use of the norm of an approximation operator. 
The norm of X is written as llXll. and it is the smallest real number such 
that the inequality 

llX(f)ll:;;; llXll llfll (3.5) 

holds for all f E @3. The notation llXllP indicates that llXll is derived from 

lltllp· 
An example of an approximation operator that is useful because it is 

easy to apply is as follows. Let [lJJ be the space c-e[O, 1] of real-valued 
functions that are continuous on [O, 1], and let .sli be the linear space [11'1 of 
all real polynomials of degree at most one. Then, in order that the 
calculation of an approximation to a function fin [lJJ depends on only two 
function evaluations, we let p be the polynomial in .sli that satisfies the 
interpolation conditions 

p(O) = f(O)} 
p(l) = f(l) . (3.6) 

Thus p = X(f), where X is a linear projection operator from [lJJ to .sli. 
In order to define the norm of this operator we choose a norm for the 

space c-e[O, 1]. However, if the 2-norm 

1 ! 

llflb={L [f(x)]2 dx}
2

, f E c-e[O, l], (3.7) 

is used, we find that the operator X is unbounded, because it is possible 
for llX/lb to be one when II/lb is arbitrarily small. It is therefore necessary 
to prefer the oo-norm 

llflloo = max lf(x)I, 
O=s;xos;;l 

f E c-e[O, 1], (3.8) 

when considering approximation operators that are defined by 
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interpolation conditions. In this case, because p is in [;li, equation (3.6) 
implies the inequality 

\\X(f)\\ = \\p\\ 
= max [\p(O)\, \p(l}\] 

= max [\f(O}\, \f(l)\] 

~ llt\I, t E re[o, lJ. (3.9) 

Hence the value of \\XII is at most one. Because the function {f (x) = 1; 0 ~ 
x ~ 1} shows that l\Xll is at least one, it follows that the norm of the 
approximation operator is equal to one. The norms of several other 
operators are calculated later, and the work of the next section gives one 
reason why they are important. 

3.2 Lebesgue constants 
The norm of an approximation operator is sometimes called the 

Lebesgue constant of the operator. In particular this term is used when 
one compares the error of a calculated approximation with the smallest 
error that can be achieved. The next theorem shows that the value of the 
norm is of direct relevance to this comparison. 

Theorem 3.1 
Let stl be a finite-dimensional linear subspace of a normed linear 

space £YJ, and let X be a linear operator from £YJ to stl that satisfies the 
projection condition (3.2). For any f in 11J, let d* be the least distance 

d*=minl\f-a\\ (3.10) 
aEsi 

from f to an element of stl. Then the error of the approximation X(f} 
satisfies the bound 

II!-X(f)\\ ~ [1 + \\X\\]d*. (3.11) 

Proof. Let p* be a best approximation from stl to f, which is shown to 
exist by Theorem 1.2. The projection condition (3.2) and the linearity of 
X give the equation 

f- X(f} = (f-p*}-X(f- p*). (3.12) 

It follows from the triangle inequality for norms, and from the definitions 
of \\X\\ and p*, that the bound 

II!-X(f}ll ~lit-p*ll + llX(f-p*}\\ 
~ [1 + llXllJ lit-p*ll 
=[l+llXl\Jd* (3.13) 

is obtained, which is the required result. D 
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If we apply this theorem to the example given in Section 3.1, where 
p = X(f) is the linear polynomial that satisfies the conditions (3.6), then 
we find the bound 

11/-X{f)lloo.;:; 2 min 11/-plloo. 
pEellt 

(3.14) 

Hence the maximum error of .the approximation from @> 1 to f that is 
defined by the interpolation conditions (3.6) is never more than twice the 
least maximum error that can be achieved. Results of this kind often show 
that the extra work of calculating best approximations is not worthwhile. 

If the interpolation method (3.6) is applied to the function 

f(x)=x 2 , O.;:;x.;:;1, (3.15) 

then the calculated approximation is the polynomial {p (x) = x; 0.;:; x .;:; 
l}, while the approximation that minimizes the oo-norm of the error is the 
function {p*(x)=x-l,O.;:;x.;:;1}. This example shows that expression 
(3.11) can be satisfied as an equality. 

One useful application of Theorem 3 .1 is to the case when one requires 
a polynomial approximation p to a function fin C€[a, b j that satisfies the 
condition 

(3.16) 

where e is a given positive number. The degree of the polynomial is not 
specified, but it should not be much larger than necessary. Let .slJ. be the 
space rY>n of polynomials of degree at most n, and let X be a linear 
operator from C€[a, b] to .slJ. that satisfies condition (3.2). If X(f) is 
calculated, and if it is found that at a point of the range [a, b] the modulus 
of the error function [f - X (f)] is larger than [ 1 + llXlloo]e, then it follows 
from Theorem 3.1 that the degree of p must exceed n. Hence it is possible 
sometimes to derive useful information about best approximations from 
simple algorithms. Therefore, when we consider practical algorithms that 
are linear projections, we usually give some attention to the norm of the 
approximation operator. 

3.3 Polynomial approximations to differentiable functions 
Much of the work of this book is given to approximation by 

polynomials. One could try to justify this specialization by the well­
known Weierstrass theorem. It is proved in Chapter 6, and it states that, 
for any fin C€[a, b] and for anv e > 0, there exists an algebraic polynomial 
p that satisfies the condition 

I//-Pl/oo.;:; e. (3.17) 
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Sometimes, however, the degree of p has to be so large that the poly­
nomial is not a useful approximation in practice. Therefore there are 
other reasons for giving so much attention to polynomials. One is that 
polynomials show nicely the properties of best approximations in the 1-, 
2- and oo-norms that help the numerical methods of calculation. 
Moreover, the theoretical work of the subject provides several tech­
niques of analysis that can be used sometimes in new applications. One of 
these techniques is shown in this section, because it is instructive to 
compare it with the use that was made of equation (3.12) in the proof of 
Theorem 3.1. The result that is obtained shows that the adequacy of 
polynomial approximations depends on the differentiability properties of 
the function that is being approximated. 

In order to give this result, we introduce some more notation, and we 
accept some assertions that are proved later. We take from Chapter 7 the 
statement that the b"st approximation in the oo-norm from the space PPn 
to any function fin <e[a, b] is unique. We let Xn be the best approxima­
tion operator, and we define d! (f) to be the least maximum error 

d! (/) =II/ - Xn (f)lloo, f E <e[a, b]. (3.18) 

We take from Chapter 16 the statement that there exists a constant c such 
that, if f is any continuously differentiable function on [a, b ], then the 
inequality 

(3.19) 

is satisfied for all positive integers n. We let ce<kl[a, b] be the linear space 
of real-valued functions on [a, b] that have continuous kth derivatives. 
The result is as follows. 

Theorem 3.2 
Condition (3.19) implies that, if the function f is in ce<kl[a, b] and 

if n ~ k, then the distance d! (f) satisfies the bound 

(3.20) 

Proof. By hypothesis, Theorem 3.2 holds when k = 1. The method of 
proof is inductive. Therefore we suppose that the theorem is true when k 
is replaced by (k -1), and we prove it is true fork. 
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Because n ~ k implies (n -1) ~ (k -1), we may apply the inductive 
hypothesis to the function f', which is in ~(k-l)[a, b ], to obtain the 
condition 

( k)' k-1 
d* (f') :< n - .c llt<klll 

n-1 ~ (n -1)! CX:). 
(3.21) 

We let q be an indefinite integral of the best approximation from g;n-l to 
f'. It follows from expression (3.19) that the inequality 

d! (f- q):::; (c/ n )II/' - q'lloo 
= (c/ n )d!-1 (/') (3.22) 

is satisfied, where the last line depends on the definition of q. The result 
that we use that is similar to equation (3.12) is the identity 

min llf-plloo = min llf-q -plloo, 
pEf!Pn pEf!Pn 

(3.23) 

which holds because q is in the linear space g; n· This identity is the 
equation 

d! (f) = d! (f-q). (3.24) 

The proof of the theorem is a straightforward consequence of expressions 
(3.21), (3.22) and (3.24). D 

Expressions (3.19) and (3.20) are useful because, when f is a continu­
ously differentiable function from ~[a, b ], they provide bounds on the 
rate of convergence of the sequence {Xn(f); n = 0, 1, 2, ... } to f, where 
Xn is the best minimax approximation operator. It is interesting to 
investigate how closely the bounds are satisfied in some particular cases. 
Therefore some values of d! (f) are given in Table 3.1 for the two 
functions f that are obtained by letting k have the values 1 and 3 in the 
definition 

f(x) = lxl\ -l:::;x:::;l. (3.25) 

The table suggests that, as n ~ oo, the error II! - Xn (f)ll converges like 
(1/n)k, which is the rate of convergence of the bound (3.20) when f is in 

Table 3.1. Some values of d~ (f) when f(x) =Ix lk 

n k=l k=3 

2 0.125 00 0.074 07 
4 0.067 62 0.008 88 
8 0.034 69 0.00114 

16 0.017 47 0.00014 



Approximation operators 28 

cg<kt-1, 1]. Because the trial functions are in cg<kt-1, 1], except for the 
kth derivative discontinuity at x = 0, Theorem 3.2 seems to be quite 
realistic. This statement can be made more definite because, by applying a 
technique that is described in Chapter 16, it can be proved that inequality 
(3.20) is satisfied without change to the constant c, if the derivative /kl is a 
piecewise continuous function, provided that the number of dis­
continuities is finite. 

This discussion shows that, if a very accurate approximation is required 
to a function f, then usually it is not appropriate to let the approximating 
function be a single polynomial, unless high derivatives off exist. Even 
when f is infinitely differentiable, then polynomial approximations may 
not be suitable. One reason is that the only polynomials p(x) that remain 
bounded when x ~ oo are constant functions. Therefore, if the function 
shown in Figure 1.1 is approximated closely by a polynomial, there is a 
strong natural tendency for the approximation to diverge rapidly to an 
unbounded value when the variable x is outside the range [a, b ]. It may be 
difficult to suppress this tendency inside the range of x. 

Rational approximations, therefore, are preferred to polynomials 
almost exclusively in the computer subroutines that calculate standard 
mathematical functions, such as sines, exponentials and arc-tangents. In 
rational approximation, the set .sd depends on two non-negative integers 
m and n, for it is composed of functions of the form 

r(x) = p(x)/q(x), a ,;;;;x,;;;;b, (3.26) 

where p E {JPm and q E {JPn· Hence .sd is not a linear space, and the 
algorithms for obtaining rational approximations are not linear opera­
tors. Some methods of calculation are described briefly in Chapter 10. 

The question whether to give further attention to rationals was con­
sidered carefully when this book was planned. Because it was decided to 
concentrate on the cases when .sd is a finite-dimensional linear space, we 
emphasise now that rational approximations are usually far superior to 
polynomials, in terms of the number of coefficients that are required in 
order to provide sufficient accuracy. Further information can be found in 
the references. 

3.4 Piecewise polynomial approximations 
Consider the problem of deciding on an approximation, s say, in 

'€[a, b ], to a function f, given only the function values 

f(x;) = y;, i = 1, 2, ... , m, (3.27) 



Piecewise polynomial approximations 29 

where the abscissae of the data are in ascending order 

a :s;;x1 <x2 < ... <xm :s;;b. (3.28) 

Often a suitable approach to this problem is to imagine that the data are 
plotted, and that s is defined by drawing a smooth curve through the data 
points. One advantage of this method is that it allows much flexibility. For 
example, if f is composed of a sequence of peaks that are separated by a 
flat background, then each peak can be plotted separately. However, 
suppose that instead we let s be an analytic function. Then this flexibility 
is lost, because, by analytic continuation, the form of s in any part of the 
range [a, b] determines the whole of the approximating function. It is 
inefficient, therefore, to restrict s to a single polynomial or rational form 
in approximation algorithms that are intended for general use. Instead, 
most of the flexibility of the graphical method can be obtained by lettings 
be a piecewise polynomial function. 

An example of a piecewise polynomial approximation that occurs 
frequently is linear interpolation in a table of function values. Given the 
data (3.27), where x 1 =a and Xm = b, the functions is defined on each of 
the intervals {[x;, X;+i]; i = 1, 2, ... , m -1} by the equation 

() (x;+1-x)f(x;)+(x-x;)f(x;+1) 
s x = 

(X;+1 -x;) ' 

Hence s is composed of a sequence of straight line segments that are 
joined so that s is continuous. If the smoothness of f varies greatly on 
[a, b ], then it is usually advantageous to concentrate the data points 
where the curvature of f is large. 

We define s to be a continuous piecewise polynomial of degree k, if it is 
in ce[a, b ], and if there exist points ui; i = 0, 1, ... ' n }, satisfying the 
conditions 

(3.30) 

such that s is a polynomial of degree at most k on each of the intervals 
{[g;-i. g;]; i = 1, 2, ... , n }. We defines to be a spline function of degree k 
if, in addition to being a continuous polynomial of degree k, it is in the 
space cg(k-1)[ a, b]. In this case the points ui; i = 1, 2, ... ' n - 1} are called 
knots. We use the notation Y(k, g0 , {!, ... , gn) for the linear space of 
spline functions of degree k that have these knots. We note that each 
member of the space has the form 

k . 1 n-1 k 

s(x)=i~0 cix1 +k!i~1 di(x-gi)+, a:s;;x:s;;b, (3.31) 
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where the subscript'+' has the meaning 

(x - gj)+ = max [O, x - g;], 
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(3.32) 

and where the parameters{c;; j = 0, 1, ... , k} and{d;; j = 1, 2, ... , n -1} 
distinguish the different members of Y(k, g0 , ~i. •.. , ~n). Hence the 
dimension of the space is (n +k). We find later, however, that the form 
(3.31) of a spline function is less suitable for numerical calculation than 
one that is recommended in Chapter 19. When a spline is obtained from 
the data (3.27) there is no need for the knots {g;; i = 1, 2, ... , n -1} to be 
a subset of the abscissae {x;; i = 1, 2, ... , m}. 

There are several reasons for giving attention to spline functions. If one 
requires an approximating functions that is in "€Ul[a, b] and that is more 
flexible than an analytic function, then the simplest kind of function to 
handle in computer calculations is a spline of degree (j + 1). If one 
requires an approximating function that is a piecewise polynomial of 
degree k, then an advantage of using a spline is to provide a high order of 
derivative continuity. Thus some of the freedom in s is fixed automatic­
ally, which can be important if there is a limited amount of data to 
determine the approximating function. Moreover, we find in Chapters 
22-24 that splines occur naturally in the analysis of many approximation 
methods. 

In order to keep the properties that are obtained when the set of 
approximating functions is a linear space, we suppose that the parameters 
k and {g;; i = 0, 1, ... , n} of Y(k, g0 , gi, ... , gn) are given. Often in prac­
tice the value of k is three. Larger values provide more smoothness in the 
approximating function, but they reduce the amount of flexibility. The 
question of accuracy is also important to the choice of k. Specifically, if f is 
a fixed function in "€Ck+ll[a, b ], and if the value of n and the distribution of 
the knots is variable, then the equation 

min \\f-s\\=O(hk+l) 
SE Y'(k,fo,f;1, ... ,f;n) 

is satisfied, where h is the greatest interval between knots 

h = max \g;-g;-1\. 
l~i~n 

(3.33) 

(3.34) 

A proof of this result is given in Chapter 20. Expression (3.33), however, 
conceals one of the main properties of spline approximation, which is that 
it is usually advantageous to concentrate the knots where f varies most 
rapidly. 

Splines of degree three are called cubic splines. They are used often in 
practice for approximations to functions and data, because they usually 
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provide a suitable balance between flexibility and accuracy, and because 
reliable algorithms are available for calculating them. Some of these 
algorithms choose the knot positions automatically. One of these 
methods is described in Chapter 21, and references to other algorithms 
are given in Appendix B. 

3 Exercises 
3.1 Every linear operator X from ~n to ~n can be written in the 

form 
n 

[Xf]; = I X;j[f]i> 
i=l 

where X is an n x n matrix, and where the notation [/]; means 
the ith component of the element[ in ~n. Express llXlli. llXllz and 
llXlloo in terms of the elements of X. 

3.2 For any fin cg[a, b ], let Xf be the function 

(Xf)(x) = r K(x, y)f(y) dy, a <;;x .;;;b, 

where {K (x, y); a ,,;;;; x ,,;;;; b, a ,,;;;; y ,,;;;; b} is a given continuous 
function of two variables. Express llXlloo in terms of K, and 
investigate whether, if llXlloo = 1 and Xf = f, then f is a constant 
function. 

3.3 In Exercise 3.2 let [a, b] be the interval [-1, 1], and let K be the 
function 

K(x, y) =!(1 +3xy), 

Prove that the operator X is a projection from cg( -1, 1] to the 
space [l/>1 of linear polynomials, and that llXlloo has the value~. 

3.4 For any fin cg[o, 1] let Xf be the function 

I 

(Xf)(x) = 2 r f(t) dt + (x -!)[f(l)- f(O)], 

Prove that the bound 

llf- Xflloo,,;;;; 3!llf- Plloo 

is satisfied, where p is any approximation to f from the space [l/> 1 

of linear polynomials. 
3.5 Investigate whether the inequality of Exercise 3.4 can be 

satisfied as an equation. 
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3.6 Show that the estimate 

f(3) = -![(O) + f(l) +![(4) 
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is exact if f is a quadratic polynomial. For a particular fin <(6'[0, 4] 
it is found that the error of the estimate is 0 .15. Prove that the 
inequality 

min max lf(x)-p(x)!;;.:0.05 
pe!?.P2 Q:s::;;x:s;;;4 

holds. 
3.7 We use the notation of Theorem 3.2. For any positive integer k 

let the numbers {c(k, n); n;;;,: k} satisfy the condition 

d! (f):;;; c (k, n )i!/k)lloo, f E <(g(k)[a, b]. 

Prove that, if n ;;;,: 2k, then the bound 

d!(f):;;;c(k, n)c(k, n -k)ll/2 k)lloo, f E <(6'<2kta, b], 

is obtained. Hence deduce a relation between d! (f) and ll/2 k)lloo 
from expression (3.20). 

3.8 Let .sd be the set of quadratic splines in 't&'[-1, 1] that have at 
most two knots in the open interval (-1, 1), and let f be the 
function {f(x)=lxl;-l:;;;x:;;;l}. Show that there exists sin .sd 
such that II!- slloo is less than any given positive number, but that 
no member of .sd satisfies the condition llf-slloo = 0. 

3.9 Lets be the cubic spline function 

s(x) = x 3 -4(x -1)! +6(x -2)!-4(x -3)! + (x -4)!, 

O:;;;x:;;; 100. 

Show that s is identically zero if x;;;,: 4, but that severe cancel­
lation occurs if s(lOO) is evaluated from the definition of s. 

3 .10 Let .sd be the set of piecewise functions of the form 

{ O, O:;;;x :;;;,\, 
S,1. (X) = 

1, A<x:;;;l, 

where A is a parameter from the interval [O, 1], and let f be a 
function in 't&'[O, 1]. Show that, if S,1. is a best L 1 approximation 
from .sd to f, then A = 0, or A = 1, or f (A) = !. Find an fin 't&'[O, 1] 
that has exactly two best L 1 approximations in d. 
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Polynomial interpolation 

4.1 The Lagrange interpolation formula 
If one decides to approximate a function f E l{g[a, b] by a poly-

nomial 

a ~x ~b, (4.1) 
i=O 

one has the problem of specifying the coefficients {ci; i = 0, 1, ... , n }. 
The most straightforward method is to calculate the value off at (n + 1) 
distinct points {xi; i = 0, 1, ... , n} of [a, b ], and to satisfy the equations 

i = 0, 1, ... , n .. (4.2) 

We note that there are as many conditions as coefficients, and the 
following theorem shows that they determine p E PPn uniquely. 

Theorem 4.1 

Let {x;; i = 0, 1, ... , n} be any set of (n + 1) distinct points in 
[a, b ], and let f E l{g[a, b]. Then there is exactly one polynomial p E PPn 
that satisfies the equations (4.2). 

Proof. Fork= 0, 1, ... , n, let lk be the function 
n 

fdx)= n (x-xJ/(xk-Xj), a~x~b. 
j~O 

i"'k 

We note that lk E PPn and that the equations 

h (xJ = oki• i = 0, 1, ... , n, 

hold, where Ok; has the value 

{ 1, 
8ki = 0 

' 

k = i, 

k ~i. 

(4.3) 

(4.4) 

(4.5) 
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It follows that the function 
n 

P = L f(xk) tk (4.6) 
k=O 

is in Pl'n and it satisfies the required interpolation conditions (4.2). To 
show uniqueness, suppose that the equations (4.2) are satisfied by both 
p E Pl'n and q E Pl'n. Then the difference (p-q) is in Pl'n and it has roots at 
the points {x;; i = 0, 1, ... , n}. However, a polynomial of degree at most 
n that has (n + 1) distinct roots is identically zero. Therefore p is equal 
to q. 0 

The numerical value of the interpolating polynomial p(x) for any fixed 
x in [a, b] can be calculated by first computing the numbers (4.3) for 
k = 0, 1, ... , n, and then by substituting them in the equation 

n 

p(x) = L f(xk) ldx). (4.7) 
k=O 

This method is called the Lagrange interpolation formula. There are 
many other algorithms for calculating p(x) that are equivalent in exact 
arithmetic. They differ, however, in the accuracy that is obtained in the 
presence of computer rounding errors, and in the amount of work that is 
done when they are applied. One of the most successful algorithms, which 
is called Newton's interpolation method, is described in the next chapter. 

The uniqueness property, proved in Theorem 4.1, allows us to regard 
the interpolation process as an operator from Cf6'[a, b] to Pl'n, which 
depends on the choice of the fixed points {x;; i = 0, l, ... , n}. The 
operator is a projection because, if f E Pl'no then we may satisfy the 
interpolation conditions (4.2) by making p equal to f. Moreover, because 
the functions h (k = 0, 1, ... , n) are independent off, equation (4.6) 
shows that the operator is linear. Therefore we may apply Theorem 3.1, 
and we find in Section 4.4 that it gives some interesting results. 

When the function values {f(x;); i = 0, 1, ... , n} cannot be obtained 
exactly, it may be important to know the contribution that their errors 
make to the calculated polynomial p. Equation (4.6) answers this ques­
tion directly, for, if the true function value f(xk) is replaced by the 
approximation {f(xk) + ed fork= 0, 1, ... , n, we see that the change top 

is the expression Leklk. 
The Lagrange interpolation formula provides some algebraic relations 

that are useful in later work. They come from our remark that the 
interpolation process is a projection operator. In particular, for 0,,;;; i,,;;; n, 
we let f be the function 

f(x) = x\ a ,,;;;x,,;;; b, (4.8) 
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in order to obtain from expression (4.7) the equation 
11 

I x~lk(x) = xi, 
k=O 

(4.9) 

The value i = 0 gives the identity 
n 

I ldx)=l, (4.10) 
k=O 

whichisusefulforcheckingthenumbers{ldx); k =0, 1, ... , n}whenthe 
Lagrange interpolation method is applied. Moreover, by substituting the 
definition (4.3) in equation (4.9), and then by considering the coefficient 
of xn, we find the identity 

i = 0, 1, ... , n. (4.11) 

4.2 The error in polynomial interpolation 
We use the notation e for the error function of an approximation, 

and in this chapter it has the value 

e(x) = f(x)-p(x), (4.12) 

where p is the polynomial in rJ' n that satisfies the interpolation conditions 
(4.2). It should be clear that, if we change f by adding to it an element of 
rJ' m then the interpolation process automatically adds the same element 
to p, which leaves e unchanged. Expressions for the error should show 
this property. It is therefore appropriate, when I E ce<n+l)[a, b ], to state e 
in terms of the derivative t<n+t>, which is done in our next theorem. 

Theorem 4.2 
For any set of distinct interpolation points {x;; i = 0, 1, ... , n} in 

[a, b] and for any f E ce<n+t>[a, b ], let p be the element of rJ'n that satisfies 
the equations (4.2). Then, for any x in [a, b ], the error (4.12) has the value 

e(x)=( 1
1)1 .fI (x-xN<n+t>(g), (4.13) 

n + . 1=0 

where g is a point of [a, b] that depends on x. 

Proof. Two methods are used in this book to express errors in terms of 
derivatives. One is to apply the Taylor series expansion, and the other one 
is to use Rolle's theorem several times. Rolle's theorem states that, if a 
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continuously differentiable function is zero at two points, then its deriva­
tive is zero at an intermediate point. By using this result inductively, we 
deduce that, if a function g E cg<n+ 0 [a, b] is zero at (n + 2) distinct points 
of [a, b ], then its (n + l)th derivative has at least one zero in [a, b ]. The 
present proof depends on this fact. 

We note first that, if x is in the point set {xi; i = 0, 1, ... , n}, then 
equation (4.13) holds, because both sides of the equation are equal to 
zero. Otherwise we define the function g by the equation 

n (t-x·) 
g(t)=f(t)-p(t)-e(x) Do(x-;i)' a .;; t.;; b, (4.14) 

and it is important to note that t is the variable, the value of x being fixed. 
We see that g E ~(n+ 0[a, b ], and that g(t) is zero both when t = x and 
when t is in the point set {xi; i = 0, 1, ... , n }. Therefore there exists a 
point g in [a, b] at which the equation 

g(n+ll(g) = 0 (4.15) 

is satisfied. By substituting the definition (4.14) in this equation, and by 
rearranging terms, we find the required result (4.13). 0 

A helpful way of remembering this result is to let f be the function 

(4.16) 

In this case the error function is the polynomial 

e(x)=xn+ 1 -p(x), (4.17) 

and, because the error is zero at the interpolation points {xi; i = 

0, 1, ... , n}, e(x) must be a multiple of the product 

(4.18) 

The multiplying factor is the term /n+O(g) times a constant, which has to 
have the value 1/(n + 1)!, in order that the coefficient of xn+i in e(x) is 
equal to one, as required by equation (4.17). 

Some applications of Theorem 4.2 are as follows. If a bound on 
llf<n+Olloo is known, then expression (4.13) gives a bound on the error of 
polynomial interpolation. Similarly, an estimate of the term /n+ll(g) 
provides an estimate of the interpolation error, which is discussed further 
in the next chapter. Moreover, Theorem 4.2 is useful sometimes when 
one wishes to compare polynomial interpolation with some other linear 
approximation operator that is exact for f E PJ> n· If the error of the 
alternative operator is expressed in terms of /n+Il, then equation (4.13) 
helps to show which approximation method is more accurate. 
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4.3 The Chebyshev interpolation points 
This section concerns the choice of the interpolation points 

{x;; i = 0, 1, ... , n}. Most of the conclusions are obtained by applying 
polynomial interpolation to a particular function f, known as Runge's 
example. It is the function 

f(x)=1/(1+x 2), -5,,,;;x,,,;;5. (4.19) 

Because most of the variation in f occurs in the middle of the range 
- 5,,,;; x,,,;; 5, the discussion given in Section 3.3 shows that it is not really 
suitable to approximate f by a single polynomial. We have to choose a 
polynomial of very high degree if we wish to achieve high accuracy. 
Therefore the example serves quite well to show the kinds of difficulty 
that can occur in polynomial interpolation. In particular, we find that the 
positions of the interpolation points {x;; i = 0, 1, ... , n} are important 
when n is large. 

If the interpolation points are spaced uniformly 

X; = -5 + lOi/n, i = 0, 1, ... , n, (4.20) 

then the size of the error function (4.12) near the ends of the range 
- 5 ,,,;; x ,,,;; 5 is interesting. We let Xn-i be the point 

Xn-~ =5-5/n, (4.21) 

which is the mid-point of the last interval between interpolation points. 
The value of p(Xn-1;) was found by Lagrange interpolation for n = 
2, 4, ... , 20, and the results are shown in Table 4.1. We see that the error 
almost doubles in magnitude each time n is increased by two. Therefore it 

Table 4.1. The dependence of e(Xn-1;) on n in 

Runge' s example 

2 0.137931 
4 0.066 390 
6 0.054 463 
8 0.049 651 

10 0.047 059 
12 0.045 440 
14 0.044 334 
16 0.043 530 
18 0.042 920 
20 0.042 440 

0.759 615 
-0.356 826 

0.607 879 
-0.831 017 

1.578 721 
-2.755 OOO 

5.332 743 
-10.173 867 

20.123 671 
-39.952 449 

-0.621684 
0.423 216 

-0.553 416 
0.880 668 

-1.531662 
2.800 440 

-5.288 409 
10.217 397 

-20.080 751 
39.994 889 
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is futile to try to improve the accuracy of the approximation by increasing 
the value of n. 

The reason for the large values of e (x) shown in Table 4.1 can be found 
from the form of the error function when n = 20. Values of this function 
are given in Table 4.2 at the points that are midway between the 
interpolation points in 0 ~ x ~ 5. Negative values of x are omitted 
because f and p are both even functions of x. The function (4.18), which is 
called prod(x ), is also tabulated. The most important feature of the table 
is that the very rapid increase in the tabulated values of e (x) also occurs in 
the tabulated values of prod(x). Indeed the ratio e(x}/prod(x) is almost 
constant. 

It follows, therefore, that in this example the dependence on x of the 
term ['"+ 0(~) in equation (4.13) does not make much difference to the 
form of e (x ). A good practical strategy is to assume that this property 
remains true if the positions of the interpolation points {x;; i = 
0, 1, ... , n} are altered. Therefore we wish to find interpolation points 
that do not give large variations in the heights of the peaks of prod(x ). By 
bunching interpolation points near the ends of the range, the very large 
peaks of prod(x) can be reduced, at the expense of increasing the heights 
of the small peaks near the centre of the range - 5 ~ x ~ 5. The inter­
polation points that equalize the peak heights are called the Chebyshev 
interpolation points, and they are found by making use of 'Chebyshev 
polynomials'. 

For the range -1 ~ x ~ 1, the Chebyshev polynomial of degree n is the 
function Tn that satisfies the equation 

Tn (cos ())=cos (nO), (4.22) 

Table 4.2. An example of equally spaced interpolation points (n = 20) 

x f(x) p(x) e(x) prod(x) 

0.25 0.941176 0.942 490 -0.001314 2.05x106 

0.75 0.640 OOO 0.636 755 0.003 245 -2.48x106 

1.25 0.390 244 0.395 093 -0.004 849 3.64x 106 

1.75 0.246154 0.238 446 0.007 708 -6.56x 106 

2.25 0.164 948 0.179 763 -0.014 814 1.46x107 

2.75 0.116 788 0.080 660 0.036128 -4.12x 107 

3.25 0.086 486 0.202 423 -0.115 936 1.51xl08 

3.75 0.066 390 -0.447 052 0.513442 -7.56xl08 

4.25 0.052 459 3.454 958 -3.402 499 5.59x109 

4.75 0.042 440 -39.952 449 39.994 889 -7.27xl010 
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which is equivalent to the equation 

Tn(x) =cos (n cos-1 x), -1o;;;x.;;;1. (4.23) 

An easy way of imagining T" (x) as a function of x is to expand cos (nO) in 
powers of cos 0, and to write x in place of cos 0. Hence T" E @'> "' and the 
identity 

cos [(n + 1)0] +cos [(n -1)0] = 2 cos 0 cos (nO) (4.24) 

gives the recurrence relation 

Tn+1(x) = 2xTn(x)-Tn-1(x), -1.;;;xo;;;l. (4.25) 

Chebyshev polynomials have many applications in approximation 
theory, and they are useful now because the heights of the peaks of the 
function 

Tn (x) =cos (nO), x =cos(}, (4.26) 

are all equal to one. We can force prod (x) to be a multiple of Tn+1(x) by 
letting the interpolation points {x;; i = 0, 1, ... , n} be the roots of the 
polynomial Tn+i. which gives the points 

_ { [2(n - i) + 1]7T} 
X;-COS 2(n+l) ' i=0,1, ... ,n. (4.27) 

In order to adapt these values to a general range a ,,;;;; x ,,;;;; b, we 
introduce real parameters A and µ,, and we define the points 

{[2(n -i} + 1]7T} 
X; =A+µ, cos 2(n + l) , i = 0, 1, ... , n, (4.28) 

to be Chebyshev interpolation points. By construction they have the 
property that the magnitudes of the peaks of the polynomial (4.18) are all 
equal, which helps usually to reduce the greatest value of the error 
function (4.13), provided that x 0 is close to a and Xn is close to b. We really 
want to choose the interpolation points in a way that makes the expres-
sion 

max Jprod (x)J (4.29) 
a~x~b 

small. A theorem in Chapter 7 shows that this expression is minimized 
over all sets {x;; i = 0, 1, ... , n} if A and µ, have the values 

A=!(a+b)} 
(4.30) 

µ, =!(b-a) 

in equation (4.28). 
In order to show that the use of Chebshev interpolation points can 

improve on the accuracy that is shown in Table 4.2, we let {x;; i = 
0, 1, ... , n} have the values (4.28), where n = 20 and where A andµ, are 
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such that xo = -5 and x 20 = 5. The Lagrange interpolation method was 
applied again to Runge's function (4.19). Table 4.3 shows the errors of 
interpolation at the positive values of x where lprod (x )I is greatest. 
We find that the greatest value of je(x )j is smaller than in Table 4.2 by a 
factor of over two thousand, and the cost of this gain is that the small 
errors near the centre of the range - 5 ~ x ~ 5 are increased by about a 
factor of five. Now all the variations in the tabulated values of e (x) are due 
to the term /"+0(~) in equation (4.13). 

It is also of interest to note the improvement over Table 4.1 that can be 
obtained by using Chebyshev interpolation points. Therefore, for n = 2, 
4, ... , 20, we let the set {xi; i = 0, 1, ... , n} be defined by equation 
(4.28), where, as in the last paragraph, the values of A andµ, are such that 
xo = -5 and Xn = 5. Thus an interpolating polynomial p E f/J" is obtained 
for each n. By applying Lagrange interpolation for several values of x, the 

Table 4.3. An example of Chebyshev interpolation points (n = 20) 

x f(x) p(x) e(x) 

0.374 698 0.876 886 0.887135 -0.010 249 
1.115 724 0.445 466 0.429 963 0.015 503 
1.831827 0.229 590 0.242 708 -0.013119 
2.507 010 0.137 266 0.126 532 0.010 734 
3.126190 0.092 824 0.101876 -0.009 052 
3.675 537 0.068 920 0.061 018 0.007 902 
4.142 778 0.055 058 0.062 173 -0.007115 
4.517 476 0.046 712 0.040130 0.006 582 
4.791 261 0.041 743 0.047 981 -0.006 238 
4.958 018 0.039 090 0.033 045 0.006 045 

Table 4.4. The maximum error when Chebyshev interpolation points are used 

n x f(x) p(x) e(x) 

2 2.024 604 0.196 116 0.842 345 -0.646 229 
4 1.393 399 0.339 765 0.761 908 -0.442 143 
6 1.097 876 0.453 447 0.727 637 -0.274191 
8 0.912 455 0.545 680 0.721 700 -0.176 020 

10 0.781 995 0.620 534 0.732 455 -0.111921 
12 0.684167 0.681159 0.751878 -0.070 718 
14 1.526 988 0.300 148 0.252 887 0.047 260 
16 1.356 570 0.352 078 0.319 037 0.033 040 
18 1.221 054 0.401449 0.378 684 0.022 765 
20 1.110 623 0.447731 0.432 224 0.015 507 
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maximum value of ie(x)i was calculated. The values of x that maximize 
the error function and the corresponding values off, p and e are shown in 
Table 4.4. We see that the use of Chebyshev interpolation points is so 
much better than equally spaced ones, that now the accuracy of the 
approximation improves when n is increased. 

4.4 The norm of the Lagrange interpolation operator 
Theorem 3.1 provides an excellent reason for studying the norm 

of the Lagrange interpolation operator. We use the oo-norm for the 
elements of ~[a, b ], we assume that the set of interpolation points 
{x;; i = 0, 1, ... , n}has been chosen and,foreachfin ~[a, b], weletX(f) 
be the element of PPn that is defined by the conditions (4.2). The value of 
llXll is the subject of our next theorem. 

Theorem 4.3 
The norm of the Lagrange interpolation operator has the value 

n 

llXll = max L lldx)i, (4.31) 
a-:s:,x~b k=O 

where the functions {lk; k = 0, 1, ... , n} are defined by equation ( 4.3 ). 

Proof. The definition of a norm and equation (4.6) give the identity 

llXll = sup llXCf)ll 
llfil""l 

=sup max I I f(xk)lk(x)I 
llfllo;;l ao;;xo;;b k~O 

n 

= max L ih(x)i, (4.32) 
a~x=s;b k=O 

which is the required result. D 
We note that the method of proof is to treat the supremum over fin 

equation (4.32) before the maximum over x. Often expressions for norms 
are suprema of maxima, and it is usually helpful, especially in the case of 
interpolation operators, to take account of the conditions on f before 
maximizing over x. 

Theorem 3.1 states that the error Ill-X(f)ll is within the factor 
[1 + llXllJ of the least error 

d*(f) = min Ill-Pll (4.33) 
pE!?>n 
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that can be achieved by approximating f by a member of Pl' n· Hence we 
obtain from Tables 4.2 and 4.4 a lower bound on llXll, where X is the 
interpolation operator in the case when n = 20 and the interpolation 
points have the equally spaced values (4.20). Because Table 4.4 shows 
that 0.015 507 is an upper bound on d*(f), it follows from Theorem 3.1 
and Table 4.2 that the inequality 

11x11~ (39.994 889/0.015 507)-1 (4.34) 

holds. Hence llXll is rather large, and in fact it is equal to 10 986.71, which 
was calculated by evaluating the function on the right-hand side of 
equation (4.31) for several values of x. Table 4.5 gives llXll for n = 

2, 4, ... , 20 for the interpolation points (4.20). It also gives the value of 
llXll for the Chebyshev interpolation points (4.28) that are relevant to 
Table 4.4, where A andµ are such that x 0 = -5 and Xn = 5. 

Table 4.5 shows clearly that, if the choice of interpolation points is 
independent off, and if n is large, then it is safer to use Chebyshev points 
instead of equally spaced ones. Indeed, if n = 20 and if Chebyshev points 
are preferred, then it follows from Theorem 3.1 that, for all f E <(&'[ - 5, 5], 
the maximum error of the interpolating polynomial is within the factor 
3.48 of the least maximum error that can be achieved. However, if the 
interpolation points are equally spaced, then the form of the error 
function shown in Table 4.2 is typical, where the maximum error is much 
larger than necessary. Moreover, another good practical reason for 
keeping llXll small is that it makes the calculated polynomial less sensitive 
to errors in the data. 

Table 4.5. The norms of some 
interpolation operators 

Equally 
spaced Chebyshev 

n points points 

2 1.25 1.25 
4 2.21 1.57 
6 4.55 1.78 
8 10.95 1.94 

10 29.90 2.07 
12 89.32 2.17 
14 283.21 2.27 
16 934.53 2.34 
18 3171.37 2.42 
20 10 986.71 2.48 
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The results in Table 4.5 are not special to the range - 5,,,;; x,,,;; 5, 
because a general linear transformation of the form 

x ~ax +{3, a>O, (4.35) 

where a and {3 are real parameters, which changes [a, b] to [aa + {3, 
ab+/3] and {x;;i=O,l, ... ,n} to {ax;+{3;i=O,l, ... ,n}, does not 
alter the value of llXll. The reason is that this transformation just 
introduces the factor a" into the numerator and denominator of the 
definition (4.3) and these factors cancel each other. Hence the trans­
formation stretches or contracts the graphs of lk (k = 0, 1, ... , n) in the 
x-direction, but it leaves them unaltered in the y-direction. Thus the 
value of expression (4.31) does not change, and identities like equation 
(4.10) are preserved. 

4 Exercises 
4.1 Let p be the cubic polynomial that interpolates the function 

values f(O), f(l), f(2) and f(3). Express p(6) in terms of these 
function values, and verify that your formula is correct when f is 
the function {f(x) = (x - 3)3 ; 0,,,;; x,,,;; 6}. What is the uncertainty 
in the value of p(6), if the uncertainty in each function value is 
±e? 

4.2 Let f E ~<2l[O, 1], and let the function value f(x) be estimated by 
linear interpolation to two of the three values f(O.O) = 0.0, 
f(O. 7) = 0. 7 and f(l.O) = 0.1. Show that, if Theorem 4.2 is used to 
express the error in terms of f", then, in order to minimize the 
multiplying factor in the error estimate, it is best to interpolate to 
f(O.O) and f(O. 7) if 0,,,;; x < 0.5, but it is best to use f(O. 7) and 
f(l .O) if 0.5 < x,,,;; 1.0. Deduce that f(0.5) satisfies the condition 

1.1 - 0.05ll/2 llloo,,,;; /(0.5),,,;; 0.5 + 0.05llf(2)lloo, 

and hence obtain a lower bound on llf<2 llloo. 
4.3 Piecewise polynomial approximations p 1 and p2 to the function 

{f (x) =cos x; 0,,,;; x ,,,;; 77"} are defined in the following way. Posi­
tive integers n 1 and n2 are chosen, where n2 is even. The function 
Pi is composed of straight line segments that join at the points 
{x = k7r/n1; k = 1, 2, ... , n 1 -1}, and its parameters are defined 
by the conditions {p1 (k7r/ ni) = f(k7r/ n1); k = 0, 1, ... , n1}. The 
function p 2 is composed of quadratic polynomial segments that 
join at the points {x = k7r/ n2; k = 2, 4, 6, ... , n2 - 2} and its 
parameters are defined by the conditions {p2(k7r/ n2) = f(k7r/ n2); 
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k = 0, 1, ... , n2}. Estimate the smallest values of n 1 and n 2 that 
make the errors II/-P1lloo and II/-Pzlloo less than 10-6 • 

4.4 Let f E <€(Znl[O, l], and let p be a polynomial of degree (2n -1) 
that satisfies the equations 

p<kl(O) = /(k\O) }· 
p(k)(l) = /kl(l) 

k = 0, 1, ... , n -1. 

Prove that, for every x in [O, l], there exists gin [O, l], such that 
the error of the polynomial approximation has the value 

f(~)-p(x) = xngn~!1r /2n)(g). 

4.5 Show that, if the Chebyshev interpolation points (4.27) are used 
instead of the equally spaced points {x; = (2i - n) / n; i = 
0, 1, ... , n}, then the greatest distance between interpolation 
points is multiplied by a factor that is less than hr. Show, 
however, that the Chebyshev points have the property that the 
ratio of the largest to the smallest intervals between interpolation 
points is greater than (n + 1)/7T. 

4.6 For any fin <€[0, 3], let Xf be the function of the form 

Oo;;xo;;3, 

whose coefficients c0 , c 1 and c3 are defined by the interpolation 
conditions (X/)(O) = /(0), (X/)(2) = /(2) and (X/)(3) = /(3). 
Deduce that llXlloo has the value (1+32/ 45~3). 

4.7 Let M(x 0 , xi. . .. , Xn) be the oo-norm of the Lagrange inter­
polation operator from the space <€[a, b] to [JjJ n. where the 
interpolation points have the values {x;; i = 0, 1, ... , n }. Prove 
that, if the interpolation points are changed continuously so that 
two of them tend to be equal, then M(x0 , xi. .. . , Xn) tends to 
infinity. 

4.8 Suppose that one has to calculate p(x) from equations (4.7) and 
(4.3) for many million values of x, where n is about twenty. Show 
that, by calculating in advance some auxiliary quantities that 
depend on the data points {x;; i = 0, 1, ... , n} and the function 
values {f(x;); i = 0, 1, ... , n}, the number of computer opera­
tions in each evaluation of p(x) can be reduced to a small 
multiple of n. 

4.9 Consider the problem of calculating the coefficients {a,; i = 

0, 1, ... , m} and {p;; i = 0, 1, ... , n} of the rational function 

( ) _ao+a1x+ ... +amXm 
r x - n ' a .,; x .,; b, 

Po+P1x+ ... +Pnx 
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so that the interpolation conditions 

r(x;) = f(x;), i = 0, 1, ... , m + n, 

are satisfied, where {x;; i = 0, 1, ... , m + n} is a set of distinct 
points in [a, b ], and where the function values {f(x;); i = 
0, 1, ... , m + n} are given. Show that suitable coefficients can be 
found usually by solving a square system of linear equations, but 
that sometimes the linear equations have no adequate solution. 

4.10 Sketch the graph of the function 
n 

I lldx)I, a ~x~b, 
k=O 

that occurs in equation (4.31). Consider the problem of placing 
the interpolation points {x;; i = 0, 1, ... , n} in a way that mini­
mizes 11x11. Show that it is suitable to let Xo and Xn have the values 
a and b respectively. Investigate the position(s) of the other 
point(s) when n = 2 and when n = 3. 



5 

IJivided differences 

5.1 Basic properties of divided differences 
Let {x;; i = 0, 1, ... , n} be any (n + 1) distinct points of [a, b ], 

and let f be a function in <€[a, b]. The coefficient of xn in the polynomial 
p E r!Pn that satisfies the interpolation conditions 

p(x;) = f(x;), i = 0, 1, ... , n, (5.1) 

is defined to be a divided difference of order n, and we use the notation 
f[xo, xi, . .. , Xn] for its value. We note that the order of a divided 
difference is one less than the number of arguments in the expression 
f[ . ., . , ... , . ]. Hence f[x 0 ] is a divided difference of order zero, which, by 
definition, has the value f(x 0 ). Moreover, when n ~ 1, it follows from 
equations (4.3) and (4.6) that the equation 

n f(xk) 
f[xo, Xi, ... , Xn] = L (5.2) 

k~O n 

TI (xk -xi) 
j~O 

i"'k 

is satisfied. We see that the divided difference is linear in the function 
values {f(x;); i = 0, 1, ... , n }, but formula (5.2) is not the best way of 
calculating the value of f[x0, Xi. .. . , Xn]. A better method is described in 
Section 5.3. 

Divided differences have several uses. They are applied in this chapter 
to provide a good method of polynomial interpolation. They are used in 
Chapter 19 to generate a convenient basis of the space of splines 
Y(k, g0 , gi, ... , gn), which was mentioned in Section 3.4. Other appli­
cations include checking values of a tabulated function for errors, and the 
automatic adjustment of 'order' and step-length in the numerical solution 
of differential equations. 
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It is often convenient to think of the divided difference f[x 0 , xi. ... , Xn] 
as a value of the nth derivative of the function f divided by the factor n !. 
The following theorem justifies this point of view. 

Theorem 5.1 
Let f E <e<nl[a, b] and let {x;; i = 0, 1, ... , n} be a set of distinct 

points in [a, b ]. Then there exists a point g, in the smallest interval that 
contains the points {x;; i = 0, 1, ... , n }, at which the equation 

f[xo, Xi, ... , Xn] = /nl(g)/ n ! (5.3) 

is satisfied. 

Proof. Let e be the error function 

e(x)=f(x)-p(x), a~x~b, (5.4) 

where p E {l}n is defined by the interpolation cenditions (5.1). We note 
that e is in <e<n>[a, b ], and that e(x) is zero when x is in the point set 
{x;; i = 0, 1, ... , n}. Therefore, by applying Rolle's theorem inductively, 
we find that e<nl(g) is zero, where g is a point in the range that is given in 
the statement of the theorem. Hence the equation 

p(n)(g) = /n>(g) (5.5) 

is obtained, so the required result (5.3) follows from the definition of the 
divided difference. 0 

This theorem is an important part of the standard method of checking 
tabulated values of a function for errors. Suppose that the function 
f E <e<nl[a, b] is given on the point set {x;; i = 0, 1, ... , m }, where m is 
much larger than n, and where the points are in ascending order 

(5.6) 
Then the sequence {f[x;, xi+h ... , xi+n]; j = 0, 1, ... , m - n} may be 
calculated, using the method described in Section 5.3. Theorem 5.1 
shows that, in exact arithmetic, the terms of the sequence are values of the 
function {f<n>(x )/ n ! ; a~ x ~ b} in each of the intervals {[x;, Xj+n]; j = 
0, 1, ... , m - n}. Therefore, if the data points {x;; i = 0, 1, ... , m} are 
closely spaced, we may expect the sequence of divided differences to vary 
slowly. In this case, however, the denominators of expression (5.2) are 
small. Hence any errors in the function values are magnified by amounts 
that can easily be calculated. It is usual to attribute unsmooth changes in 
the terms of the sequence {f[x;, xi+h ... , xi+n]; j = 0, 1, ... , m - n} to 
errors in the tabulated function values, which provides a procedure for 
estimating the size of the errors. 
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5.2 Newton's interpolation method 
Suppose that one has to estimate the function value f (x) from a 

large numberof data {f (x;); i = 0, 1, ... , m }, where x is a fixed point. It is 
usually poor to fit a polynomial of degree m to all the data, but it may be 
suitable to apply polynomial interpolation to a subset of the given 
function values, in which case the question arises of choosing which data 
to use. A suitable procedure can be obtained from the remark that, if Pn is 
the polynomial in (Jj> n that interpolates the function values {f (x;); i = 
0, 1, ... , n }, and if n < m, then Theorems 4.2 and 5.1 suggest the error 
estimate 

(5.7) 

Because it is sensible to prefer data points that are close to x, it is 
convenient to label the data points so that the differences {Ix - X; I; i = 

0, 1, ... , m} increase monotonically. The procedure for choosing n is to 
consider the error estimate (5.7) for n = 0, 1, ... , (m -1). One should 
not necessarily prefer the value of n that gives the smallest error estimate, 
because expression (5.7) can be small by chance. Instead one should seek 
the value of n at which the trend in the error estimates is least. What 
usually happens is that at first the accuracy of the interpolation method 
improves, but one reaches a stage where the additional data is so remote 
from x that it is not helpful to use extra function values. 

Even if the value of n is known in advance, there are advantages in 
calculating the polynomials {pk; k = 0, 1, ... , n} in sequence, where Pk is 
the polynomial in PJ>k that is defined by the interpolation conditions 

i = 0, 1, ... ' k. (5.8) 

The main advantage is the subject of the next theorem, and it is that one 
can calculate Pk+ 1 (x) from Pk (x) by adding on the estimate of the error 
{f(x)-p(x)} that is obtained by replacing n by kin expression (5.7). 

Theorem 5.2 
Let Pk be the polynomial in PJ>k that is defined by the inter­

polation conditions (5.8). Then the function 

Pk+1(x) = pk(x) + {h
0 

(x -xi)} f[xo, Xi, . .. , Xk+i], a:>;. x :>;. b, 

is the polynomial in PJ>k+t that satisfies the conditions 

Pk+1(x;) = f(x;), i = 0, 1, ... , k + 1. 

(5.9) 

(5.10) 
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Proof. Let Pk+l be defined by equation (5.9), and let q be the polynomial 
in [!Pk+l that interpolates the function values {f(x;); i = 0, 1, ... , k + l}. 
Equations (5.8) and (5.9) imply the identities 

q(X;)-pk+1(X;) = 0, i = 0, 1, ... 'k. (5.11) 

Moreover, the definition of the divided difference f[xo, Xi, ... , Xk+ 1] 
implies that the function { q (x )- Pk+ 1 (x); a :;;; x :;;; b} is in [!Pk· It follows 
from expression (5.11) that the difference {q(x)-Pk+1(x);a:;;;x:;;;b} is 
identically zero, which proves the theorem. D 

By applying the theorem inductively, we obtain the definition 

{ 
n-1 } 

+ · · · + _TI (x - Xj) f[xo, 'Xi, · · ·, Xn], 
1=0 

a :;;;x:;;;b, 

(5.12) 

of the polynomial in [!Pn that satisfies the interpolation conditions (5.1). 
This form of the interpolating polynomial is called 'Newton's inter­
polation method', and it is useful for several reasons. For example, we 
find in Section 5 .4 that the effects of computer rounding errors when the 
formula is used in practice are less damaging than the effects that occur 
when the Lagrange interpolation method is applied. It is important to 
notice that the numbers {x;; i = 0, 1, ... , n} need not be in ascending 
order. A good method of calculating the divided differences of expression 
(5.12) is described in the next section. 

5.3 The recurrence relation for divided differences 
The standard procedure for calculating the divided differences of 

Newton's interpolation formula (5.12) requires the evaluation of all the 
terms in the tableau 

f[xo] 

f[xo, X1] 

f[x1] 

f[Xi, X2] f[xo, X1, ... , Xn]. (5.13) 

f[x2] 

f[Xn-1, Xn] 

f[xn] 
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The first column is composed of the given function values {f(xi); i = 

0, 1, ... , n }, and the remaining columns are calculated in sequence, using 
the formula that is given in the next theorem. 

Theorem 5.3 
The divided difference f[xi> xi+i. ... , xi+k+i] of order (k + 1) 

is related to the divided differences f[xi> Xj+i. . .. , xi+k] and 
f[xi+b Xj+2, . .. , xi+k+i] of order k by the equation 

f[ ] _ f[Xj+b · · · , Xj+k+1]- f[Xj, · · · , Xj+k] 
Xj, Xj+J, ... , Xj+k+l - ( ) · 

Xj+k+l -xi 

(5.14) 

Proof. Let Pk be the polynomial in PPk that interpolates the function 
values {f(xi); i = j, j + 1, ... , j + k}, and let qk be the polynomial in PPk 

that interpolates the function values {f(xi); i = j + 1, j + 2, ... , j + k + l}. 
Then it is straightforward to verify that the function 

() (x-xi)qdx)+(xi+k+i-x)pdx) 
Pk+1 x = , 

(Xj+k+l - Xj) 
a ~x ~ b, (5.15) 

is in PPk+i. and it satisfies the conditions 

Pk+1(xi) = f(xi), i = j, j + 1, .... , j + k + 1. (5.16) 

Hence the divided difference f[xi> xi+i. ... , xi+k+d is the coefficient of 
xk+t in the polynomial (5.15). Because f[xi> xi+i. ... , xi+k] is the 
coefficient of xk in Pk. and because f[xi+i. xi+2, .. . , xi+k+i] is the 
coefficient of xk in qk, it follows that equation (5.14) is satisfied. D 

The theorem shows that the calculation of each entry in the second and 
subsequent columns of the tableau (5.13) requires only two subtractions 
and one division. Hence the number of computer operations to obtain the 
divided differences for Newton's interpolation formula is of order n 2 • 

The recurrence relation (5.14) was used to calculate the divided 
differences of the function 

f(x) = 10 e - 3 \ 0 ~ x ~ 2, (5.17) 

tabulated on the point set {1.60, 1.63, 1.70, 1.76, 1.80}. The results are 
shown in Tables 5.1 and 5.2. All data and all calculated numbers were 
rounded to a fixed precision before they were recorded and used for 
subsequent calculation. The difference between the tables is that in Table 
5.1 the precision is six decimal places, but in Table 5.2 it is only five 
decimal places. We note the large change in the fourth divided difference 
that is caused by the change in accuracy, which shows the care that has to 
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be given to the accuracy of the data and the precision of the computer 
arithmetic, if one uses divided differences to estimate derivatives. 

5.4 Discussion of formulae for polynomial interpolation 
Often there are several ways of carrying out a computer cal­

culation that would give identical results in exact arithmetic. The 
numerical analyst studies the effect of computer rounding errors, which is 
often a major part of the development of a successful algorithm. In this 
book, however, much more attention is given to the theoretical questions 
that are relevant to approximation methods, assuming that computer 
arithmetic is exact. Therefore, we show now that the consequences of 
limited precision arithmetic are important also, by giving this question 
some attention in the case of polynomial interpolation. 

Three methods of interpolation are compared. Two of these have been 
described already, namely the Lagrange formula and Newton's method, 

Table 5 .1. Some divided differences in six-decimal arithmetic 

Xi f(x;) Order 1 Order 2 Order 3 Order 4 

1.60 0.082 297 
-0.236100 

1.63 0.075 214 0.325 710 
-0.203 529 -0.297900 

1.70 0.060 967 0.278 046 0.203 735 
-0.167 383 -0.257153 

1.76 0.050 924 0.234 330 
-0.143 950 

1.80 0.045166 

Table 5.2. Some divided differences in five-decimal arithmetic 

xj f(x,) Order 1 Order 2 Order 3 Order 4 

1.60 0.082 30 
-0.236 33 

1.63 0.075 21 0.329 00 
-0.203 43 -0.328 87 

1.70 0.060 97 0.276 38 0.500 80 
-0.167 50 -0.228 71 

1.76 0.050 92 0.237 50 
-0.143 75 

1.80 0.045 17 
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and the third one is to evaluate the coefficients {c;; i = 0, 1, ... , n}, in 
order that p(x) may be calculated from the formula 

n 

p(x) = L c;xi, 
i=O 

a ~x~b, (5.18) 

for any value of x. Thus a polynomial approximation to f is defined in 
three ways, and we ask first whether they satisfy accurately the inter­
polation conditions (5.1). 

In the case of the Lagrange formula, when x is the interpolation point 
x;, O~i~n. then the definition (4.3) makes lk(x) zero for k¥-i, and it 
makes /; (x) equal to or very close to the value one on a floating point 
computer. Hence good accuracy in the interpolation conditions is 
obtained from equation (4.7). The situation is less clear for Newton's 
formula (5.12), except when x = x 0 , because the function values do not 
occur explicitly in the equation that defines p(x ). Instead the formula is 
dependent on the accuracy of the calculated divided differences. A 
comparison of Tables 5 .1 and 5 .2 suggests at first that this accuracy may 
be poor, but if, for example, we take the divided differences from the top 
line of Table 5.2, and if we let x = 1.80 in equation (5.12), then exact 
arithmetic gives the value 

p(l.80) = 0.045 169 950 8, (5.19) 

which agrees very well with the data value 0.045 17. The reason for the 
good precision in the interpolation conditions is due to the cancellation 
that occurs when differences are calculated. Because of it, the number of 
digits that are needed to retain the information that is present in the 
original table of function values becomes less as each new column of 
differences is formed. Hence, the effect of working to a fixed number of 
digits is that more and more guard digits are introduced, whose values are 
ill-defined, but they prevent loss of information during the calculation. 
Exercise 5.4 helps to make the point clear, for it shows that the whole of 
Table 5.2 can be recovered to high accuracy from the data in its leading 
diagonal. 

The situation is rather different, however, if p(x) is obtained from 
equation (5.18). Again the function values do not occur explicitly, and 
now the accuracy to which the interpolation conditions (5.1) hold 
depends on the errors in the coefficients {c;; i = 0, 1, ... , n }. In the case of 
the data of Table 5.2, for example, it is appropriate to calculate the 
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coefficients to at least five decimals accuracy, and to this precision p is the 
polynomial 

p(x) = 6.700 98-13.36021x+10.385 60x 2 

-3.69241x 3 +0.502 72x 4 • (5.20) 

However, because computers use floating point arithmetic, it is inconsis­
tent to allow seven decimals of accuracy in the coefficients {c;; i = 
0, 1, ... , n }, when making comparisons with a calculation that is accurate 
to only five decimals. Therefore we may have to accept the approximation 

p(x) = 6.7010-13.360x + 10.386x 2 

- 3.6924x 3 + 0.502 72x 4 (5.21) 

instead of expression (5.20). This less accurate approximation gives the 
value 

p(l.8) = 0.046 92, (5.22) 

which shows a large error in the interpolation conditions. It is generally 
better, therefore, to use Newton's formula, unless one knows in advance 
that the computer arithmetic is so accurate that one can obtain suitable 
values of the coefficients {c;; i = 0, 1, ... , n }. 

A consideration that is important sometimes is the magnitude of the 
discontinuities that occur in the approximating function {p (x); a :;;;; x :;;;; b} 
due to the discrete nature of computer arithmetic. We consider this 
question in the frequently occurring case when f is so smooth that the 
successive terms of Newton's formula (5.12) decrease rapidly in magni­
tude. In this case, if we change the variable x continuously, then computer 
rounding errors introduce discontinuities into the polynomial (5.12), 
whose magnitude is about lf(x0)I times the relative precision of the 
computer arithmetic. However, because the terms of the sum (4.7) of the 
Lagrange formula are calculated separately, we find in this case that the 
magnitude of the discontinuities is approximately the relative precision 
times the largest of the numbers {if(xk)lk (x )I; k = 0, 1, ... , n }. Hence, in 
the cases when the factor lldx )I is much larger than one, an advantage of 
using Newton's method instead of the Lagrange formula is that one 
usually obtains smaller discontinuities in the calculated interpolating 
polynomial. 

5.5 Hermite interpolation 
It happens sometimes that, in addition to the function values on 

the right-hand side of equation (5.1), some values of the derivative off 
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are known also. The general Hermite interpolation problem is to cal­
culate p E PI'" that satisfies the conditions 

p<n(xi) = /il(xi), j = 0, 1, ... , Ii, i = 0, 1, ... , m, (5.23) 

where the number of coefficients of p is equal to the number of data, 
which implies that n is defined by the equation 

m 

n + 1 = L (Ii+ 1). (5.24) 
i=O 

We find in this section that p can be obtained from an interesting 
extension of Newton's interpolation method, but first it is proved that the 
data on the right-hand side of equation (5.23) does define the required 
polynomial uniquely. 

Theorem 5.4 
Let {xi; i = 0, 1, ... , m} be a set of distinct points from a ,,;;;; x ,,;;;; b, 

and let the real numbers {f(j)(xi); j = 0, 1, ... , Ii; i = 0, 1, ... , m} be 
given. Then there is just one polynomial p in Pl'n that satisfies the 
equations (5.23), where the value of n is defined by equation (5.24). 

Proof. The first part of the proof is a highly useful general method for 
demonstrating the uniqueness of an approximation from a linear space. 
We parameterize the approximating functions by choosing a basis of the 
linear space, and in the present case every member of PI' n can be 
expressed in the form 

a :s;;x:s;;b. (5.25) 
i=O 

Because the number of conditions on p is equal to the number of 
parameters, the required coefficients {ci; i = 0, 1, ... , n} satisfy a square 
system of linear equations. It is therefore sufficient to prove that the 
matrix of the system is non-singular. An equivalent condition is that, if we 
set the right-hand sides of the equations to zero, then they are satisfied 
only if all the parameters are zero. Hence it suffices to prove that, if all the 
data values are zero, then p is identically zero. 

We find that, when the data are zero, then p is a multiple of the 
polynomial 

m n ( )/.+l x-xi ' , a :s;;x :s;;b. (5.26) 
i=O 

Because this polynomial includes the term x"+1 , the multiplying factor 
must be zero. Hence p is identically zero. D 
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We note that Theorem 4.1 can be deduced as a corollary of Theorem 
5.4. We note also that the proof of Theorem 5.4 depends on the condition 
that, if the derivative value t<kl(x;) occurs in the data, then the values 
{f<i\x;); j = 0, 1, ... , k -1} are given also. The divided difference 
method for calculating p makes further use of this condition. 

In order to describe this method, we change the notation for the data 
points in the following way. We replace the set {x;; i = 0, 1, ... , m} by the 
set {x0 , x0, ••• , x 0, Xi, Xi, . .• , Xi, . .• , Xm, Xm, •. . , Xm}, where, for i = 
0, 1, ... , m, the number x; occurs(/;+ 1) times. We renumber the indices 
of the terms in the new set so that its elements are {x;; i = 0, 1, ... , n }. 
Hence the repeated terms in the new set indicate which derivatives are 
given as data, and we have returned to the case where there are (n + 1) 
data points. 

We now try to apply Newton's interpolation formula (5.12) to our data. 
The only difficulty occurs in the calculation of the divided differences, due 
to the fact that the recurrence relation (5.14) gives zero divided by zero if 
xi+k+t =xi. However, Theorem 5.1 provides a solution to this problem, 
for it shows that if xi = xi+I = ... = xi+k+i. then it is appropriate to make 
the definition 

(5.27) 

which is very convenient because the right-hand side is available as data. 
Thus all the terms in the table of divided differences (5.13) can be found, 
either from equation (5.14) or from equation (5.27), provided that the 
repeated terms in the set {x;; i = 0, 1, ... , n} are grouped together. 
Hence formula (5.12) can still be used. 

For example, we calculate the polynomial of degree four that satisfies 
the conditions 

p{l.6) = 0.082 297 

p'{l.6) = -0.246 892 

p(l.7) = 0.060 967 

p{l.8) = 0.045 166 

p'(l.8) = -0.135 497 

(5.28) 

The data are obtained from the function (5.17). The tableau of divided 
differences is shown in Table 5.3, where the first and last entries in the 
column of first-order differences are data. The remainder of this column 
and the higher order terms are calculated by using the recurrence relation 
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(5.14). Hence Newton's method gives the polynomial 

p(x) = 0.082 297-0.246 892(x -1.6) +0.335 920(x -1.6)2 

-0.297 350(x -1.6)2(x -1.7) 

56 

+0.203 750(x -1.6)2(x -1.7)(x -1.8). (5.29) 

It is easy to verify that the conditions (5.28) are satisfied. The final 
theorem of this chapter proves that the given extension of Newton's 
method is suitable generally for calculating the polynomial in {if' n that is 
defined by the conditions (5.23). 

Theorem 5.5 
Let the function value f(x) be given at the points {x;; i = 

0, 1, ... , n}, and, if X; occurs (k + 1) times in the point set, let the 
derivatives {f<n(x;); j = 1, 2, ... , k} be given also. Let any repeated terms 
in the set {x;; i = 0, 1, ... , n} be grouped together, and let Pn E {if'n be the 
polynomial that is calculated by the extension of Newton's method that 
has just been described. Then the polynomial Pn interpolates the data. 

Proof. Because Theorem 5 .4 states that there is exactly one polynomial, 
p* say, that interpolates the data, and because the definition of Pn is 
unchanged if f is replaced by p *, we assume without loss of generality that 
f is in {if' n· Therefore we have to prove that Pn is equal to f. For any small 
positive number e, we let U;; i = 0, 1, ... , n} be a set of distinct points 
that satisfies the conditions {l~;-x;I:,;; e; i = 0, 1, ... , n}, and we apply 
Newton's method to calculate the polynomial in {if'n that interpolates the 
function values{!(~;); i = 0, 1, ... , n}, which is straightforward because 

Table 5.3. A divided difference table that includes derivative values 

X; f(x;) Order 1 Order 2 Order 3 Order 4 

1.60 0.082 297 
-0.246 892 

1.60 0.082 297 0.335 920 
-0.213 300 -0.297 350 

1.70 0.060 967 0.276 450 0.203 750 
-0.158 010 -0.256 600 

1.80 0.045 166 0.225 130 
-0.135 497 

1.80 0.045166 
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the points U;; i = 0, 1, ... , n} are distinct. Because this polynomial must 
be f itself, the identity 

f(x) =/(go)+ (x - go)f [go, g1] + (x -go)(x -gi)f [go, gi, 6] 

(5.30) 

is satisfied. We compare this calculation with the definition of Pn that is 
given in the statement of the theorem. In particular we compare the two 
tables of divided differences that are formed. 

In the table that is used to calculate Pm the first column contains the 
function values {f(x;); i = 0, 1, ... , n }, and in the other table it contains 
the numbers {f(g;); i = 0, 1, ... , n}. Moreover, if equation (5.27) is used 
in the calculation of Pm then the entry t<k+ll(xi)/(k + 1)! occurs in one 
divided difference table, and the corresponding entry in the other table is 
the expression f[gi> gi+h ... , gi+k+1], which, by Theorem 5.1, has the 
value t<k+O(g)/(k + 1)!, where g is in the shortest interval that contains 
the points { g;; i = j, j + 1, ... , j + k + 1}. Therefore g is in the interval 
[xi - e, xi + e ]. Hence, by choosing e to be sufficiently small, one can 
achieve arbitrarily close agreement between the entries in the two divided 
difference tables that correspond directly to the data that determine Pn· 
All remaining entries are defined by the recurrence relation (5.14). Each 
recurrence relation that is used has a non-zero denominator, and the 
denominator (gi+k+I -gi) can be made arbitrarily close to (xi+k+I -xi) by 
choosing e to be sufficiently small. Hence arbitrarily close agreement can 
be obtained between the two complete tables. Therefore, for any value of 
x, and for any positive number 8, there exists e > 0 such that the 
difference lf(x)-pn(x)I between expressions (5.30) and (5.12) is less than 
8. However, both f(x) and Pn(x) are independent of e. Therefore the 
polynomials f and Pn are the same. D 

5 Exercises 
5.1 Form the table of divided differences of the function values 

/(-2)=3.28, /(-1)=17.36, /(2)=14.96, /(3)=19.28 and 
/(4) = 36.16. Verify that Newton's interpolation method is in 
agreement with the given value of /(4). 

5.2 Deduce from equation (5.12) that p'(x0 ) has the value 

p'(xo) = f[xo, xi] + (xo-x1)f[xo, Xi, x2] + ... 
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Hence obtain p'(2) from the divided difference table of Exercise 
5 .1, where p is the polynomial in [!/' 4 that interpolates the data of 

that exercise. Note that, if xo = 2, X1 = 3, X2 = 4, X3 = -1 and 
x 4 = -2, then all the divided differences that occur in the expres­
sion for p'(2) have been calculated already. Check the value of 
p'(2) by repeating the calculation for a different ordering of the 
data points. 

5.3 If the data points {x;; i = 0, 1, ... , n} have the equally spaced 
values {x; = x 0 + ih; i = 0, 1, ... , n}, where h is a constant, then 
equation (5.2) implies that the divided difference 
f[xo, Xi, .•. , Xn] takes the value 

h-n t (-1r-k k'( ~k)/(xd. 
k-o . n . 

Verify that this statement is consistent with the recurrence 
relation of Theorem 5.3. 

5.4 Given the column of data points {x;} and the first entry in each of 
the other columns of Table 5.2, calculate the remaining ten 
entries in the table. 

5.5 By following the procedure described in Section 5.5, that 
requires the construction of a divided difference table, obtain an 
expression for the polynomial in [!/' 4 that interpolates the 
function values f(O) and f(l) and the derivative values f'(O), f"(O) 
and f' ( 1). Check that your calculation is correct by letting f be the 
function {f(x) = (x + 1)4 ; O~x ~ l}. 

5.6 Let f E ~ol[a, b ], and let the function values {f(x;); i = 
0, 1, ... , n} and the derivative value f'(() be given. Prove that 
there is a unique polynomial, p say, in [!/'n+t that satisfies the 
conditions {p(x;) = f(x;); i = 0, 1, ... , n} and p'(() = f'((), unless 
q'(() is zero, where q is the polynomial 

n 

q(x)= rr (x-x;), a ~x ~b. 
i=O 

Use Rolle's theorem to deduce that q'(() is non-zero if (is in the 
set{x;;i=O, l, ... ,n}. 

5.7 Letf be a function in ~<k+tl[a, b ], whose kth derivative increases 
strictly monotonically. Let the points {x;; i = 0, 1, ... , m} satisfy 
the conditions 

a ~xo<X1 < ... <xm ~ b, 

where the integer m is greater than k. Prove that the sequence of 
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divided differences {f[xi> xi+h ... , xi+d; j = 0, 1, ... , m -k} 
increases strictly monotonically. 

5.8 When a table of differences is formed from the function values 
{f(xJ; i = 0, 1, ... , n}, and when the data points are equally 
spaced, the denominator of the recurrence relation (5.14) is 
independent of j. Therefore, in order to avoid a division for each 
value of j, it is convenient to take account of the denominator by 
a normalizing factor that multiplies a complete column of 
differences. Hence form the first-, second- and third-order 
differences of the data 

/(0.0) = 0.000 OOO /(0.4) = 0.533 604 /(0.8) = 1.227 134 

/(0.1) = 0.119 778 /(0.5) = 0.694 767 /(0.9) = 1.423 943 

/(0.2) = 0.249 126 /(0.6) = 0.862 569 /(1.0) = 1.630 435. 

/(0.3) = 0.388 062 /(0.7) = 1.040 023 

The data contain two errors that are indicated by the behaviour 
of the differences. Find and correct these errors. 

5.9 Given f and gin <:e[a,b], let h be the product {h(x)= 
f(x)g(x);a.;;x.;;b}. Prove by induction the formula for the 
divided difference of a product 

n 

h[xo, Xi, ... , Xn] = L f[xo, Xi, ... , Xj] g(xi> Xj+h ... , Xn]. 
j=O 

5.10 An extension of equation (5.15) provides a method of solution of 
the rational interpolation problem of Exercise 4.9. It depends on 
the assumption, which is not always true, that the required and 
some intermediate rational functions are well defined by inter­
polation conditions. For a ,,;; x ,,;; b we let r(j, k, l, x) = 

p(j, k, l, x)/q(j, k, l, x) be the value at x of the rational function 
that satisfies the equations 

r(j, k, l, Xi) = f(xi), i = j, j + 1, ... , j + k +I, 

where {p(j,k,l,x);a.;;x.;;b} and {q(j,k,l,x);a.;;x.;;b} are 
polynomials in <!Pk and <!fJ1 respectively. The extension of expres­
sion (5.15) is that both r(j, k + 1, I, x) and r(j, k, I+ 1, x) have the 
form 

(x -xi) p(j + 1, k, I, x)+c(xi+k+1+1-x) p(j, k, l, x) 

(x - xi) q(j + 1, k, l, x) + c(xi+k+1+1 - x) q(j, k, I, x)' 

where c is a constant, whose value is chosen to give the required 
degree of the numerator or denominator. Let Xi equal i for i = 0, 



Divided differences 60 

1, 2, 3, 4, and let f have the values f(O) = 0, /(1) = 1, /(2) = 3, 
/(3) = 4 and /(4) = 4. First calculate the polynomials 
{r(j,2,0,x),O::;;;x:;;;;4;j=O, 1,2}, and then obtain the rational 
function {r(O, 2, 2, x); 0:::;;; x :::;;; 4} that interpolates the data by 
applying the given extension of equation (5.15) three times. 



6 

The uniform convergence of polynomial 
approximations 

6.1 The Weierstrass theorem 
In Chapter 4 the approximation of the function 

f(x) = 1/(1 +x 2 ), -S=s;x=s;S, (6.1) 

by polynomials of various degrees was considered. Each polynomial was 
calculated by Lagrange interpolation, and we found that, for equally 
spaced interpolation points, increasing the degree of the polynomial 
makes the accuracy of the approximation worse. For the Chebyshev 
interpolation points, however, Table 4.4 suggests that the calculated 
polynomial approximations converge uniformly to the function (6.1). It is 
interesting to ask whether there are functions in <e[a, b] that are so 
awkward that, even if Chebyshev interpolation points are used, the 
Lagrange interpolation method for polynomials of higher and higher 
degree gives a sequence of approximations that fails to converge uni­
formly. It is proved in Chapter 17 that such awkward functions do exist. 

Suppose, however, that instead of defining each polynomial by 
Lagrange interpolation, we use some other method of calculation. Can 
we then generate a sequence of polynomial approximations to any 
function f E <e[a, b] such that uniform convergence is obtained. It is 
shown in Section 6.3 that the Bernstein approximation method is suit­
able. Hence we obtain a constructive proof of the following well-known 
theorem. 

Theorem 6.1 (Weierstrass) 
For any f E <e[a, b] and for any e > 0, there exists an algebraic 

polynomial of the form 

(6.2) 
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such that the bound 

llf- Plloo ~ e 

is satisfied. 

(6.3) 

Proof. The work of the next two sections provides a proof of this 
theorem. D 

6.2 Monotone operators 
Our method of proof of Theorem 6.1 depends on an interesting 

and remarkable property of monotone operators, which is explained in 
this section. The operator L from Cf6'[a, b] to Cf6'[a, b] is defined to be 
monotone if it satisfies the following condition. Let f and g be any two 
functions in Cf6'[a, b ], such that the inequality 

f(x);;;.: g(x), a ~x ~b, (6.4) 

is obtained. Then the functions Lf and Lg must satisfy the condition 

(Lf)(x);;;.: (Lg)(x ), (6.5) 

We note that, if Lis a linear operator, then the monotonicity condition is 
equivalent to the following simpler form. For all non-negative functions f 
in Cf6'[a, b ], the function Lf must be non-negative also. 

Monotone operators are useful to us because, given an infinite 
sequence of linear monotone operators, {L;; i = 0, l, 2, ... } say, each one 
being from Cf6'[a, b] to Cf6'[a, b ], there is a very simple test to discover 
whether or not the sequence of functions {LJ; i = 0, 1, 2, ... } converges 
uniformly to f for all f in Cf6'[a, b ]. This test is the subject of our next 
theorem, and it is applied in Section 6.3 to the Bernstein operators in 
order to establish the Weierstrass theorem. 

Theorem 6.2 
Let {L;; i = 0, 1, 2, ... } be a sequence of linear monotone opera­

tors from Cf6'[a, b] to Cf6'[a, b ]. Then, if the sequence {LJ; i = 0, 1, 2, ... } 
converges uniformly to f for the functions 

f(x)=xk, a~x~b. (6.6) 

where k = 0, 1 or 2, then the sequence {LJ; i = 0, 1, 2, ... } converges 
uniformly to f for all fin Cf6'[a, b ]. 

Proof. The method of proof of the theorem is indicated in Figure 6.1. 
We let g be any fixed point of [a, b ], we let qu be a quadratic function that 
is wholly above f, and we let q1 be a quadratic function that is wholly below 
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f, where these functions are such that the difference qu(g)- q1(g) is small. 
The operator Ln is applied to the functions qu, f and q1• Because, by 
hypothesis, the sequence {LJ; i = 0, 1, 2, ... } converges to f when f is a 
quadratic function, we can ensure that Lnqu and Lnq1 are very close to qu 
and q1 respectively by choosing a large value of n. Moreover, the 
monotonicity of the operator Ln ensures that the function Lnf is bounded 
below by Lnq1 and is bounded above by Lnqu. Hence (LJ)(g) must be 
close to f(g). Thus the limit 

lim (LJ)(g) = /(g) (6.7) 
n ... oo 

is proved for any fixed gin [a, b ]. The details of the method of proof of 
equation (6.7), which are given below, establish the uniform convergence 
condition 

lim /lf - LJl/oo = 0, (6.8) 

which is stronger than the pointwise result (6.7). 
Given/ E <(?[a, b ], we let e be any positive number, and we choose 8 > 0 

such that, if lx1 - xzl ~ 8, then the bound 

(6.9) 

is obtained. Next we let g be any fixed point of [a, b ], and we note that 8 is 

Figure 6.1. The proof of the monotone operator theorem. 

J 
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independent of g. The quadratic functions qu and q1 are defined by the 
equations 

qu(X) = f(g) + E + 2llflloo(X -g)2 / 82} 
2 2 , a.;;; x.;;; b. q1(x) = f(g) - e - 2llflloo(X - g) / 8 

It follows from condition (6.9) that the inequality 

qu(X);;,: f(x) 

(6.10) 

(6.11) 

holds when Ix -gl.;;; 8. Moreover, this inequality is also obtained when 
Ix - gl > 8 because of the definition of llflloo. Similarly the condition 

(6.12) 

is satisfied also. Therefore the monotonicity of the operators gives the 
bounds 

(6.13) 

for all non-negative integers n. 
In order to ensure that n is large enough to prove the theorem, we 

express the functions qu and q1 as linear combinations of the polynomials 
Po. P1 and p2, which are defined by the equation 

pk(x)=xk, a.;;;x.;;;b. (6.14) 

The definitions (6.10) give expressions of the form 

qu = Co(g)po + C1 (g)p1 + C2(g)p2} 
q1 = C3(g)po + C4(g)p1 + C5(g)p2 ' 

(6.15) 

and there exists a number M, that depends on 8, e and f but not on g, such 
that the bounds 

i = 0, 1, ... '5, (6.16) 

are obtained. By hypothesis, we can let N be an integer such that the 
conditions 

k = 0, 1, 2, (6.17) 

hold for all n ;;;. N. It is important to note that N is also independent of f 
Inequality ( 6.17) is useful to us because, by combining it with expressions 
(6.15) and (6.16), and by using both the linearity of the operator Ln and 
the triangle inequality for norms, we deduce the bounds 

llqu - Lnqulloo.;;; 3e} 
llq1 - Lnq1lloo .;;; 3 e . 

(6.18) 
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Expressions (6.13), (6.18) and (6.10) are applied in sequence to give 
the bound 

(L,J)(g) =o;;; (Lnqu)(g) 

:o;;; qu(g) + 3e 

= f(~)+4e. (6.19) 

Similarly, by making use of q1 instead of qu, we deduce the inequality 

(L,J)(g);;;.: f (~)- 4e. (6.20) 

We write expressions (6.19) and (6.20) in the form 

\f(~)-(L,J)(~)\ :o;;; 4e, n;;;.: N. (6.21) 

Because N and e are independent of ~. it follows that the stronger 
condition 

llf-LJlloo :o;;; 4e, n;;;.N, (6.22) 

also holds. We recall that our proof has established the existence of N for 
any positive e. Therefore the required limit (6.8) is obtained for any fin 
cg[a, b ]. D 

6.3 The Bernstein operator 
The Bernstein operator Bn is from cg[a, b] to the subspace Pf>n of 

polynomials of degree n, and it is defined for all positive integral values of 
n. In the case when the range [a, b] is the interval [O, l], it is specified by 
the equation 

n n' 
(B,J)(x) = k~o k!(n ~k)! xk(l-xt-kf(k/n), O:o;;;x :o;;; 1. 

(6.23) 

In order to simplify notation, we assume for the rest of this chapter that 
the range of the variable is 0 :;;; x :;;; 1. 

The Bernstein approximation (6.23) is similar to the Lagrange poly­
nomial approximation (4.7) in two ways. Both approximation operators 
are linear, and in both cases the polynomial approximation that is chosen 
from PJ>n depends just on the value off at (n + 1) discrete points of [a, b]. 

However, unlike Lagrange interpolation, the approximation BJ may 
not equal f when f is in (!> n· For example, suppose that f is the polynomial 
in PJ>n that takes the value one at x = k/n and that is zero at the points 
{x = j/n; j = 0, 1, ... , n; j ¥- k}. Then (B,J)(x) is a multiple of xk(l­
xr-k, which is positive at the points {x = j/n; j = 1, 2, ... , n -1}. The 
main advantage of Bernstein approximation over Lagrange interpolation 
is given in the next theorem. 
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Theorem 6.3 
For all functions fin c:e[O, 1], the sequence {B,J; n = 1, 2, 3, ... } 

converges uniformly to f, where Bn is defined by equation (6.23). 

Proof. The definition (6.23) shows that Bn is a linear operator. It shows 
also that, if f (x) is non-negative for 0,;;;; x ,;;;; 1, then (B,J)(x) is non­
negative for 0 :s: x :s: 1. Hence Bn is both linear and monotone. It follows 
from Theorem 6.2 that we need only establish that the limit 

lim llBJ - flloo = 0 (6.24) 
n~oo 

is obtained when f is a quadratic polynomial. Therefore, for j = 0, 1, 2, 
we consider the error of the Bernstein approximation to the function 

(6.25) 

For j = 0, we find for all n that B,J is equal to f by the binomial 
theorem. When j = 1, the definition of Bn gives the equation 

;, n ! k n-k k 
(B,J)(x)= k:;-ok!(n-k)!x (1-x) -;; 

;, (n-1)! k( )n-k 
= k:;-i(k-l)!(n-k}!x l-x 

n-1 ( 1)1 '\' n - . k(l )n-1-k =x ~ x -x 
k~ok!(n-1-k)! · 

(6.26) 

Hence again Bnf is equal to f by the binomial theorem. To continue the 
proof we make use of the identity 

n n ! k n-k( k)2 n - l 2 1 L k'( -k)'x (1-x) - =--x +-x, 
k~o . n . n n n 

(6.27) 

which is straightforward to establish. For the case when j = 2 in equation 
(6.25), it gives the value 

II II I
n - 1 2 1 2 1 1 B,J-f oo= max --x +-x-x =-, 

o"'x"'l n n 4n 
(6.28) 

and it is important to note that the right-hand side tends to zero as n tends 
to infinity. Hence the limit (6.24) is achieved for all f E P/J2, which 
completes the proof of the theorem. 0 

It follows from this theorem that, for any f E c:e[O, 1] and for any e > 0, 
there exists n such that the inequality 

IV- B,Jlloo :S: e (6.29) 
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holds. Hence condition (6.3) can be satisfied by letting p = B,J, which 
proves the Weierstrass theorem in the case when [a, b] is [O, 1]. 

The general case, when [a, b] may be different from [O, l], does not 
introduce any extra difficulties if one thinks geometrically. Imagine a 
function f from ~[a, b ], that we wish to approximate to accuracy e, 
plotted on graph paper. We may redefine the units on the x-axis by a 
linear transformation, so that the range of interest becomes [O, 1], and we 
leave the plotted graph off unchanged. We apply the Bernstein operator 
(6.23) to the plotted function of the new variable, choosing n to be so 
large that the approximation is accurate to e. We then draw the graph 
of the calculated approximation, and we must find that no error in 
the y-direction exceeds e. There are now two plotted curves. We leave 
them unchanged and revert to the original labelling on the x-axis. 
Hence we find an approximating function that completes the proof of 
Theorem 3.1. 

The Bernstein operator is seldom applied in practice, because the rate 
of convergence of BJ to f is usually too slow to be useful. For example, 
equation (6.28) shows that, in order to approximate the function/(x) = x 2 

on [O, 1] to accuracy 10-4 , it is necessary to let n = 2500. However, 
equation (6.23) has an important application to automatic design. Here 
one takes advantage of the fact that the function values {f(k/n); k = 
0, 1, ... , n} that occur on the right-hand side of the equation define B,J. 
Moreover, for any polynomial p E {J)m there exist function values such 
that BJ is equal to p. Hence the numbers {f(k/n); k = 0, 1, ... , n} 
provide a parameterization of the elements of {J)n· It is advantageous in 
design to try different polynomials by altering these parameters, because 
the changes to BJ that occur when the parameters are adjusted 
separately are smooth peaked functions that one can easily become 
accustomed to in interactive computing. 

6.4 The derivatives of the Bernstein approximations 
The Bernstein operator possesses another property which is as· 

remarkable as the uniform convergence result that is given in Theorem 
6.3. It is that, if f is in ~(k)[O, 1], which means that f has a continuous kth 
derivative, then, not only does BJ converge uniformly to f, but also the 
derivatives of BJ converge uniformly to the derivatives off, for all orders 
of derivative up to and including k. We prove this result in the case when 
k=l. 
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Theorem 6.4 
Let f be a continuously differentiable function in C(?[O, l]. Then 

the limit 

lim llf' -(B,J)'l!oo = 0 (6.30) 
n-->OO 

is obtained, where Bn is the Bernstein operator. 

Proof. By applying Theorem 6.3 to the function f', we see that the 
sequence {Bn(f'); n = 1, 2, 3, ... } converges uniformly to f'. It is there­
fore sufficient to prove that the limit 

(6.31) 
n-->00 

is obtained. One of the subscripts is chosen to be n + 1 in order to help the 
algebra that follows. 

Values of the function (B,,+ 1f)' can be found by differentiating the 
right-hand side of the definition (6.23). This is done below, and then the 
calculated expression is rearranged by using the divided difference nota­
tion of Chapter 5, followed by an application of Theorem 5 .1. Hence we 
obtain the equation 

(B,,+if)'(x) = "f (n + l)! xk-1(1-x)"+1-kf(-k-) 
k=1(k-l)!(n+l-k)! n+l 

- £ (n+l)! xk(l-x)"-kf(-k-) 
k=ok!(n-k)! n+l 

£ (n+l)! xk(l-x)"-k{t(~)-t(-k-)} 
k=ok!(n-k)! n+l n+l 

I n! xk(l-x)"-kf[-k- k+l] 
k=ok!(n-k)! n+l'n+l 

(6.32) 

where ~k is in the interval 

k = 0, 1, ... , n. (6.33) 

By using the definition (6.23) again, it follows that the modulus of the 
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value of the function [Bn (f')- (Bn+d)'] at the point x is bounded by the 
expression 

Lt k !(nn ~ k)! xk(l -x)"-k[r(;)-f'(~k)JI 

~ =max lr( ~)-rc~k)I ~ w( -±-!). 
k 0,1, ... ,n n n 

(6.34) 

where w is the modulus of continuity of the function f'. The last inequality 
is obtained from the fact that k/n, like ~k. is in the interval [k/(n + 1), 
(k + 1)/(n + 1)]. Because this last inequality is independent of x, we have 
established the condition 

llB" <t')-CBn+i!Ylloo ~ wC ~ 1). C6.3s) 

Therefore the limit (6.31) is proved. D 
It is worth noting that the middle line of equation (6.32) implies that, if 

the function f increases strictly monotonically, then the polynomial Bn+d 
also increases strictly monotonically. The Bernstein method is excellent 
for providing a polynomial approximation that preserves any smooth 
qualitative properties of the function that is being approximated. It is also 
useful for obtaining a differentiable approximation to a non-differenti­
able function, and for some other smoothing applications. 

6 Exercises 
6.1 For any f E ~[a, b ], let Xf be the linear polynomial that inter­

polates f(x 0 ) and /(x 1), where x0 and x1 are fixed points of [a, b] 
such that x 0 <x1• Prove that the operator X is monotone if and 
only if x0 =a and x 1 =b. 

6.2 By using the identity 

k2 = (k - l)(k -2) + 3(k -1) + 1, 

prove that the Bernstein approximation to the function {f(x) = 
x 3 ; O~x ~ 1} is the polynomial 

( ) (n - l)(n - 2) 3 3(n -1) 2 1 
p x = 2 x + 2 x + 2 x, O~x ~ 1. 

n n n 

Note that the method of calculation can be generalized to show 
that, if f E r!J, and if n > r, then the approximation Bnf is also in r!J,. 

6.3 Let p = Bd, where Bnf is the Bernstein approximation (6.23) to a 
function f in ~[O, 1]. Express the function values {p(j/6); j = 

0, 1, ... , 6} as linear combinations of the numbers {f(j/6); 
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j = 0, 1, ... , 6}. Hence show that, if p is the polynomial in P/'6 that 
satisfies the conditions p(!) = 1 and {p(j/6) = O; j = 0, 1, 2, 4, 5, 
6}, then f takes the values f(O) = f(l) = 0, f(i) = f(~) = 20/3, 
r@= f(~) = -308/15, and tc!> = 30. 

6.4 Let n and r be positive integers, where n ;a: r, letf be a function in 
cg<'>[o, 1], and let Pn =BJ be the Bernstein polynomial (6.23). 
By expressing the derivative p~l (0) as a linear combination of the 
function values{f(k/n); k = 0, 1, ... , r}, prove thatthe equation 

p~)(O)= r n! l'l(g) 
n(n-r)! 

is satisfied, where g is in the interval [O, r/ n ]. Deduce that p ~l (0) 
tends to l'\O) as n tends to infinity. 

6.5 Prove that the error at x =!of the Bernstein approximation BJ 
to the function {f (x) = Ix -!I; 0 .s: x .s: 1} is of order of magnitude 

1 n-'. 
6.6 Consider the function 

( ) n! k( )n-k 
cPnk x = k!(n-k)!x l-x , O.s:x.s: 1, 

that occurs in the definition of the approximation (6.23). 
Investigate its properties, giving particular attention to the case 
when n is large. You should find that cPnk has one peak at x = k/ n, 
and that the width of the peak becomes narrower as n tends to 
infinity. Let g and T/ be any two fixed points of [O, l], where g is 
rational, and let the ratio <Pnd T/) / <Pndg) be calculated for an 
infinite sequence of pairs (k, n) such that g = k/ n. Prove that the 
ratio tends to zero. 

6.7 Let Ln be a linear monotone operator from '(6'[0, 1] to '(6'[0, 1], 
where LJ depends only on the function values {f(k/n); k = 
0, 1, ... , n}, and let Ln have the property that, if f E cg<2 >[0, 1], 
then the bound 

\lf - LJ\\oo ,,;;: C \lf"\\oo 

is satisfied, where the number c is independent of f. By consider­
ing a quadratic function that is positive on most of the range 
[O, 1], show that c is not less than 1/8n 2 • Further, show that the 
value c = 1/8n 2 can be achieved by letting Lnf be a piecewise 
linear function. 
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6.8 By applying the technique that is used to prove Theorem 6.2, 
show that, if f E ce<2l[O, 1], then the error of the approximation 
(6.23) satisfies the bound 

II/- Bnflloo ~ [1/8nJllf"lloo. 

Note that this bound holds as an equation when f is the function 
{f(x)=x 2;0~x~1}. 

6.9 By extending the proof of Theorem 6.4 show that, if f E 

ce(2)[0, 1], then the limit 

lim llf" - (BJ)"lloo = 0 
n-+OO 

is obtained. 
6.10 Let {f (x, y); 0 ~ x ~ 1; 0 ~ y ~ 1} be a continuous function of two 

variables, and let the function Bnf be obtained by applying the 
Bernstein approximation method to each of the variables of f. 
Therefore (Bnf)(x, y) has the value 

I I . .(n!)2 xi(l-xt-;yk(l-yt-kt(l,~), 
i=Ok=oJ!(n-1)!k!(n-k)! n n 

where 0 ~ x ~ 1 and 0 ~ y ~ 1. Prove that the infinite sequence 
{BJ; n = 0, 1, 2, ... } converges uniformly to f. 
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The theory of minimax approximation 

7 .1 Introduction to minimax approximation 
We recall from Chapter 1 that the best minimax approximation 

from a set .sd to a function fin 't&'[a, b] is the element of .sd that minimizes 
the expression 

11/-plloo= max if(x)-p(x)j, 
a-s;;,.x~b 

p E .st/.. (7.1) 

In this chapter we study the conditions that are satisfied by a best 
approximation, when .sd is a linear space. We note that they take a 
particularly simple form if .sd is the space PJ n of algebraic polynomials of 
degree at most n. In fact this form is obtained in the more general case 
when .sd satisfies the 'Haar condition', which is defined in Section 7.3. In 
Section 7.4 some further useful properties of best minimax approxi­
mations are proved in the case when the Haar condition is obtained, 
including the result that the best approximation is unique. The Haar 
condition also provides an excellent method for calculating best approx­
imations, called the exchange algorithm, which is described in Chapter 8 
and analysed in Chapter 9. 

The theory that is developed for the case when .sd is any finite­
dimensional linear space comes from asking the following question. Let 
p* be a trial approximation from .sd to f. Can we find a change top* that 
reduces the maximum error of the trial approximation? In other words, 
we seek an element p in .sd such that the inequality 

11/-(p* + (Jp )lloo <II/- p*lloo (7.2) 

is satisfied for some value of the scalar parameter fJ. Figure 7 .1 gives an 
example to explain this point of view. 
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In the figure the function f, which is shown in each of the four parts, is to 
be approximated by a straight line, so .st1 is the space g>1 , Three trial 
approximations, namely pf, p! and pf, are shown. The vertical lines in 
the figure indicate where the error function of each approximation takes 
its maximum value. We see that the straight line pf is not optimal, 
because the maximum error is reduced if the line is raised. The straight 
line p! is not optimal either, because the maximum error can be reduced 

Figure 7 .1. Minimax approximation by a straight line. 

,J 

Pi 

Pi 

pj 
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by rotating the line in a counter-clockwise direction. The straight line pt, 
however, is the best approximation from 9P1 to f. We find in Section 7.3 
that the characteristic property of a best straight line approximation is 
that the maximum error is achieved at three points of [a, b] with alternat­
ing sign. 

Figure 7 .1 suggests that, to discover if a trial approximation is optimal, 
one only need consider the extreme values of the error function {f (x) -
p*(x); a,;;;; x,;;;; b }. This remark is made rigorous in the next section. It 
follows that we can find a function, g say, to add to the function of Figure 
7 .1, such that the best approximation is unchanged, but the best 
approximation from £1P 1 to g is not the zero function. This remark is 
important, because it shows that in general a best minimax operator from 
~[a, b] to .s4 is not a linear operator. Therefore the algorithms for 
calculating best approximations are iterative procedures. 

7 .2 The reduction of the error of a trial approximation 
We let p* be a trial approximation from .s4 to a function f in 

~[a, b ], and we try to improve the approximation by satisfying condition 
(7.2). The set of points at which the error function 

e*(x) = f(x )-p*(x ), a ,;;;;x ,;;;;b, (7.3) 

takes its extreme values is important, and we call it :!lM. This set is 
characterized by the condition 

le*(x)I = lle*lloo, (7.4) 

We suppose first that p* is not optimal. We let (p* + (Jp) be a best 
approximation. Hence the reduction (7.2) is obtained, and the points in 
:!lM satisfy the inequality 

le*(x)-8p(x)l<le*(x)j, xE:!lM. (7.5) 

We assume without loss of generality that (} is positive. Therefore 
expression (7 .5) shows that, if x is in :!lM, then the sign of e*(x) is the same 
as the sign of p(x). It follows that p* is a best minimax approximation 
from .s4 to f if there is no function p in .s4 that satisfies the condition 

[f(x)- p*(x)]p(x) > 0, (7.6) 

In the remainder of this section the converse result is proved, namely that, 
if inequality (7 .6) holds for some p in .9'/, then there exists a positive value 
of 0 that gives the reduction (7 .2). 

Because of the way in which the exchange algorithm works, we 
generalize the problem of minimizing II/ - Plloo, to the problem of 
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minimizing the expression 

max lf(x)-p(x)I, 
XEffL 

p E .stJ, 

75 

(7.7) 

where !?l is any closed subset of [a, b ], which may be [a, b] itself, but in the 
exchange algorithm the set !?l is composed of a finite number of points. 
The next theorem allows !?l to be general. 

Theorem 7.1 
Let .stJ be a linear subspace of ce[a, b ], let f be any function in 

ce[a, b ], let !?l be any closed subset of [a, b ], let p* be any element of .stl, 
and let !?lM be the set of points of !?l at which the error {lf(x )- p*(x )I; x E 

!?l} takes its maximum value. Then p* is an element of .stJ that minimizes 
expression (7. 7) if and only if there is no function p in .stJ that satisfies 
condition (7 .6). 

Proof. The remarks made in the first paragraph of this section prove the 
'if' part of the theorem, when !?l is the whole interval [a, b]. It is 
straightforward to extend these remarks to the case when !?l is a subset of 
[a, b]. Therefore, it remains to show that, if condition (7 .6) is obtained, 
then the inequality 

max le*(x)-Op(x)I <max le*(x)I (7.8) 
XE~ XE~ 

holds for some value of 0, where e* is the error function (7.3). 
We let 0 be positive, and we must ensure that it is not too large. For 

example, if we improve the approximation p f in Figure 7 .1 by raising the 
straight line approximation, then we must be careful not to raise it too far. 
In order to avoid detailed consideration of the size of p when we find a 
suitable value of 0, we assume without loss of generality that the condition 

lp(x)I ~ 1, a ~x ~b. (7.9) 
holds. We have to give particular care to any values of x for which the 
signs of e*(x) and p(x) are opposite. Therefore the set !?l0 is defined to 
contain the elements x that satisfy the condition 

p(x)e*(x)~O. xE!?l. (7.10) 

Because this set is closed, and because !?l0 and !?lM have no points in 
common, the number 

d = max le*(x)I 
xe:Xo 

(7.11) 

satisfies the bound 

d <max le*(x)I. 
XEffL 

(7.12) 
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If ~o is empty, we defined to be zero. We prove that inequality (7.8) is 
obtained when fJ has the positive value 

O=![maxle*(x)l-d]. (7.13) 
XE:!J: 

Because the set ~ is closed, we may let g be an element of ~ that 
satisfies the equation 

le*(g)- Op(g)I = max le*(x) - Op(x )I. 
XE1£ 

(7.14) 

If g is in ~0, the bound 

max le*(x )- Op(x)I = le*(g)I + \Op(g)I ~ d + fJ 
XE:!J: 

(7 .15) 

is obtained, where the last term depends on expressions (7 .11) and (7 .9). 
Hence condition (7 .8) follows from inequality (7 .12) and equation (7 .13). 
Alternatively, when g is not in ~0, the signs of the terms e*(g) and p(g) are 
the same, which gives the strict inequality 

le*(g)- Op(g)I < max [le*(g)I, IOp(g)IJ. (7 .16) 

Again it follows that condition (7 .8) is satisfied. The proof of the theorem 
is complete. D 

This theorem justifies the remark, made in Section 7 .1, that, to find out 
if a trial approximation is optimal, one only need consider the extreme 
values of the error function. Specifically, one should ask if condition (7 .6) 
holds for some function p in .sl/.. 

7 .3 The characterization theorem and the Haar condition 
If the set .sl/. of approximating functions is the space PP n of 

algebraic polynomials of degree at most n, then it is rather easy to test 
whether condition (7 .6) can be obtained. We make use of the fact that a 
function in PP n has at most n sign changes. Therefore, if the error function 
[f(x )- p*(x)] changes sign more than n times as x ranges over ~M. then 
p* is a best approximation. Conversely, if the number of sign changes 
does not exceed n, then we can choose the zeros of a polynomial in PPn so 
that condition (7 .6) is satisfied. This result is usually called the minimax 
characterization theorem, and it is stated formally below. 

It is useful to express the theorem in a form that applies to a class of 
functions that includes polynomials as a special case. The usual way of 
defining this class is to identify the properties of polynomials that are used 
in the proof of the characterization theorem. They are the following two 
conditions: 
(1) If an element of PPn has more than n zeros, then it is identically 

zero. 
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(2) Let Ui; j = 1, 2, ... , k} be any set of distinct points in the open 
interval (a, b ), where k ~ n. There exists an element of r!f> n that 
changes sign at these points, and that has no other zeros. 
Moreover, there is a function in r!f> n that has no zeros in [a, b ]. 

The following two properties of polynomials are required later: 
(3) If a function in r!f> n• that is not identically zero, has j zeros, and if k 

of these zeros are interior points of [a, b] at which the function 
does not change sign, then the number (j + k) is not greater 
than n. 

(4) Let {gi; j = 0, 1, ... , n} be any set of distinct points in [a, b ], and 
let {</>;; i = 0, 1, ... , n} be any basis of r!l>n. Then the (n + 1) x 
(n + 1) matrix whose elements have the values {</>;(gi); 
i = 0, 1, ... , n; j = 0, 1, ... , n} is non-singular. 

An (n + 1)-dimensional linear subspace .sl1 of ce[a, b] is said to satisfy 
the 'Haar condition' if these four statements remain true when r!l>n is 
replaced by the set .sll. Equivalently, any basis of .sl1 is called a 'Chebyshev 
set'. Spaces that satisfy the Haar condition are studied in Appendix A. It 
is proved that properties (1), (3) and (4) are equivalent, and that these 
properties imply condition (2). It is usual to define the Haar condition in 
terms of the first property. Thus .sl1 satisfies the Haar condition if and only 
if, for every non-zero p in .sll, the number of roots of the equation 
{ p (x) = 0; a ~ x ~ b} is less than the dimension of .sll. 

Theorem 7.2 (Characterization Theorem) 
Let .sl1 be an (n + 1)-dimensional linear subspace of ce[a, b] that 

satisfies the Haar condition, and let f be any function in ce[a, b]. Then p* 
is the best minimax approximation from .sl1 to f, if and only if there exist 
(n + 2) points {e; i = 0, 1, ... , n + l}, such that the conditions 

and 

a ~a <gt < ... <g~+l ~b. 
lf<gt )-p*(gt )I= llt-p*lloo, 

are obtained. 

i = 0, 1, ... , n + 1, 

i = 0, 1, ... , n, 

(7 .17) 

(7.18) 

(7.19) 

Proof. We let~ be the interval [a, b] in Theorem 7.1. The present 
theorem is proved in the way that is described in the first paragraph of this 
section, by making use of the properties (1) and (2) that are stated above, 
which hold when .sl1 satisfies the Haar condition. D 
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One important application of this theorem is to prove the minimum 
property of Chebyshev polynomials. We recall from equation (4.26) that 
the Chebyshev polynomial T" is the polynomial of degree n that is 
defined on the interval [-1, 1] by the equation 

Tn (x) =cos (nO), x =cos 0, 0.;;; 0.;;; 1T. (7 .20) 

The minimum property is sufficiently useful to be stated as a theorem. 

Theorem 7.3 
Let the range of x be [-1, 1], and let n be any positive integer. 

The polynomial (t)"-1 T" is the member of PJ>", whose oo-norm is least, 
subject to the condition that the coefficient of x" is equal to one. 

Proof. One way of identifying the required polynomial is to seek the 
values of the coefficients {c;; i = 0, 1, ... , n -1} that minimize the 
expression 

(7.21) 

We see that this approach is equivalent to finding the best approximation 
from Pf>n-l to the function {x"; -1 o;; x.;;; l}. It follows from Theorem 7 .2 
that (t)"- 1 T" is the required polynomial, if the coefficient of x" is one, and 
if there exist points U;; i = 0, 1, ... , n} in [-1, 1], arranged in ascending 
order, such that the equations 

i = 0, 1, ... , n, (7.22) 

hold. The recurrence relation (4.25) implies that the coefficient of x" is 
correct. Moreover, the definition (7.20) shows that equation (7.22) is 
satisfied if we let each~; have the value cos [(n -i)1T/ n]. The theorem is 
proved. D 

The main reason for letting ~ be any closed subset of C(6'[a, b] in the 
statement of Theorem 7 .1, is that the exchange algorithm requires the 
case when~ contains just (n + 2) points. In descriptions of the exchange 
algorithm it is usual to call such a set of points a 'reference'. We use this 
term also, and we let U;; i = 0, 1, ... , n + l} be the points of the 
reference. We assume that always these points are in ascending 
order 

(7.23) 

The following corollary of Theorem 7 .1 is used on every iteration of the 
exchange algorithm. 



Uniqueness and bounds on the minimax error 79 

Theorem 7.4 
Let .sll be an (n + 1)-dimensional linear subspace of cg[a, b] that 

satisfies the Haar condition, let U°;; i = 0, 1, ... , n + 1} be a reference, and 
let f be any function in cg[a, b ]. Then p* is the function in .sll that 
minimizes the expression 

p E .sl/, (7.24) 

if and only if the equations 

f({H1)- p*({;+1) = -[/({;)- p*({;)], 

are satisfied. 

i=O,l, ... ,n, (7.25) 

Proof. We follow the method of proof of Theorem 7.2, except that we 
let ~ be the point set ui; i = 0, 1, ... 'n + l}, instead of the interval 
[a, b]. D 

The function p* that minimizes expression (7.24) may be calculated 
from the equations (7 .25). It is usual to let h be the value of [f({0)­

p * ( {0)], and to choose a basis of .sll, {<Pi; j = 0, 1, ... , n} say. It follows that 
the coefficients of the function 

n 

p*(x) = L Ai</>i(x ), 
i=O 

satisfy the equations 
n 

a ~x ~b, 

/({;)- L Ai</>i({;) = (- l)ih, i = 0, 1, ... , n + 1, 
i=O 

(7.26) 

(7.27) 

which is a linear system in the unknowns {Ai; j = 0, 1, ... , n} and h. 
Because Theorem 7.4 shows that these equations have a solution for all 
functions f in cg[a, b ], the matrix of the system is non-singular. Hence 
only one element of .sll minimizes expression (7 .24). A more general and 
more useful method of proving uniqueness is given in the next section. 

7 .4 Uniqueness and bounds on the minimax error 
Suppose that the conditions of Theorem 7 .2 hold, that p* and q* 

are both best minimax approximations from .sll to f, and that conditions 
(7.17), (7.18) and (7 .19) are satisfied. We let r* be the function (q* - p*), 

and we consider the numbers 

r*({t) = [f({t)-p*({1)]-[f({t)-q*({1)], 

i = 0, 1, ... , n + 1. (7.28) 

Because llf-q*tloo and II!-p*lloo are equal, it follows from equation (7 .18) 
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that either r*(gt) is zero, or its sign is the same as the sign of [f(gt)­
p*(g[)]. Hence equation (7.19) provides information about the signs of 
the terms of the sequence {r*(gt); i = 0, 1, ... , n + 1}. It can be deduced 
from this information that r* is identically zero. Hence the best minimax 
approximation from .rA to f is unique. The method of proving that r* is 
identically zero is a general one that has several applications. Therefore it 
is stated in the following theorem. 

Theorem 7.5 
Let r be a function in <e[a, b ], and let {g;; i = 0, 1, ... , n + l} be a 

reference, such that the conditions 

(-1/r(g;);;;.: 0, i = 0, 1, ... , n + 1, (7.29) 

are satisfied. Then r has at least (n + 1) zeros in [a, b ], provided that any 
double zero is counted twice, where a double zero is a zero that is strictly 
inside [a, b ], at which r does not change sign. 

Proof. Let ~ and $ be the sets 

~ =:Y:.r(g;) ~O, i_=:_o, 1, ... , n + l} }· 
$-{J.r(g;)-0, 1-0,1, ... ,n+l} 

(7.30) 

and let n (~) and n ($) be the number of elements in each set. The 
theorem is trivial if n (~) is zero or one. Otherwise we consider the 
number of zeros in the interval [gk, g1], where k and l are both in~. and 
where no other element of ~ is in the range [k, l]. Condition (7.29) 
implies that the numbers r(gk) and r(g1) have the same sign if (l-k) is 
even, and they have opposite signs if (l - k) is odd. Hence the number of 
zeros of r in the interval [gk, g1] is at least one more than the number of 
points of the set {g;; j E$} that are in this interval, provided that any 
double zero is counted twice. Because the number of pairs [gk. g1] that 
have this property is [n (~)-1], it follows that the total number of zeros of 
r in [a, b] is at least [n(~)+n($)-1], which is the required result. D 

Hence we obtain the uniqueness theorem for best approximation in the 
oo-norm. 

Theorem 7.6 
Let .rA be a linear subspace of <e[a, b] that satisfies the Haar 

condition. Then, for any f in <e[a, b ], there is just one best minimax 
approximation from .rA to f. 

Proof. The remarks in the first paragraph of this section and Theorem 
7.5 imply that, if p* and q* are both best approximations, then the 
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function (p* -q*) has at least (n + 1) zeros in [a, b ], provided that any 
double zero is counted twice. It follows from property (3) of Section 7 .3, 
which is obtained when the Haar condition is satisfied, that the functions 
p* and q* are the same. D 

Another interesting property of the Haar condition, which is the 
subject of Exercise 7 .9, is that, if s!l is any finite-dimensional linear 
subspace of <€[a, b] that does not satisfy the Haar condition, then there 
are functions f in <€[a, b] that have several best approximations in s!l. 

Theorem 7 .5 is also useful for obtaining lower bounds on the least 
value of expression (7 .1 ). Suppose that an iterative method for calculating 
a best approximation produces a trial approximation p*, and that the 
conditions (7 .17), (7 .18) and (7 .19) are almost satisfied. Then we usually 
have available a reference U;; i = 0, 1, ... , n + l}, such that the signs of 
the terms {f(g;)- p*(g;); i = 0, 1, ... , n + 1} alternate. In this case the 
following theorem applies. 

Theorem 7.7 
Let the conditions of Theorem 7 .2 hold, let p* be any element of 

s!l, and let {g;; i = 0, 1, ... , n + 1} be a reference, such that the condition 

sign [f(g;+1)- p*(g;+1)] =-sign [f(g;)- p*(g;)], 

i = 0, 1, ... , n, (7.31) 

is satisfied. Then the inequalities 

. min lf(g;)-p*(g;)l..;;min. max lf(g;)-p(g;)I 1=0,1, .. .,n+l pE.sd 1=0,1, .. .,n+l 

..;;min llf-plloo 
pE.sd 

..;:; II! - p*lloo (7.32) 

are obtained. Moreover, the first inequality is strict unless all the numbers 
{if(g;)-p*(g;)I; i = 0, 1, ... , n + 1} are equal. 

Proof. The third inequality of expression (7 .32) holds because p* is in s!l, 
and the second one holds because the reference is a subset of [a, b ]. In 
order to prove the first inequality, we suppose that there exists a function 
q* in s!l that satisfies the condition 

. min lf(g;)-p*(g;)I;;.. max lf(g;)-q*(g;)I. 
1=0,1, .. .,n+l 1=0,1, ... ,n+l 

(7.33) 

If q* is equal to p*, then expression (7 .33) shows that the numbers 
{if(g;)-p*(g;)I; i = 0, 1, ... , n + l} are all the same. Thus the first part of 
condition (7.32) can hold as an equation. Alternatively, let us suppose 
that p* is not equal to q*, but that inequality (7 .33) is satisfied. As in the 
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first paragraph of this section, we let r* be the function (q* -p*). Because 
condition (7.33) implies that the numbers (7.28) have the same sign 
properties as before, we deduce from Theorem 7 .5 and from the Haar 
condition that the functions p* and q* are the same, which is a contradic­
tion. The theorem is proved. D 

It is useful to note that, if p* is the best minimax approximation from d 
to f, and if the reference in the statement of the last theorem is the set of 
points ur; i = 0, 1, ... ' n + 1} that occurs in conditions (7 .17), (7 .18) and 
(7 .19), then all the inequalities of expression (7 .32) are satisfied as 
equations. 

7 Exercises 
7.1 For any fin C€[a, b], letX(n be the best minimax approximation 

in @" n to f. Construct an example to show that the operator X is 
not linear. 

7.2 Let d be an (n + 1)-dimensional linear subspace of C€[a, b], let 
{cf>;; i = 0, 1, ... , n} be a basis of d, let p* be a best approxima­
tion from d to a function fin C€[a, b ], and let f!lM be the set that is 
defined by equations (7.3) and (7.4). Prove that, if f!lM contains 
just the discrete points {ei; j = 1, 2, ... , r}, and if H is the (n + 
1) x r-dimensional matrix whose elements have the values 
{cf>;(gj); i = 0, 1, ... , n; j = 1, 2, ... , r}, then the rank of His less 
than r. 

7 .3 Let d be a finite-dimensional linear subspace of C€[a, b ], let p* 
be a trial approximation from d to a function fin C€[ a, b ], and let 
f!lM be the set that is defined by equations (7.3) and (7.4). Prove 
that p* is a best approximation from d to f, if there exist points 
{ei; j = 1, 2, ... , r} in f!lM and non-zero multipliers {ui; j = 
1, 2, ... , r}, such that, for all functions cf> in d, the equation 

r 

L u,.q,(gi)=O 
i=l 

holds, and such that the sign conditions 

Uj[f(gj)- p*(gj)];;;;.: 0, j = 1, 2, ... , r, 

are satisfied. 
7 .4 Let n be a positive integer, and let d be the linear space of 

dimension (2n + 1) that is spanned by the trigonometric 
functions {cos (jx), -?T+e ... x ... ?T-e;j = 0, 1, ... , n} and 
{sin(jx),-?T+e ... x ... ?T-e;j=l,2, ... ,n}, where e is a 
constant from the interval [O, ?T). Prove that d satisfies the Haar 
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condition if E is positive. By considering the case when E is zero, 
show that conditions (1) and (2) of Section 7 .3 are not 
equivalent. 

7.5 Calculate the best approximation to the function {f(x) =Ix +!I; 
-1 o;;;; x o;;;; l} by a quadratic polynomial. 

7.6 Let the conditions of Theorem 7.6 be satisfied. Prove the 
theorem by showing that, if q* and r* are best approximations 
from .r4 to a function fin ~[a, b ], and if~ is any solution of the 
equation If(~)- p*(~)I =II!- p*lloo, where p* is the approxima­
tion !(q* + r*), then q*(~) is equal tor*(~). 

7.7 Let .r4 be the space PP2 , let/ be the function {f(x) = x 3 ; 0 o;;;; x o;;;; l}, 
and let the points {g;; i = 0, 1, 2, 3} have the values ~0 = 0.0, 
~1 = 0.3, 6 = 0.8 and 6 = 1.0. Calculate the polynomial p* that 
minimizes expression (7.24). Hence the first line of expression 
(7 .32) is satisfied as an equation. Calculate all the terms 
of inequality (7 .32), using Theorem 7 .3 to obtain the least 
maximum error d* = min {!i/-plloo; p Ed}. You should find 
that expression (7.32) gives close upper and lower bounds 
on d*. 

7 .8 Show that the three-dimensional linear space .r4 that is spanned 
by the functions { </> 0 (x) = 1; -~11' o;;;; x o;;;; !71'}, { </> 1 (x) = 
cos(2x);-~7To;;;;xo;;;;!7T} and {</>2(x)=sin(3x);-ho;;;;xo;;;;!7T} 
satisfies the Haar condition. It is sufficient to prove that property 
(4) of Section 7.3 is obtained. Show also that there is no function 
in .r4 that is zero at the left-hand end of the range, -~71', and that 
has no other zeros. It is most unusual for a space that satisfies the 
Haar condition to have this property. 

7.9 Let .r4 be an (n + 1)-dimensional linear subspace of ~[a, b] that 
does not satisfy the Haar condition. By using condition (4) of 
Section 7.3 and Exercise 7 .3, show that there exists fin ~[a, b] 
and a best approximation p* from .r4 to f, such that the set 
.?l'M = {x : l/(x )- p*(x )I= II/- p*l!oo} contains fewer than (n + 2) 
points. Let p be a non-zero function in .r4 that is zero at the points 
of .?l'M. By modifying f if necessary, deduce from Exercise 7.3 
that it is possible for (p* + fJp) to be a best approximation from .r4 
to f for a range of values of the number 8, which proves that not 
every element of ~[a, b] has a best minimax approximation in d. 

7 .10 In a discrete minimax calculation the numbers {/;; i = 
1, 2, ... , m} and{</>;;; i = 1, 2, ... , m; j = 0, 1, ... , n} are given, 
and one requires the values of the parameters 
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{Ai; j = 0, 1, ... , n} that minimize the expression 

;}[\~~.m If; - it <f>w\il· 
Investigate the relevance of the theory of this chapter to this 
calculation. Hence show that the least value of the expression 

max [12-4A1 -5A2I, l3-5A1 -6A2I, l4-6A1 -8A2IJ 

is equal to~-



8 

The exchange algorithm 

8.1 Summary of the exchange algorithm 
Let f be a function in ~[a, b ], and let sd be an (n + 1)-dimen­

sional linear subspace of ~[a, b] that satisfies the Haar condition. The 
exchange algorithm calculates the element of sd that minimizes the 
maximum error 

Jlf-pJJoo= max lf(x)-p(x)I, pE.sd. (8.1) 
a~x~b 

Instead of trying to reduce the error of each trial approximation, the 
algorithm adjusts a reference U°;; i = 0, 1, ... , n + l}, so that it converges 
to a point set U-1; i = 0, 1, ... , n + l}, that satisfies the conditions of 
Theorem 7 .2. The adjustments are made by an iterative procedure. 

In order to begin the calculation, an initial reference is chosen. It can be 
any set of points that satisfies the condition 

(8.2) 

but a particular choice that is suitable when sd is the space PPn is given in 
Section 8.4. At the start of each iteration a reference is available that is 
different from the references of all previous iterations. The calculations of 
each iteration are as follows. 

We let {g;; i = 0, 1, ... , n + l} be the reference at the start of an 
iteration. First the function p in sd that minimizes the expression 

max lf(g;)-p(g;)I, pE.sd, (8.3) 
i~0.1 •...• n+l 

is calculated. Theorem 7.4 shows that the coefficients of p may be found 
by solving the linear system of equations 

i = 0, 1, ... , n + 1, (8.4) 
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where, as in equation (7 .27), h is also defined by the linear system. It 
follows from Theorem 7. 7 that the boundf: 

lh I,;_; \If- p*\\oo ,,;_;\If- p\\oo (8.5) 

are satisfied, where p* is the required best approximation from d to f. In 
order to make use of the right-hand bound, and in order to obtain a 
suitable change to the reference, the error function 

e(x) = f(x)-p(x), 

is considered. 

a :s;;:x :s;;:b, (8.6) 

A typical error function in the case n = 3 is shown in Figure 8.1. We see 
that equation (8.4) is satisfied, and that consequently e has at least n 
turning points. The positions of the extrema, which are called 17i. 172 and 
173 in the figure, are estimated by evaluating the error function at several 
points of [a, b ]. It is necessary in practice to obtain these points automa­
tically in an efficient way. Suitable methods are based on local quadratic 
fits to the error function, but we assume that the abscissae of the extrema 
can be found exactly. We let 71 be a point that satisfies the equation 

\[(71 )-p( 11 )\=\If- p\\oo. (8.7) 
The calculation finishes if the difference 

8 = \f(71)-p(71)\-\h\ (8.8) 

is sufficiently small, because inequality (8.5) implies the bound 

I\!-Plloo ,,;_;I\! - p*lloo + 8. (8.9) 

Otherwise the reference is changed in order to begin another iteration. In 
the 'one-point exchange algorithm' the new reference, {e; i = 0, 
1, ... , n + l} say, contains 71 and (n + 1) of the points {~;; i = 0, 1, ... , 
n + 1}, which are specified in the next section. The most important 

Figure 8.1. An error function of the exchange algorithm. 
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property of the change of reference is that the quantity Jh J, which is called 
the levelled reference error, increases strictly monotonically from itera­
tion to iteration. 

Because it is convenient to regard the levelled reference error as a 
function of the reference, we use the notation 

(8.10) 

It is helpful to take the point of view that the purpose of the change of 
reference is to increase the value of h(g0 , gi, ... , gn+1). Because expres­
sion (8.8) is small only if the levelled reference error is close to the bound 
llf - p*Jloo of inequality (8.5), it is advantageous to make 
h(g0 , gi, ... , gn+i) as large as possible. Thus the exchange algorithm is a 
method of solving a maximization problem, where the variables are the 
points of the reference. The structure of h(g0 , gi, ... , gn+ 1), however, is 
such that it is inefficient to use one of the superlinearly convergent 
algorithms that are available in subroutine libraries for general maxi­
mization calculations. 

8.2 Adjustment of the reference 
As in the previous section, we consider an iteration of the 

exchange algorithm that calculates a function p in d by solving the 
equations (8.4), and that changes the reference from {g;; i = 0, 1, ... , 
n + 1} to U7; i = 0, 1, ... , n + 1}. The method of choosing the new 
reference depends on Theorem 7. 7, for it states conditions that imply the 
increase 

(8.11) 

in the levelled reference error. The theorem shows that it is sufficient if 
the conditions 

sign [/(g7+1 )-p(g7+1)] 

=-sign [f(g7)-p(g7)], i = 0, 1, ... , n, (8.12) 

and 

i = 0, 1, ... , n + 1, (8.13) 

are satisfied, provided that at least one of the numbers {lf(gt}-p(g7)1; 
i = 0, 1, ... , n + 1} is greater than lh I. Hence, several ways ofobtaining an 
increase in the levelled reference error are suggested by Figure 8.1. 

One method is to let each point of the new reference be an extremum of 
the error function (8.6). In this case the error curve of Figure 8.1 gives the 
reference {g0 , 7/i. 71 2 , 71 3 , g4}, and we note that conditions (8.12) and 
(8.13) are obtained. Methods that can change every reference point on 
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every iteration are usually more efficient than the one-point exchange 
algorithm, in the sense that fewer iterations are required to reduce the 
number (8.8) to less than a prescribed tolerance. We give our attention, 
however, to the one-point method, because it is interesting to discover 
the way in which it achieves a fast rate of convergence. An advantage of 
the one-point method is that the work of solving the equations (8.4) may 
be reduced, by using techniques for updating matrix factorizations. 

In the one-point exchange algorithm, we let gq be the point that leaves 
the old reference to make room for T/· For example, in Figure 8 .1, because 
T/i is the solution of equation (8.7), we let q = 1, in order th~t the new 
reference is the set Uo, T/i. 6, 6, g4}. No other choice of q allows condi­
tion (8.12) to be satisfied. Provided that lh I is positive, it is true generally 
that condition (8.12) and the value of T/ determine the point that leaves 
the reference uniquely. The case when lhl is zero can occur only on the 
first iteration, and then any value of q gives the increase (8.11). 

When lhl is positive, and when T/ is inside the interval [g0, en+i], the 
value of q is such that the signs of [f(.,.,)-p(T/)] and [f(gq)-p(gq)] are the 
same, and no point of the old reference is between gq and T/· When T/ < g0 , 

then gq is either g0 or en+ I· We let q be zero if the signs of[!(.,.,)- p(T/)] and 
[f(g0 )-p(g0 )] are the same, otherwise it is necessary to let q be (n + 1). A 
similar rule determines the value of q when T/ is greater than en+l· 

The description of the one-point exchange algorithm is now complete. 
An example of its use is given in the next section, and some of its 
convergence properties are studied in Chapter 9. 

8.3 An example of the iterations of the exchange algorithm 
In order to show the convergence properties of the one-point 

exchange algorithm, this section describes the numerical results that are 
obtained when .st1 is the two-dimensional linear space of functions of the 
form 

O,;;;x,;;; 7r/2, (8.14) 

when f is the function 

f(x) =sin x, 0,;;; x,;;; 7r/2, (8.15) 

and when the reference of the first iteration contains the points {0.5, 1.0, 
7r/2}. Because p(O) is equal to f(O) for all values of the coefficients Ao and 
A i. the first point of the reference is positive throughout the calculation. 
Because the only extrema of the error {f(x )- p (x); 0,;;; x ,;;; 7r/2} occur 
near eo and 6, the point 7r/2 never leaves the reference. Hence the error 
function shown in Figure 8.2 is typical, and we let T/o and .,., 1 be the 
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abscissae of its turning points. Therefore, if another iteration is required, 
its reference is either { 710, ~i. 6} or {~0 , 71i, 6}, where the one that is 
chosen depends on which is the larger of the numbers \e(710)\ and \e(71 1)\. 

Tables 8.1 and 8.2 give the levelled reference errors and the extrema 
that occur on the first five iterations. We note that the levelled reference 
errors increase strictly monotonically and that the values of llf-Plloo 
decrease monotonically. Both these sequences seem to be converging 

Figure 8.2. An error function of the example of Section 8.3 . 

.;, l'/1 

Table 8.1. The references of the example of Section 8.3 

Iteration go 6 6 h (go, g" gz) 

1 0.500 OOO 1.000 OOO 1.570 796 0.013 998 30 
2 0.298 938 1.000 OOO 1.570 796 0.016 978 02 
3 0.298 938 1.104 968 1.570 796 0.017 482 78 
4 0.283 880 1.104 968 1.570 796 0.017 501 65 
5 0.283 880 1.106 124 1.570 796 0.017 501 72 

Table 8.2. The extrema of the error function of the example of 
Section 8.3 

Iteration 1/o e ( 110) 1/1 e(111) 

1 0.298 938 -0.019 659 29 1.133 035 0.016 193 66 
2 0.279 792 -0.017 039 99 1.104 968 0.018 39116 
3 0.283 880 -0.017 521 06 1.106 316 0.017 483 03 
4 0.283 733 -0.017 501 66 1.106 124 0.017 501 83 
5 0.283 733 -0.017 501 72 1.106124 0.017 501 72 
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rapidly to the same limit. Hence inequality (8.5) provides excellent 
bounds on the least maximum error. For example, after only three 
iterations, we find that the bounds 

0.017 482 78::;.::;llf-p*l!::;.::;0.017 52106 (8.16) 

are satisfied. Further, the maximum error of the approximation that is 
calculated on the fifth iteration agrees with the least maximum error to 
eight decimal places. It is highly satisfactory to obtain this accuracy in so 
few iterations. 

Another interesting feature of the tables is that the abscissae 1'/o and 1'/1 

of the extrema of the error function are rather insensitive to the changes 
that are made to the points of the reference. It is proved in the next 
chapter that this property holds generally, and that it provides the fast 
rate of convergence. 

We note also that the set .st1 of the example does not satisfy the Haar 
condition, because many members of .st1 have two zeros in the range 
[O, 7T/2]. One of these zeros is always at x = 0. Hence the Haar condition 
is obtained on the range [a, 7T/2], where a is any fixed positive number 
that is less than 7T/2. It does not matter in this example that the Haar 
condition is not obtained. In general, however, before applying the 
exchange algorithm, one should check that .st1 satisfies the Haar condi­
tion, because it is important to the remark that equation (8.4) defines the 
function p that minimizes expression (8.3). 

8.4 Applications of Chebyshev polynomials to minimax 
approximation 
A very nice property of the exchange algorithm, which is proved 

in Chapter 9, is that, if the Haar condition holds, then convergence is 
obtained from any initial reference. However, some initial references are 
better than others, if one wishes to avoid the calculation of approxima­
tions whose errors are much larger than necessary. The problem of 
choosing a good initial reference is similar to the problem of choosing 
good interpolation points, which was considered in Chapter 4. When .st1 is 
the space rJ'", a suitable initial reference can be obtained from the 
properties of Chebyshev polynomials. Specifically, if the range of x is 
[ -1, 1], we let the points of the initial reference have the values 

~i =cos [(n + 1- i)TT/(n + 1)], i = 0, 1, ... , n + 1, (8.17) 

because this choice has the following property. 
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Theorem 8.1 
Let f E C€[ - 1, 1], and let p E (l/J n be the approximation to f that is 

calculated by an iteration of the exchange algorithm, where the reference 
contains the points (8.17). If f is a polynomial of degree (n + 1), then p is 
the best minimax approximation from (ljJ n to f. 

Proof. Equation (8.17) and the definition of the Chebyshev polynomial 
Tn+l imply the values 

Tn+1(~;) = (-1r+ 1-j, i = O, 1, ... , n + 1. (8.18) 

Because (f - p) is in (l/Jn+i. it follows from equation (8.4) that the error 
function (f- p) is a multiple of Tn+l· Therefore, by the Characterization 
Theorem 7 .2, p is the best approximation from (lJJ" to f. 0 

Theorem 8.1 is useful, not only when f is in (l/Jn+i. but also when f is 
infinitely differentiable, and its Taylor series 

00 j 

f(x)= _I ~1 /il(O), -l=s;;x:s;;l, (8.19) 
1~01. 

is rapidly convergent. In this case it happens often that the error of the 
best approximation from (l/J n to f is dominated by the error that comes 
from the term x"+1/"+ 0 (0)/(n + 1)!. Theorem 8.1 shows that the 
reference (8.17) makes this contribution to the error as small as possible. 
Moreover, by regarding the calculation of p in Theorem 8.1 as a linear 
operator from C€ [ - 1, 1] to (lJJ"' and by finding the norm of this operator, it 
follows from Theorem 3.1 that the ratio of II/-Pll to the least maximum 
error is bounded by a small multiple of In n, for all functions f in 
~[-1, 1]. 

The reference points (8.17) are appropriate only for the interval 
[ -1, 1]. For the general range [a, b ], it is helpful to recall the discussion, 
given in Section 6.3, of suitable changes to the Bernstein operator when 
[O, 1] is replaced by [a, b ]. We again think of [a, b] as an interval on the 
x-axis of the graph of the function {f (x); a ,,,;; x ,,,;; b }, and now we apply a 
linear transformation to the variable, so that this interval can be 
relabelled as [ -1, 1]. The points (8.17) are suitable for the new range of x. 
If we express them in terms of the original variable we have the values 

1 1 [ (n + 1 - i)7T] 
~;=2(a+b)+2(b-a)cos (n+l), 

i = 0, 1, ... , n + 1, (8.20) 

which is therefore a suitable reference for the general range [a, b ], when 
stJ. is the space (ljJ n• 
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Another application of Chebyshev polynomials to minimax approxi­
mation is that they provide a technique that is called 'telescoping'. In 
order to describe it, we suppose that we have an approximation 

p(x)=co+c1x+ ... +cn+1x"+1, -l:s:;x:s:;l, (8.21) 

from 9J>" + i to a function fin <6i'[ - 1, 1 J, but that there is a possibility that an 
approximation from 9'n may be sufficiently accurate. For instance, we 
may have the bound 

llf-pll:s:; e, (8.22) 

but we may be able to accept any approximation p that satisfies the 
condition 

(8.23) 

where e is greater than e. It follows from the triangle inequality for norms 
that p is an adequate approximation if the bound 

llP - pll :s:; e - e (8.24) 

is obtained. This inequality is useful because it gives some freedom in the 
approximating function that does not depend on f. In particular we ask 
whether it allows p to be in 9'". Theorem 7.3 shows that the answer is 
affirmative if and only if the condition 

lcn+ii(t)"llTn+11i :s:; e - e (8.25) 

holds. Therefore, because the norm of Tn+i is one, it is appropriate to test 
the inequality 

lcn+1I :s:; 2"(s -e). (8.26) 

If it is satisfied, then p may be replaced by the approximation 

P = p-cn+i(1)"Tn+i. 

which is in 9J> n· Hence we obtain the bound 

llf-pll :s:; e + (~)"lcn+1I, 

(8.27) 

(8.28) 

which may allow the procedure to be repeated to give a sufficiently 
accurate approximation in 9'n-l· 

8.5 Minimax approximation on a discrete point set 
It happens sometimes that it is not possible or not convenient to 

calculate the function fin <6i'[a, b ], that is to be approximated, at any point 
of the range [a, b]. Instead f may be known on a set of points {x;; i = 
1, 2, ... , m}, that are in ascending order 

a :s:; X1 < X2 < ... < Xm :s:; b. (8.29) 
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In this case the function p in d that minimizes the discrete maximum 
error 

max lf(x;)-p(x;)I, pE.slJ., (8.30) 
i=l,2, ... ,m 

may be required. If dis a linear subspace of "6'[a, b] that satisfies the Haar 
condition, and if m is greater than the dimension of d, then the exchange 
algorithm is an excellent procedure for calculating this approximation. 
We let each reference be a subset of {x;; i = 1, 2, ... , m}. On each 
iteration the equations (8.4) are solved to define the trial approximation 
p. Instead of expression (8.5), the bounds 

lhl~. max lf(x;)-p*(x;)I~. max lf(x;)-p{x;)I (8.31) 
i = 1,2, ... ,tn 1=1,2, ... ,m 

hold, where p* is still the required approximation. Now the point that is 
brought into the reference is an element of the set {x;; i = 1, 2, ... , m} 
that satisfies the equation 

If( T/ )- p( T/ )I= max lf(x;) - p(x;)I, (8.32) 
i=l,2 •.. .,m 

instead of equation (8. 7). The procedure for changing the reference is the 
same as before. 

One advantage of the calculation in the discrete case is that it is much 
easier to prove convergence. 

Theorem 8.2 
Let d be a finite-dimensional subspace of "6'[a, b] that satisfies 

the Haar condition. Let {x;; i = 1, 2, ... , m} be a set of distinct points 
from [a, b ], where m is not less than the dimension of d. For any f in 
"6'[a, b ], let the one-point exchange algorithm be applied to calculate the 
element of d that minimizes expression (8.30). Then the required 
approximation to f is obtained in a finite number of iterations. 

Proof. The calculation ends if both parts of expression (8.31) are 
satisfied as equations. Otherwise the procedure for changing the 
reference causes the levelled reference errors to increase strictly mono­
tonically. The number of different levelled reference errors is at most the 
number of different references, but this number is finite. Therefore the 
calculation of the algorithm is a finite process. D 

It would not be sensible to obtain from the theorem an upper bound on 
the number of iterations of the algorithm, because the bound would be 
very pessimistic. Instead, the main value of the theorem is to show that 
the exchange algorithm terminates in an important special case, provided 



The exchange algorithm 94 

that one takes suitable precautions against the effects of computer 
rounding errors. 

Because there is a need sometimes to solve minimax approximation 
calculations when .st1. does not satisfy the Haar condition, it is useful to 
note that, in the discrete case, the calculation can be expressed as a linear 
programming problem. We let {</Ji; j = 0, 1, ... , n} be a basis of .stl., and we 
express a general element of .st1. in the form 

n 

p = L AicPi· 
i=O 

(8.33) 

The least value of expression (8.30) is the smallest real number () that 
satisfies the conditions 

n 

-()~f(x;)- L Ai</Ji(x;)~(), 
i=O 

i = 1, 2, ... , m, (8.34) 

for some values of the coefficients {Ai; j = 0, 1, ... , n }. Therefore the 
variables of the linear programming calculation are () and {Ai; j = 
0, 1, ... , n }, the objective function is (), and the constraints are the 
conditions (8.34). The final values of the variables {Ai; j = 0, 1, ... , n} are 
the coefficients of the function in .st1. that minimizes expression (8.30). 

Basically the one-point exchange algorithm is a standard linear pro­
gramming procedure for solving the dual version of the linear program­
ming calculation that has just been mentioned. However, the Haar 
condition is useful, because it allows the point that leaves the reference to 
be found from the sign properties of the current error function, which 
gives a geometric point of view of the algorithm. Several advantages are 
lost if one supposes instead that minimax approximation is a special case 
of linear programming. In particular it is less easy to make use of the fact 
that the functions f and p are in '(6'[a, b ], which is important to the 
convergence theory of the next chapter. 

8 Exercises 
8.1 Let the exchange algorithm be applied to calculate the best 

approximation from PPn to a function fin '(6'[a, b ]. Prove that the 
levelled reference error (8.1 O) is the modulus of the divided 
difference /[g0 , gi, ... , gn+d multiplied by a number that is 
independent of f. In particular, show that when n = 1 the levelled 
reference error is the expression 

!(g1 -go)(6-g1)l/[go, gi, 6JI. 

8.2 The exchange algorithm is applied to calculate the best approx­
imation fromPP 1 to a convex function in '(6'[a, b ]. (The function/ is 
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convex if, for any x0 and x 1 in [a, b] and any (} in [O, 1], the 
inequality 

is satisfied.) Show that, if the initial reference includes the points 
g0 = a and 6 = b, then at most two iterations are required. 

8.3 Show that the best approximation from [l/J2 to the function 
{f(x)=144/(x+2); O:s;;x:s;;6} is the quadratic {p*(x)=69-
20x + 2x 2 ; 0,,;;; x,,;;; 6}, and that the extreme values of the error 
function occur at the points gt = 0, gf = 1, g! = 4 and g~ = 6. 
Let the exchange algorithm be used to calculate p*, and let the 
reference points of an iteration have the values g0 = 0, g1 = 1 +a, 
6 = 4 + (3, 6 = 6. Prove that, if a and f3 are so small that one can 
neglect terms of order a 2 , af3 and {3 2 , then the function {p(x); 
O:o;;;x :s;;6} that satisfies equation (8.4) is equal top*. 

8.4 Let the iterations of the one-point exchange algorithm calculate 
the sequence of approximations {pk; k = 1, 2, 3, ... } from a 
linear space .st1 to a function fin cg[a, b ]. Construct an example to 
show that the errors {l[f- Pklloo; k = 1, 2, 3, ... } do not always 
decrease monotonically. 

8.5 Let n be a non-negative integer. Show that the definition of the 
approximation p to fin Theorem 8.1 can be regarded as a linear 
operator from cg[ -1, 1] to [l}n· Show also that, when n = 2, the 
oo-norm of this operator has the value ~-

8.6 A polynomial approximation {p(x); -1:o;;;x,,;;;1} to the function 
{f(x)=ln(l+h); -l:s;;x:s;;l} is required that satisfies the 
condition llf-Plloo,,;;; 0.01. One method of calculation is to take 
sufficient terms in the Taylor series expansion off about x = 0, 
and then to reduce the degree of the polynomial by the tele­
scoping procedure that is described in Section 8.4. Show that this 
method gives a polynomial of degree three. 

8. 7 Apply the discrete version of the one-point exchange algorithm 
to calculate the best approximation from [l/J 1 to the following 
seven function values: f(O) = 0.3, f(l) = 4.2, /(2) = 0.1, /(3) = 
3.4,/(4) = 5.7,/(5) = 4.9, and/(6) = 5.7. Let the initial reference 
be the set of points {O, 3, 6}. 

8.8 Let .st1 be a linear subspace of cg[a, b] that satisfies the Haar 
condition, and let the one-point exchange algorithm be applied 
to calculate the best approximation from .st1 to a function f in 
cg[a, b]. Let Pk and Pk+l be the approximations to f that are 
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calculated by any two consecutive iterations of the algorithm, 
and let g be any point that is in the references of both iterations. 
Prove that the differences [f(g)-pdt')] and [f(g)-Pk+1(t')] have 
the same sign. 

8.9 Find an extension to the one-point exchange algorithm for the 
following calculation. Let .sli be an (n + 1)-dimensional linear 
subspace of ~[a, b] that satisfies the Haar condition, let{(;; i = 

1, 2, ... , l} be fixed points in [a, b] where 1,,;;;; [,,;;; n, and let f be a 
function in ~[a, b ]. Calculate the element of .sli that minimizes 
the error {\lf- p\\oo; p E .sli} subject to the interpolation conditions 
{p((;) = /((;); i = 1, 2, ... , l}. One difficulty in the extension is 
finding a suitable rule for the change of reference. It is helpful to 
preserve the sign properties that are the subject of Exercise 8.8. 

8.10 Investigate the following extension to the exchange algorithm for 
the case when .sli is an (n + 1)-dimensional subspace of ~[a, b] 
that need not satisfy the Haar condition. Let each reference 
contain (n + 3) points. Given the reference {g;; i = 0, 1, ... , 
n + 2}, let Pk be the function in .sli that minimizes the expression 

max \/(g;)- p(g;)\, p E .slJ. 
i~0,1, ... ,n+2 

Let gq be the point such that Pk also minimizes this expression 
when the range of i excludes the value i = q. The reference for 
the next iteration is obtained by replacing gq by a number 11 that 
satisfies the equation \/( 11 )-Pk( 11 )\ = llf-Pk\loo· Because bounds 
of the form (8.5) are still valid, the procedure continues until the 
bounds show that sufficient accuracy is obtained. 
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The convergence of the exchange algorithm 

9.1 The increase in the levelled reference error 
The method of proof of Theorem 8.2 depends so strongly on the 

fact that the number of different references is finite in the discrete case, 
that it is not useful for analysing the convergence properties of the 
one-point exchange algorithm that is described in Sections 8.1 and 8.2, 
where the purpose of the calculation is to obtain the element of .stl that 
minimizes the maximum value of the error function on the interval 
a :;;;: x :;;;: b. We begin the analysis of the continuous case by finding an 
expression for the increase in the levelled reference error. This work gives 
an alternative proof of part of Theorem 7.7. 

The levelled reference error is defined by the equations (8.4), but these 
equations also include the unknown coefficients of the approximation p. 

In order to remove this dependence, we let {<Pi; j = 0, 1, ... , n} be a basis 
of .stl, and we eliminate the coefficients {Ai; j = 0, 1, ... , n} from the 
equations 

n 

f(g;)- L Ai</>i(g;) = (-l)ih, i = 0, 1, ... , n + 1. (9.1) 
i=O 

Because there are (n + 2) points in a reference, there exist multipliers 
{CT;; i = 0, 1, ... , n + l}, not all zero, that satisfy the conditions 

n+I 

L: u;</>i(g;) = o, j=O,l, ... ,n. (9.2) 
i=O 

Hence h is defined by the equation 
n+l n+1 

L: (-l);u;h = L: u;f(g;). (9.3) 
i=O i=O 

We require the properties of the numbers {u;; i = 0, 1, ... , n + 1} that are 
given in the next theorem. 
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Theorem 9.1 
Let d be an (n + 1)-dimensional linear subspace of <€[a, b] that 

satisfies the Haar condition, let U;; i = 0, 1, ... , n + 1} be a set of points 
from [a, b] that are in ascending order 

(9.4) 

and let {a;; i = 0, 1, ... , n + l} be a set of real multipliers, that are not all 
zero, and that satisfy the equation 

n+l 

I a;p(~;) = o, (9.5) 
i=O 

for all functions p in d. Then every multiplier is non-zero, and their signs 
alternate. 

Proof. Let k be an integer in [O, n]. Because of the fourth property of 
linear spaces that satisfy the Haar condition, given in Section 7 .3, we may 
let p be the element of d that is defined by the interpolation conditions 

p({;) = 0, i = 0, 1, ... , n + 1, i ~ k, i ~ k + 1, (9.6) 

and 

(9.7) 
It follows from condition (1) of Section 7 .3 that equation (9 .6) gives all the 
zeros of the function p. Hence p({k+i) is positive. Because the choice of p 
and equation (9.5) imply the identity 

(9.8) 

it follows that either ak and ak+l are both zero, or they are both non-zero 
and their signs are opposite. This statement holds for k = 0, 1, ... , n. 
Therefore the theorem is true. D 

We deduce from the theorem and from equation (9.3) that the levelled 
reference error has the value 

(9.9) 

where the last line depends on equation (9.5). Suitable values of the 
multipliers {a;; i = 0, 1, ... , n + 1} may be obtained from the co-factors 
of the matrix of the equations (9.2). We make the definition 

a;= (-1); det [<I>({o, {i. ... , {;-i. {;+i. ... , {n+1)], 

i=0,1, ... ,n+l, (9.10) 
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where <1>((0 , (i. ... , (n} is the square matrix whose elements are the 
numbers {<f>i((;}; i = 0, 1, ... , n; j = 0, 1, ... , n }. The fourth property of 
Section 7 .3 states that each u; is non-zero. Thus the first line of equation 
(9.9) expresses the levelled reference error in a way that is independent 
of p. 

In order to relate h(g~, gt, ... , g;+i) to h(g0 , gi, ... , gn+i), where we 
are using the notation of Section 8.1, we let {u 7 ; i = 0, 1, ... , n + 1} be 
the numbers that are obtained by replacing the old reference points by the 
new reference points in the definition (9.10). Therefore equation (9.9) 
gives the value 

(9.11) 

i=O 

where p is any element of d. We let p be the approximation that is defined 
by equation (8.4), and we recall that the new reference satisfies the sign 
conditions (8.12). It follows from Theorem 9.1 that the numerator of 
expression (9.11) has the value 

n+l r lu7[f(g7}-p(g7)]1. (9.12) 
i=O 

Now, in the one-point exchange algorithm, lf(g7}-p(g7}1 is equal to 
h (~0 , gi. ... , gn+1), unless g7 is the point rt that satisfies equation (8. 7), in 
which case l/(g7 )- p(g7 )I is equal to II/ - rll. We let g: be the point of the 
new reference that is equal to T/· Hence the new levelled reference error is 
the expression 

h(~~.gt, .. . ,g;+1) 
n+l 

h(go, gi, .. ., gn+1) L lu7l+ll/-plllu:I 
i=O 
i#r 

(9.13) 

This result provides the alternative proof of the statement that the 
levelled reference errors increase, if the calculation of the exchange 
algorithm continues because the right-hand side of expression (8.5) is 
greater than the left-hand side. 

9 .2 Proof of convergence 
It is straightforward to deduce from equation (9.13) that the 

functions p in d, that are calculated by the iterations of the exchange 
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algorithm, converge to the best minimax approximation from .sti to f, 
provided that each lu: I is bounded away from zero. This condition is 
satisfied, but in order to prove it we require the technical result that is 
given in the next theorem. 

Theorem 9.2 
Let .sti be an (n + 1)-dimensional subspace of ce[a, b] that satisfies 

the Haar condition, and, for any fin ce[a, b ], let the one-point exchange 
algorithm be applied to calculate the best approximation from .sti to f. 
Then, for any initial reference {~;; i = 0, 1, ... , n + l}, there exists a 
positive number 8, such that on each iteration the points of the reference 
satisfy the bounds 

i = 0, 1, ... , n. (9.14) 

Proof. The method that is used to change the reference ensures that the 
points of each reference are distinct. Therefore it is sufficient to rule out 
the possibility that, for a subsequence of references, two points tend to 
become coincident. We suppose that this happens and deduce a 
contradiction. Because all references are in a closed and bounded subset 
of qi n +2 ' the hypothesis implies that there is a subsequence of the 
subsequence that converges to a set {l; i = 0, 1, ... , n + 1} that contains 
at most (n + 1) distinct points. 

Let lhk I be the levelled reference error of the kth iteration. Although 
lhil may be zero, it follows from inequality (8.11) that lh2 1 is positive, and 
that the sequence {jhk\; k = 1, 2, 3, ... } increases strictly monotonically. 
The contradiction that is obtained from the set {l; i = 0, 1, ... , n + l} is 
that a large value of k exists, such that lhk I is less than lh2I. 

Because the Haar condition implies that there is a function in .sti that 
interpolates fat any (n + 1) points of [a, b ], we may Jet p be a function in 
.sti that satisfies the equations 

p(l) = f(l), i = 0, 1, ... , n + 1. (9.15) 

It is important to note that p does not depend on the iteration number. 
Because f and p are both in "6?[a, b ], there exists a positive number E such 
that the inequality 

(9.16) 

holds, where x 1 and x 2 are any two points of [a, b] that satisfy the bound 

(9.17) 
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We let k be the number of an iteration whose reference satisfies the 
conditions 

i = 0, 1, ... , n + 1. (9.18) 

Therefore, we may let x 1 = g; and x2 = [; in expression (9.16), which, 
because of equation (9 .15), gives the inequality 

lf(g;)- _p(gJI < lhzl. i = 0, 1, ... , n + 1. (9.19) 

It follows that the bound 

min max \f(g;)-p(g;)\ < \hz\ 
ped i=O,l, ... ,n+l 

(9.20) 

is obtained. The required contradiction is a consequence of the fact that 
the left-hand side of this expression is the definition of \hk\. 0 

In order to prove that \er:\ is bounded away from zero, we let 8 be the 
number that is mentioned in the statement of Theorem 9.2, and we let 
.?! = {z} be the subset of vectors in [1l n+i whose components, {(;; i = 
0, 1, ... , n} say, satisfy the conditions 

(9.21) 

and 

(; --(;-1~8, i = 1, 2; ... , n. (9.22) 

Because.?! is compact, and because the functions in .sl1. are continuous, the 
expression 

Z E.?!, (9.23) 

achieves its minimum value, m say, where <I> is defined immediately after 
equation (9.10). It follows from the fourth property of Section 7.3 and 
from Theorem 9.2, that the inequality 

\u;\~m>O, i=0,1,. . .,n+l, (9.24) 

is satisfied on every iteration. Moreover, the definition (9.10) implies a 
constant upper bound of the form 

\u;\ ,;;;M, i = 0, 1, .... , n + 1. (9.25) 

We are now ready to use equation (9.13) to deduce the convergence of 
the exchange algorithm. 

Theorem 9.3 

Let the conditions of Theorem 9.2 be satisfied, and let Pk be the 
function in .sl1. that is calculated by the kth iteration of the exchange 
algorithm. Then the sequence {pk; k = 1, 2, 3, ... } converges to the best 
minimax approximation from .sl1. to f, p* say. 
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Proof. Expressions (9.13), (9.24) and (9.25) imply the relation 

\h \~(n+l)Mlhkl+mllf-pkll (9.26) 
k+l (n+l)M+m · 

Subtracting lhk I from each side gives the bound 

(9.27) 

The sequence {lhkl; k = 1, 2, 3, ... } increases monotonically and is 
bounded above by the condition 

(9.28) 

Therefore the left-hand side of expression (9.27) tends to zero. Because 
inequality (9.28) shows that [jjf- Pkll- lhk IJ is non-negative, it follows that 
the right-hand side of expression (9.27) also tends to zero. Thus, using 
inequality (9.28) once more, we find the limit 

lim II! - Pkll =!If- p*ll. 
k-->00 

(9.29) 

Hence the functions {pk; k = 1, 2, 3, ... } are bounded, and therefore they 
remain in a compact subset of .sli. Therefore the sequence {pk; k = 

1, 2, 3, ... } has at least one limit point. Equation (9.29) shows that each 
limit point is a best approximation, while Theorem 7 .6 states that the best 
approximation is unique. It follows, by using compactness again, that the 
sequence {pk; k = 1, 2, 3, ... } converges top*. D 

9.3 Properties of the point that is brought into the reference 
There are many examples in numerical analysis of procedures 

that always converge, but whose rate of convergence is so slow that the 
procedure is hardly ever useful. The calculation of Section 8.3, however, 
shows that the exchange algorithm can perform very well. The work of 
the next two sections explains the excellent convergence properties of the 
one-point exchange algorithm, assuming some differentiability and 
regularity properties that are often achieved in practice. 

We continue to let p* be the best approximation to fin ~[a, b] from an 
(n + 1)-dimensional linear space .sli that satisfies the Haar condition. We 
assume that the maximum value of the modulus of the error function 

e*(x) = f(x)-p*(x), a:;;;;x~b, (9.30) 

occurs at only (n + 2) points of [a, b ], namely U°~; i = 0, 1, ... , n + 1}. We 
assume that all functions are twice continuously differentiable. If g~ is at 
a, we require the first derivative e*'(a) to be non-zero, and, if g~+ 1 is at b, 
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we require e*'(b) to be non-zero. For all other points in the set {gt; i = 
0, 1, ... , n + 1}, we require the second derivative e*"(gt) to be non­
zero. 

We let {g;k; i = 0, 1, ... , n + l}, jhki and Pk be the reference points, the 
levelled reference error and the calculated approximation of the kth 
iteration of the exchange algorithm. Therefore the equations 

i = 0, 1, ... , n + 1, (9.31) 

are satisfied. Theorem 9.3 shows that, ask tends to infinity, Pk and lhk\ 
tend to p* and llf-p*\I respectively, and Theorem 9.2 states that the 
points of each reference stay apart. It follows from the first assumption of 
the previous paragraph and from equation (9.31) that the sequence of 
references [{g;k; i = 0, 1, ... , n + l}; k = 1, 2, 3, ... ] converges to the set 
{gt; i = 0, 1, ... , n + l}. The following theorem gives some properties of 
the way in which each reference is changed. These properties are used in 
Section 9.4 to bound the rate of convergence of the sequence of approx­
imations {pk; k = 1, 2, 3, ... }. 

Theorem 9.4 
Given the assumptions and using the notation that are stated in 

the previous two paragraphs, there exists an integer K and a constant c 
such that the following conditions are obtained for all k ;;.;: K. Let gq k+ 1 = 

71 be the point that is brought into the reference by the kth iteration of the 
exchange algorithm. If g: is one of the end points of the interval [a, b ], 
then gqk+i is equal tog:. Otherwise the bound 

(9.32) 

is satisfied. 

Proof. Because the sequence of references converges to UT ; i = 

0, 1, ... , n + 1}, we may choose K so that, for all k;;.;: K, the point that 
leaves the reference of the kth iteration to make room for gqk+i = 71 is the 
point gqk· Further, if e*'(a) is non-zero, we may also require K to satisfy 
the condition that, for all k ;;.;: K, there are no stationary points of the error 
function {ek (x) = f(x )- Pk (x); a ~ x ~ b} in a small fixed neighbourhood 
of a. Hence, if g: =a, then the point gqk+1 is equal tog: for sufficiently 
large k. A similar result holds if g: =b. In all other cases gqk+l is the 
abscissa of an extreme point of the error function ek> that is close to g: 
when k is large. It remains to prove that in this case condition (9.32) is 
obtained. 
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The conditions of the theorem imply that there exist positive constants 
E and d SUCh that, if {: is one of the points {{f; i = 0, 1, ... , n + l} at 
which e* is stationary, then the inequality 

le*"(x)\~d, g;-E,;;;x,;;;g;+E, (9.33) 

holds. We increase K if necessary so that, for k ~ K, the point {q k+t is 
always in the interval [g;-E, g: +e]. Therefore, because e*'(g;) is zero, 
expression (9.33) gives the bound 

\e*'({qk+1)\~d\g;-{qk+1\. (9.34) 

The definitions of {qk+i. e* and ek imply that the left-hand side of this 
inequality has the value 

\e*'({qk+1)-ek({qk+1)\ = \p*'({qk+1)- Pk({qk+1)\. (9.35) 

Hence the condition 

(9.36) 

is satisfied. Because .sti. is a finite-dimensional linear space, there exists a 
constant D such that the inequality 

\\p'll,;;;D\\p\\, pE.sti., (9.37) 

holds. It follows from condition (9.36) that the theorem is true, where c is 
the number D/ d. 0 

In order to apply the theorem, it is necessary to relate the difference 
(p* - Pk) to the positions of the reference points {{;k; i = 0, 1, ... , n + l}. 
The following result is suitable. 

Theorem 9.5 
There exists a constant c such that the inequality 

llp*-pk\\,;;;c. max \e*({1)-e*({;k)\ 
1=0,1, .. .,n+l 

(9.38) 

is satisfied, where the notation is defined earlier in this section. 

Proof. We let {<Pi; j = 0, 1, ... , n} be a basis of .sti., we express p* and Pk 
in the form 

" p*(x) = L Aj<Pi(x), 
j=O 

" 
Pk(x) = L Ai<Pi(x), 

j=O 

a ,;;;x ,;;;b}· 
a,;;;x,;;;b 

(9.39) 

and we recall that the numbers {Ai; j = 0, 1, ... , n} and hk are defined by 
the equations 

" f(fa)- L Aj</Ji({;k)=(-l)jhk, i = 0, 1, ... , n + 1. (9.40) 
j=O 
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The matrix of this system is bounded away from singularity for all values 
of k, because, due to the definition (9 .10), the modulus of the determinant 
of the matrix has the value 

(9.41) 

where the last two steps depend on Theorem 9.1 and inequality (9.24). 
Therefore, if we define the numbers {a;; i = 0, 1, ... , n + 1} by the equa­
tions 

n . 
a;- I (Ai-Af)<Pi(g;k)=(-l)'(hk-h*), 

i=O 
i = 0, 1, ... , n + 1, 

(9.42) 

where h* is the minimax error of the approximation p* that satisfies the 
conditions 

f(gt)-p*(gt) = (-1/h*, i = 0, 1, ... , n + 1, (9.43) 

and if we take the point of view that the system (9.42) is used to express 
the differences {Ai - A j; j = 0, 1, ... , n} and (hk - h *) in terms of the 
numbers {a;; i = 0, 1, ... , n + l}, it follows that the bound 

. max IAi-A/i,,;;;:J. max lad 
1=0,1, ... ,n 1=0,1, ... ,n+l 

(9.44) 

is satisfied for some constant d. Equations (9.39), (9.40), (9.42) and (9.43) 
imply that a; has the value 

a;= /(g;k)- p*(g;k)-(- l);h* 

= e*(fa)-e*(f/' ), i = 0, 1, ... , n + 1, (9.45) 

and expression (9.39) gives the bound 
n 

llp*-pklloo,,;;;: L IAi-Afl 11</>illoo· (9.46) 
j=O 

Therefore, inequality (9.38) is a consequence of condition (9.44), where c 
has the value 

n 

c = J I ll<Moo· (9.47) 
j=O 

The theorem is proved. D 

9.4 Second-order convergence 
In order to prove that the one-point exchange algorithm has a 

second-order rate of convergence, we note that Theorem 9.4 and the 
form of e* imply that, fork ~K. the difference le*(g:)-e*(gqk+1)I is 
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bounded above by a multiple of llP* - Pkf Thus, for sufficiently large k, 
each iteration reduces one of the terms that occurs on the right-hand side 
of inequality (9.38). Because each iteration changes only one reference 
point, as many as (n + 2) iterations may be necessary to make a substantial 
improvement to the calculated approximations. Even then a better 
approximation need not be obtained, because of the remote possibility 
that at the beginning of the sequence of iterations the calculated approx­
imation is equal top*, but this situation is not recognized because the 
reference is wrong. Therefore it is not possible to prove that the sequence 
{llP* - Pkll; k = 1, 2, 3, ... } converges to zero in a regular way. Instead, the 
following theorem gives a useful property of the changes that are made to 
the references. 

Theorem 9.6 
Let the conditions of Theorem 9.4 be satisfied. There exists an 

integer Kand a constant (3 such that the sequence {pk; k = K, K + 1, ... } 
converges monotonically to zero, and such that the inequality 

Pk+n+2,,;;,f3p~, k";3K, (9.48) 
is satisfied, where Pk is the expression 

Pk=. max le*(~°t}-e*(fa)I. 
1=0,1, ... ,n+I 

(9.49) 

Proof. The discussion that is given immediately before Theorem 9.4 
shows that the sequence {pk; k = K, K + 1, ... } converges to zero. In 
order to prove that the sequence is monotonic, we let K, c and c have the 
values that are given in Theorems 9.4 and 9.5, and we increase K if 
necessary so that the bound 

(cc)2Pklle*"lloo,,;;,2, k";3K, (9.50) 

is obtained. The definition (9.49) implies the relation 

Pk+I,,;;, max [pk, je*(g!) - e*(gqk+l)i]. (9.51) 
where gqk+t is still the point that is brought into the reference by the kth 
iteration of the exchange algorithm. Therefore, if g: is an end point of the 
interval [a, b ], the condition Pk+t,,;;, Pk is an immediate consequence of 
Theorem 9.4. Otherwise, we use the Taylor series expansion of the 
function {e*(x);a,,;;,x,,;;,b} about the point x=g! to deduce the 
inequality 

le*(g! )- e *(gqk+1)I,,;;, tcg! - gqk+1flle*"lloo 
,,;;, k 2 llP* - Pkll2 lle*"lloo 
,,;;, tCcc) 2 P~lle*"lloo 

(9.52) 
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Therefore the sequence {Pk ; k = K, K + 1, ... } does decrease mono­
tonically. 

In order to establish inequality (9.48), we let k be an integer that is not 
less than K, and we let q(j) be the index of the point that leaves the 
reference {g;;; i = 0, 1, ... , n + 1} on the jth iteration. Because the set 
{q(j); j = k, k + 1, ... , k + n + 2} contains (n + 3) terms, and because at 
most (n + 2) of these terms are different, we let r and s be integers that 
satisfy the conditions k ~ r < s ~ k + n + 2 and q(r) = q(s) = t, say, and we 
reduce s if necessary so that the integer t does not occur in the set 
{q(j);j=r+l,r+2, .. .,s-1}. The point g1 is not equal to a orb, 
because, if it were, then Theorem 9.4 would imply that the sth iteration 
would fail to change the reference. 

We consider the difference (g1s+1-t1s), which is the change to a 
reference point on the sth iteration. Because g,s is equal to g1,+i. expres­
sions (9.32), (9.38) and (9.49) give the bound 

lg1s+1 - g,sl ~ c[JJp* - Psll + JJp* - p,llJ 

~ce(ps +p,) 

~2ccpk. (9.53) 

We make use of the fact that g,s+t is the abscissa of an extremum of the 
error function {es (x) = f(x) - Ps (x); a ~ x ~ b} to deduce the inequality 

les(g1s+1)-es(g,s)I ~ !/3lg1s+l -g,,12, (9.54) 

where /3 is a constant upper bound on the norms {llel lloo; j;;. K}. Because 
of the sign conditions that are satisfied when the exchange algorithm 
adjusts a reference, the equation 

(9.55) 

holds, and we recall that lleslloo is an upper bound on the least maximum 
error lle*lloo. Therefore, expressions (9.53), (9.54) and (9.55) imply the 
relation 

lle*lloo - lhsl ~ 2/3 (ccpk) 2 • (9.56) 

The final part of the proof depends on the value of lhsl that can be 
obtained from equation (9.9), when p is the polynomial p*. By increasing 
K if necessary, so that for all s ;;. K and for i = 0, 1, ... , n + 1, the signs of 
e*(g;s) and e*(gt} are the same, we find the value 

n+l /n+l 
lhsl = i~O lu;I le*(g;s)I i~O lud 

n+l /n+l 
= i~o lu;l[le*(gt}l-le*(gt}- e*(g;s)IJ i~O /ud 

~lle*lloo-psm/[(n + l)M +m], (9.57) 
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where the second line depends on the properties of e *, and where the last 
line depends on the definition (9.49) and on the bounds (9.24) and (9.25). 
Because expressions (9.56) and (9.57) imply the inequality 

p,:o;;;2[(n+l)M+m]/3(cepk)2 /m, (9.58) 

and because the sequence {pk; k = K, K + 1, ... } decreases monotonic­
ally, the theorem is proved. D 

Theorems 9.5 and 9.6 show that the differences {llp*-pkll; k = K, K + 
1, ... } are less than the corresponding terms of the sequence {cpk; k = 

K, K + 1, ... }, which converges to zero monotonically at an (n +2)-step 
quadratic rate. This is about the strongest result that can be expected 
from an algorithm that changes only one reference point on each itera­
tion, and it explains the rate of convergence that is achieved. 

9 Exercises 
9 .1 Let the exchange algorithm be used to calculate the best approx­

imation to the function {f(x) = x 2 ; 0,,;;; x,,;;; 1} by a multiple of the 
function {p(x) = x; 0,,;;; x,,;;; l}. Let ~01 be any interior point of the 
interval [O, 1] and let ~11 = 1, where {~ok. ~1d is the reference of 
the kth iteration. Prove that ~lk = 1 for all values of k, and that 
the sequence {~ok; k = 1, 2, 3, ... } converges to the limit ~~ = 

.J2-1 at a quadratic rate, which means that there is a constant c 
such that the condition 

\gok+1 -g*\ :o;;;c\gok -g*\2 , k = 1, 2, 3, ... , 

is satisfied. 
9 .2 Let f be a function in cg<n + 0 [ a, b ], let d be the space (f/J n, and let 

h(g0 , gi, ... , gn+1) be the levelled reference error that is defined 
in Section 8.1. Deduce from Theorem 4.2 that there exists a 
constant c such that the bound 

h (go, gi, ... 'gn+1),,;;; c . min \gi+l - ~;\ llt(n+l)lloo 
1~0,1, ... ,n 

is obtained, which provides an easy proof of Theorem 9.2 in this 
special case. 

9.3 Deduce from the proof of Theorem 9.3 that there exists a 
constant fJ in the open interval (O, 1) such that the inequality 

[llf-p*ll- \hk+1\],,;;; fJ[llt- p*ll- \hk\] 

holds on every iteration of the one-point exchange algorithm. 
9.4 Let d be a finite-dimensional linear subspace of <(?[a, b] that 

satisfies the Haar condition, and let f be any function in <(?[a, b]. 
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Prove that there exists a positive number c such that the 
inequality 

II/-Plloo-ll/-p*lloo;;;. cllP -p*lloo 
is satisfied for all p in d, where p* is the best approximation from 
d to/. 

9.5 Section 8.2 mentions several procedures for changing the 
reference of the exchange algorithm on each iteration. Let the 
version be used that adjusts every reference point to a local 
extremum of the error function {f(x)-p(x); a .:;;x,,;;; b}, subject 
to the conditions (8.12) and (8.13), and where one of the points 
of the new reference is a solution 71 of equation (8.7). Prove that, 
if the conditions of Theorem 9 .4 are satisfied, then this version of 
the exchange algorithm gives the quadratic rate of convergence 

lip* - Pk+1ll.:;; µllP* - Pkll2, k = 1, 2, 3, ... , 

where µ is a constant. 
9.6 Let d be an (n + 1)-dimensional linear subspace of ~[a, b ], and 

let f be a function in ~[a, b ]. Let [{fa; i = 0, 1, ... , n + 1}; k = 
1, 2, 3, ... ] be an infinite sequence of references such that the 
numbers 

k = 1, 2, 3, ... ' 

increase strictly monotonically. By considering the case when d 
is the two-dimensional space that is spanned by the functions 
{c/J0(x) = x; O.:;;x .:;;2} and {c/J1(x) =ex; O.:;;x .:;;2}, and when f is 
the function {f(x) = x 2 ; 0,,;;; x,,;;; 2}, show that, if d does not 
satisfy the Haar condition, then the differences [U;+1 k -g;k; i = 
0, 1, ... , n}; k = 1, 2, 3, ... ] may not be bounded away from 
zero. 

9. 7 In order to avoid consideration of the whole of the error function 
{f (x) - p (x); a ,,;;; x ,,;;; b}, there is a version of the one-point 
exchange algorithm iri which the point that leaves the reference is 
specified at the beginning of each iteration. Let this point be gw 
The new reference point is found usually by searching from gq in 
the direction that causes the error if(x )-p(x )I to increase, until 
an extreme value of the error function is found. Let the condi­
tions of Theorem 9.2 be satisfied, except that this version of the 
exchange algorithm is used. Let d and f be such that each error 
function has exactly n extrema in the open interval (a, b ). Let 
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g0 =a and gn+t = b throughout the calculation, and let the 
sequence of values of q be a cyclic sequence of the integers 
{l, 2, ... , n}. Hence each new reference point is used for exactly 
n iterations. Prove that the calculated approximations converge 
to the best minimax approximation from .st1 to f. 

9 .8 Let the conditions of Theorem 9 .4 be satisfied. If an optimization 
algorithm is applied to maximize the levelled reference error 
h (g0, gi, ... ,gn+1), then the second derivatives of 
h (g0, gi, ... , gn+i) with respect to the reference points are 
important, excluding any reference points that become fixed at a 

or b. By letting p = p* in equation (9.9), in order to express 
h(go, gi, ... , gn+1) in terms of the differences {f(g;)-p*(g;); i = 
0, 1, ... , n + l}, prove that the important off-diagonal terms of 
the second derivative matrix all tend to zero. 

9.9 In practice it is inefficient to try to calculate extrema of functions 
exactly. Therefore investigate some useful ways of relaxing the 
condition (8.7) on the point that is brought into the reference by 
each iteration of the one-point exchange algorithm. It is advan­
tageous if the proposed methods preserve the convergence 
theorems of this chapter. 

9 .10 Let the conditions of Theorem 9 .4 be satisfied, except that in a 
neighbourhood of one interior reference point, gf say, the error 
function of the best approximation satisfies the equation 

le*(x)i = le*(gt)l-lx -gf I", 
where a is a constant in the range (O, 2), and where the 
singularity is due entirely to the function f. Investigate the effect 
of the singularity on the rate of convergence of the one-point 
exchange algorithm. 
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Rational approximation by the exchange 
algorithm 

10.1 Best minimax rational approximation 
It is noted in Chapter 3 that polynomials are not suitable for 

approximating a function of the form shown in Figure 1.1, because no 
polynomial that is slowly varying when Ix I is large can include naturally a 
sharp peak near the centre of the range of the variable. However, it is easy 
to obtain this kind of behaviour by letting the approximating function 
have the form 

r(x) = Pm(x)/qn(X), a ~x ~b. (10.1) 

where Pm(x) and qn(x) are polynomials of degrees m and n respectively. 
If in the case of Figure 1.1 it is known that the slope of the function to be 
approximated tends to a constant non-zero value when x becomes large, 
then it is appropriate to let m = n + 1. 

We use the notation {a;; i = 0, 1, ... , m} and {b;; i = 0, 1, ... , n} for 
the coefficients of Pm(x) and qn(x). Thus the function (10.1) is the 
expression 

a ~x ~b. (10.2) 

Because r(x) remains unchanged if p (x) and q (x) are replaced by cp (x) 
and cq(x ), where c is any non-zero constant, the parameters of r 
provide (m + n + 1) degrees of freedom. It is therefore appropriate to 
compare the approximation (10.2) with a polynomial approximation 
from g'Jm+n· For example, if f is the exponential function {ex; -1~x~1}, 
then the least maximum error of an approximation from g-;4 is 0.000 547, 
but the least maximum error of a rational approximation when m = n = 2 
is only 0.000 087. This gain in accuracy is remarkable, because the 
exponential function is not particularly well suited to approximation by a 
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rational function. In many other cases much greater improvements are 
achieved. 

We let dmn be the set of rational functions of the form (10.2). Because 
it is not a linear space, the calculation of rational approximations is harder 
than the calculation of polynomial approximations. There is, however, a 
useful extension of the exchange algorithm that does not require much 
extra work. As in the polynomial case, a sequence of approximations is 
found, that is expected to converge to the rational function that minimizes 
the greatest value of the error function. References are still used, each 
reference being a set of points ui; i = 0, 1, ... ' m + n + 1} that satisfies 
the conditions 

a~ go< gl < ... < gm+n+I ~b. (10.3) 

For each trial reference the approximating function, rk say, that mini­
mizes the expression 

max l/(g;)-r(g;)I, rEdmm (10.4) 
i~0,1,. .. ,m+n+I 

is calculated, where k is the iteration number, and where dmn is the 
subset of .stimn whose elements satisfy the condition that they are 
bounded in [a, b]. In the one-point exchange algorithm, one point of the 
reference is replaced by a solution TI of the equation 

(10.5) 

where the point that leaves the reference is selected in the way that is 
described in Chapter 8. Then another iteration is begun. 

The following theorem gives the equations that are used for the 
calculation of rk. 

Theorem 10.1 
Let dmn be the set of rational functions of the form (10.2), whose 

denominators have no zeros in [a, b ], let {g;; i = 0, 1, ... , m + n + 1} be a 
reference that satisfies the conditions (10.3), and let f be in cg[a, b ]. If rk is 
in dmn• and if the equations 

rdg;) + ( - l);hk = f(g;), i = 0, 1, ... , m + n + 1, (10.6) 

hold for some constant hk, then rk is the element of dmn that minimizes 
expression (10 .4). 

Proof. Because expression (10.4) has the value ihkl when r is equal to rk, 
it is sufficient to show that, if f is a function in dmn that satisfies the 
condition 

max (10.7) 
i=O,l ..... m+n+l 
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then f is equal to rk. Expressions (10.6) and (10.7) imply that each of the 
terms {[f(~';)-rd~;)]-[f(~;)-f(~J]; i=O, 1, ... ,m+n+l} is either 
zero or has the sign of ( - l);hk. It follows from Theorem 7.5 that the 
function (f- rk) has at least (m + n + 1) zeros in [a, b ]. However, we may 
express this function as the ratio of two polynomials, where the degree of 
the numerator is at most (m + n ). Therefore f is equal to rk. D 

If the conditions of Theorem 10.1 hold, and if r* is a best approxima­
tion from dmn to f, then it follows from Theorem 10.l and from the 
definition of a best approximation that the bounds 

(10.8) 

are satisfied. Thus, again the exchange algorithm provides upper and 
lower bounds on the least maximum error. Expression (10.8) shows also 
that rk is the required approximation if llf-rkll is equal to lhkl, which 
provides a sufficient condition for a best approximation that is analogous 
to the Characterization Theorem 7.2. 

Because only one chapter of this book is given to the study of rational 
approximations, we leave many interesting questions open. For example, 
we do not even prove that for each fin C€[a, b] there is a best approxima­
tion from dmn· In fact a best approximation always exists, and it is unique 
except for common factors that may occur in its numerator and 
denominator. These factors may depend on x. For example, if f is the 
constant function whose value is one, then expression (10.1) is a best 
rational approximation from dm"' provided that the polynomials Pm and 
q" are the same and have no roots in [a, b ]. 

Section 10.2 considers the calculation of rk and hk by solving the 
equations (10.6). In Section 10.3 the convergence of the exchange 
algorithm is studied, and we find that the algorithm may fail. Therefore a 
more reliable method for calculating best rational approximations is 
mentioned briefly at the end of the chapter. 

10.2 The best approximation on a reference 
We let the coefficients of the required approximation rk be 

{a;; j = 0, 1, ... , m} and {b;; j = 0, 1, ... , n} as in expression (10.2). We 
ensure that rk is in dmn by satisfying the condition 

bo+b1x+ ... +bnx">O, a,,;;;x,,;;;b. (10.9) 

Therefore the system (10.6) is equivalent to the equations 
m n 

I al{=[/(~;)-( - l)jhkJ I bl{, 
j=O j=O 

i=O, l, ... ,m+n+l. (10.10) 
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They are not linear because not only the coefficients of rk but also the 
value of hk are to be determined. 

The usual way of solving these equations begins by eliminating the 
coefficients {a;; j = 0, 1, ... , m} by making use of the identities 

m+n+l 1 m+n+l 1 
I gi n =o, 

i=O j=O (g;-g;) 
j:# i 

I= 0, 1, ... , m + n, (10.11) 

which are a consequence of equation (4.11). Thus expression (10.10) 
provides the equations 

mJO+l [f(gi)-( -1)ihkJLt b;~f+'] 
[

m+n+l 1 ] 
x ;Do (~; -gi) = 0• 

j>"i 

which we write in matrix form 

I= 0, 1, ... , n, (10.12) 

(10.13) 
where b is the vector whose components are the coefficients {b;; 
j = 0, 1, ... , n}, and where A and Bare square matrices whose elements 
have the values 

m+n+l '+l[m+n+l 1 ] 
A1;= i~o f(gi)gl Do (~.-~;) (10.14) 

s=;i:.i 

and 

m+n+l [m+n+l 1 ] 
B1; = .L (- l)ig{+' U (~ -f) • 

1=0 s=O s 1 

(10.15) 

s:#i 

for I= 0, 1, ... , n and j = 0, 1, ... , n. 
A non-zero vector b satisfies equation (10.13) if and only if the matrix 

(A - hkB) is singular. Therefore the only values of hk that are allowed by 
the system (10.6) are solutions of the generalized eigenvalue problem 

det(A - hkB) = 0. (10.16) 

Expressions (10.14) and (10.15) show that the matrices A and B are 
symmetric. Moreover the following condition is obtained. 

Theorem 10.2 
The matrix B is positive definite. 

Proof. We let c be any vector in fn"+ 1 that is not identically zero. It is 
sufficient to prove that the inequality 

(10.17) 
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is satisfied. We let u be the polynomial 
n 

u(x) = L C;x\ a ~x~b, (10.18) 

and we note that not all of the numbers {u(g;); i = 0, 1, ... , m + n + 1} are 
zero, even if m = 0. 

The definition of B and expression (10.3) give the equation 
n n m+n+l m+n+l 

cTBc = I I c1ci I (-1);g{+1 IT 
l=O j=O i=O s =0 

s:rf:.i 

m+n+l n n m+n+l 

1 

1 
I I I Cc1gi)(cl{) IT 

i=O 1=0 j=O s=O Jgs -g;j 

m+n+1 m+n+1 

i=O 
[u (g;)]2 IT 

s=O 
s#: i 

Therefore the theorem is true. D 

s#i 

1 

jgs -gJ 
(10.19) 

1 

The theorem implies that the matrix B has a square root B 2 , which is 
real, symmetric and non-singular. Therefore we may express equation 
(10.16) in the form 

1 1 

det (B-2AB-2- hkl) = 0. (10.20) 
1 1 

Because the matrix B-2AB-2 is symmetric, it follows that all values of hk 
that satisfy condition (10.16) are real, and the number of different roots 
of this equation is at most (n + 1). For each of these roots a non-zero 
vector b can be found that satisfies equation (10.13), and then the 
coefficients {ai;j=O, 1, ... , m} are defined uniquely by the system 
(10.10). 

Several different rational approximations may be generated in this 
way, but only one of them can satisfy inequality (10.9). To prove this 
statement we let rk and f be two approximations that are obtained from 
the solutions hk and ii of equation (10.16). It follows from the equations 
(10.6), and from the similar equations that define f, that the numbers 
{rk(g;)- f(g;); i = 0, 1, ... , m + n + 1} are all zero or their signs alternate. 
Therefore, if both rk and f have no singularities in [a, b ], then the 
difference (rk - f) has at least (m + n + 1) zeros. Hence rk is equal to f. 

In order to reduce the time that is spent by the exchange algorithm on 
calculating approximations that fail to satisfy condition (10.9), it is helpful 
to carry forward from the previous iteration the number hk-i. because 
usually it is a good initial estimate of the required root of equation 
(10.16). One of the exercises at the end of this chapter shows that the 
required root is not necessarily the one of least modulus. 
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10.3 Some convergence properties of the exchange algorithm 
Many of the convergence properties of the exchange algorithm in 

the rational case are similar to the ones that are obtained when d is a 
linear space that satisfies the Haar condition. In particular our next 
theorem shows that the levelled reference errors {lhkl; k = 1, 2, 3, ... } 
increase strictly monotonically. 

Theorem 10.3 
Let the approximation rk and the number hk satisfy the condi­

tions of Theorem 10.1, where f is a function in cg[a, b ], let ek be the error 
function 

edx) = f(x)-rdx), a :s;x :s;b, (10.21) 

and let the points {g7; i = 0, 1, ... , m + n + 1} of the reference that is 
calculated for the (k + l)th iteration satisfy the following three condi­
tions: (a) they are in ascending order 

a :;;;;gt <g7 < .. . <g!.+n+I :s;b; 

(b) the inequalities 

(10.22) 

i = 0, 1, ... , m + n + 1, (10.23) 

hold and at least one of them is strict; and (c) the signs of the numbers 
{ek(gt}; i = 0, 1, ... , m + n + 1} alternate. Let the number hk+1 and the 
approximation rk+I from .ilmn be defined by the equations 

Then the inequality 

lhk+ll > lhkl 
is satisfied. 

i = 0, 1, ... , m + n + 1. 
(10.24) 

(10.25) 

Proof. Suppose that condition (10.25) is not obtained. Then expressions 
(10.23) and (10.24) imply the bounds 

lek+1(gt)I:;;;;; lek(g7)1, i = 0, 1, ... , m + n + 1, (10.26) 

where ek+I is the error function 

(10.27) 

We consider the sequence {edg7)-ek+ 1(g7); i = 0, 1, ... , m +n + 1}. It 
follows from expression (10.26), from Theorem 7.5, and from the 
definitions (10.21) and (10.27), that the function (rk+i -rk) has at least 
(m + n + 1) zeros in [a, b]. Therefore the functions rk+I and rk are the 
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same. In particular, for i = 0, 1, ... , m + n + 1, the error lek(~"7)1 is equal 
to lek+1(~7 )i. Hence, because one of the conditions (10.23) is satisfied as a 
strict inequality, it follows from equation (10.24) that the increase (10.25) 
is obtained. This conclusion contradicts the hypothesis that is made at the 
beginning of the proof. Therefore the theorem is true. D 

This theorem allows us to extend Theorem 8.2 to the rational case, 
provided that on each iteration a solution of the equations (10.6) can be 
calculated that satisfies condition (10.9). Hence we find that, if the 
interval a ~ x ,,,-;; b is replaced by a set of discrete points, then the strategy 
of forcing the levelled reference error to increase on each iteration can 
provide the best approximation. Usually satisfactory convergence is 
obtained in the continuous case also. 

However, we noted earlier that the exchange algorithm fails occasion­
ally. The form of the failure is that sometimes none of the values of hk that 
solve equation (10.16) gives an approximating function that satisfies 
condition (10.9). Its cause is closely related to the fact that, if the function 

r*(x) = p*(x)/q*(x), a~x~b, (10.28) 

is the best approximation to a function f from C6'[ a, b ], then sometimes the 
number of different values of x that satisfy the equation 

lf(x )- r*(x )I= llf- r*ll (10.29) 

is less than (m + n + 2). This case occurs only if the best approximation is 
'defective', which means that the actual degree of p* is less than m and 
the actual degree of q* is less than n. 

For example, suppose that m = n = 2, and that the rational function 

*( ) ao+a1x r x = 
bo+b1x' 

a ~x ~b, (10.30) 

is bounded. Let f be a function in C6'[a, b] such that equation (10.29) holds 
for only five values of x, {g;; i = 0, 1, 2, 3, 4} say, where the signs of the 
numbers {/(~;)- r*(~;); i = 0, 1, 2, 3, 4} alternate. We claim that r* is a 
best approximation to f. To prove this statement we suppose that 'f is even 
better. The method of proof of Theorem 10.1 implies that (r* - f) is the 
ratio of two cubic polynomials that has four zeros. Hence 'f = r*, which 
confirms that r* is a best approximation. 

In order to show that the exchange algorithm can break down, we let 
m = n = 1, we letthe reference contain the four points { - 4, - 1, 1, 4}, and 
we choose a function f that has the values /(-4) = 0, /(-1) = 1, /(1) = 1 
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and/(4) = 0. This data has been chosen because the function r in d 11 that 
minimizes expression (10.4) is the r.onstant function 

r(x) =t. a ~x ~b. (10.31) 

Therefore the conditions (10.6) are not obtained. The solutions of 
equation (10.16) are the values hk = -0.4 and hk = 0.4. They give the 
rational approximations (1.6-0.2x)/(2-x) and (1.6+0.2x)/(2+x), 
which satisfy the equations (10.6). However, both approximations are 
unacceptable because they contain singularities in the range of x. 

Some computer programs that apply the exchange algorithm do not 
abandon the calculation when this kind of difficulty occurs. Instead they 
may try different references or they may reduce the values of m or n. 
However, there may not be a computer program of this kind that treats all 
cases successfully. 

10.4 Methods based on linear programming 
Many of the difficulties that occur sometimes, when the exchange 

algorithm is used to calculate the best rational approximation to a 
function f in C6?[a, b ], are due to the fact that the system of equations 
(10.6) is not linear in the unknowns. However, if we let h be an estimate 
of the least maximum error, then the problem of finding out whether the 
estimate is too low or too high can be reduced to a set of linear conditions. 
Specifically, there is an approximation of the form (10.2) that satisfies the 
bound 

lf(x)-r(x)l~h, (10.32) 

if and only if there exist values of the coefficients {ai; i = 0, 1, ... , m} and 
{bi; i = 0, 1, ... , n} such that the inequalities 

q(x)>O, a~x~b, (10.33) 

and 

p(x)- f(x)q(x) ~ hq(x )} 
f(x)q(x)-p(x) ~ hq(x) ' 

xEX, (10.34) 

are obtained, where X is the range of x, and where p and q are the 
numerator and denominator of r. Because r is unchanged if p and q are 
multiplied by a constant, we may replace expression (10.33) by the 
condition 

q(x) ~ 8, XEX, (10.35) 

where 8 is any positive constant. 
The notation X is used for the range of x, because, in order to apply 

linear programming methods, it is usual to replace the range a ~ x ~ b by 
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a set of discrete points. We suppose that this has been done. Then 
calculating whether an approximation p/ q satisfies conditions (10.34) 
and (10.35) is a standard linear programming procedure. Many trial 
values of h may be used, and they can be made to converge to the least 
maximum error by a bracketing and bisection procedure. Whenever h 
exceeds the least maximum error, the linear programming calculation 
gives feasible coefficients for p and q, provided that the discretization of X 
in condition (10.35) does not cause inequality (10.33) to fail. 

This procedure has the property that, even if h is much larger than 
necessary, then it is usual for several of the conditions (10.34) to be 
satisfied as equations. It would be better, however, if the maximum error 
of the calculated approximation p/ q were less than h. A way of achieving 
this useful property is to replace expression (10.34) by the conditions 

p(x )- f(x)q(x),;;;; hq(x) + e} 
f(x)q(x)-p(x),;;;;hq(x)+s' 

xEX, (10.36) 

where s is an extra variable. Moreover, the overall scaling of p and q is 
fixed by the equation 

bo+b1(+bi(2 + ... +bnC = 1, (10.37) 

where ( is any fixed point of X, the value ( = 0 being a common choice. 
For each trial value of h the variable s is minimized, subject to the 
conditions (10.36) and (10.37) on the variables {a;; i = 0, 1, ... , m}, 
{b;; i = 0, 1, ... , n} and s, which is still a linear programming calculation. 

It is usual to omit condition (10.35) from this calculation, and to choose 
h to be greater than the least maximum error. In this case the final value 
of s is negative. Hence condition (10.35) is unnecessary, because 
expression (10.36) implies that q (x) is positive for all x EX. If the 
calculated value of s is zero, then usually p/ q is the best approximation, 
but very occasionally there are difficulties due to p(x) and q(x) both being 
zero for a value of x in X. Ifs is positive, then the conditions (10.34) and 
(10.35) are inconsistent, so h is less than the least maximum error. 
Equation (10.37) is important because, if it is left out, and if the 
conditions (10.36) are satisfied for a negative value of s, then s can be 
made arbitrarily large and negative by scaling all the variables of the 
linear programming calculation by a sufficiently large positive constant. 
Hence the purpose of condition (10.37) is to ensure that s is bounded 
below. 

The introduction of s gives an iterative method for adjusting h. A high 
value of h is required at the start of the first iteration. Then p, q and s are 
calculated by solving the linear programming problem that has just been 
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described. The value of h is replaced by the maximum error of the current 
approximation p/ q. Then a new iteration is begun. It can be shown 
that the calculated values of h converge to the least maximum 
error from above. This method is called the 'differential correction 
algorithm'. 

A simj>le device provides a large reduction in the number of iterations 
that are required by this procedure. It is to replace the conditions (10.36) 
of the linear programming calculation by the inequalities 

p(x)-f(x)q(x) :s:: hq(x) + eij(x)} 
f(x)q(x)-p(x):s::hq(x)+eij(x)' xeX, 

(10.38) 

where ij(x) is a positive function that is an estimate of the denominator of 
the best approximation. On the first iteration we let ij(x) be the constant 
function whose value is one, but on later iterations it is the denominator 
of the approximation that gave the current value of h. Some fundamental 
questions on the convergence of this method are still open in the case 
when the range of x is the interval [a, b ]. 

10 Exercises 
10.1 Let f be a function in ~[a, b ], and let r* = p* / q* and f = p/ ij be 

functions in .ilmn that satisfy the condition llt - rlloo < llt - r*lloo, 
where q*(x) and ij(x) are positive for all x in [a, b]. Let r be the 
rational function {[p*(x)+8p(x)]/[q*(x)+8ij(x)]; a :s::x :s::b}, 
where 8 is a positive number. Prove that the inequality llt-rlloo < 
II! - r*lloo is satisfied. Allowing 8 to change continuously gives a 
set of rational approximations that is useful to some theoretical 
work. 

10.2 Let r* be an approximation from .ilmn to a function fin ~[a, b ], 
and let ~M be the set of points {x: l/(x )- r*(x )I= llt- r*lloo; 
a :s:: x :s:: b}. Prove that, if f is a function in .ilmn that satisfies the 
sign conditions 

[f(x )- r*(x )][f(x )- r*(x)] > 0, 

then there exists a positive number 8 such that the approxima­
tion r, defined in Exercise 10 .1, gives the reduction lit - rlloo < 
lit - r*lloo in the error function. Thus Theorem 7 .1 can be exten­
ded to rational approximation. 

10.3 Let f be a function in ~[O, 6] that takes the values /(~0) = /(0) = 

0.0, /(~1) = /(2) = 1.0, /(~2) = /(5) = 1.6, and /(~3) = /(6) = 2.0. 
Calculate and plot the two functions in the set d 11 that satisfy the 
equations (10.10). 
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10.4 Prove that the function {r*(x) = h; -1,,,; x,;;; l} is the best 
approximation to {f(x) = x 3 ; -1,,,;x,;;; 1} from the set d 2 i. but 
that it is not the best approximation from the set .il.12. 

10.5 Prove that, if in the iteration that is described in the last 
paragraph of this chapter, the function q is the denominator of a 
best approximation, and h is any real number that is greater than 
the least maximum error, then the iteration calculates directly a 
function p/ q that is a best approximation. 

10.6 Let r* = p* / q* be a function in dmn such that the only common 
factors of p* and q* are constants, and let the defect d be the 
smaller of the integers {m - (actual degree of p*), n -(actual 
degree of q*)}. Prove that, if {gi; i = 1, 2, ... , k} is any set of 
distinct points in (a, b ), where k,;;; m + n - d, then there exists a 
function fin dmn such that the only zeros of the function (f - r*) 

are simple zeros at the points Ui; i = 1, 2, ... , k}. Hence deduce 
from Exercise 10.2 a characterization theorem for minimax 
rational approximation that is analogous to Theorem 7 .2. 

10.7 Let f be a function that takes the values /(~0) = f(O.O) = 12, 
/(~1) = f(l) = 8, /(6) = /(2) = -12, and /(6) = /(3) = -7. Cal­
culate the two functions in the set d 11 that satisfy the equations 
(10.10). Note that the function that does not have a singularity in 
the interval [O, 3] is derived from the solution hk of equation 
(10.16) that has the larger modulus. 

10.8 Investigate the calculation of the function in .i/.11 that minimizes 
expression (10.4), where the data have the form /(~0) = f(-4) = 
eo, /(~1) = f( -1) = 1 + e1, /(6) = f(l) = 1 + e2, and /(6) = /(4) = 
e 3, and where the moduli of the numbers {ei; i = 0, 1, 2, 3} are 
very small. 

10.9 Let f E C6'[a, b ], let X be a set of discrete points from [a, b ], and 
let r* = p* / q* be a best approximation from .sllmn to f on X, 
subject to the conditions {q*(x) > O; x EX} and q*(() = 1, where 
( is a point of X. Let the version of the differential correction 
algorithm that depends on condition (10.36) be applied to cal­
culate r*, where h is chosen and adjusted in the way that is 
described in Section 10.5. Prove that on each iteration the 
calculated value of e satisfies the bound 

e,;;; -(h -llf-r*\I) min q*(x). 
XEX 

Hence show that, if the normalization condition (10.37) keeps 
the variables {bi; i = 0, 1, ... , n} bounded throughout the 
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calculation, then the sequence of values of h converges to 
llf-r*ll. 

10.10 Prove that, if the points Ui; i = 0, 1, 2, 3} are in ascending order, 
and if the function values {f(gJ; i = 0, 1, 2, 3} increase strictly 
monotonically, then one of the solutions rk in the set .st/11 to the 
equations (10.6) has no singularities in the range [g0 , 6], and the 
other solution has a singularity in the interval (g1, {z). 



11 

Least squares approximation 

11.1 The general form of a linear least squares calculation 
Given a set .sll. of approximating functions that is a subset of 

ce[a, b ], and given a fixed positive function {w(x); a ~x ~ b}, which we 
call a 'weight function', we define the element p* of .sll. to be a best 
weighted least squares approximation from .sll. to f, if p* minimizes the 
expression r w(x)[f(x)-p(x)fdx, pE.slJ.. (11.1) 

Often .sll. is a finite-dimensional linear space. We study the conditions that 
p* must satisfy in this case, and we find that there are some fast numerical 
methods for calculating p*. 

It is convenient to express the properties that are obtained by p* in 
terms of scalar products. For each f and g in ((?[a, b ], we let (f, g) be the 
scalar product 

(f, g) = r w(x)f(x)g(x) dx, (11.2) 

which satisfies all the conditions that are stated in the first paragraph of 
Section 2.4. Therefore we introduce the norm 

1 

11111 = (f, f)'2, f E C(?[a, b], (11.3) 

and, in accordance with the ideas of Chapter 1, we define the distance 
from f to g to be llf- gll. Hence expression (11.1) is the square of the 
distance 

1 

llf-plJ = (f-p,f-p)2, PE .slJ.. (11.4) 

Therefore the required approximation p* is a 'best' approximation from 
.sll. to f. It follows from Theorem 1.2 that, if .sll. is a finite-dimensional 
linear space, then a best approximation exists. Further, because the 
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method of proof of Theorem 2.7 shows that the norm (11.3) is strictly 
convex, it follows from Theorem 2.4 that only one function in d mini­
mizes expression (11.1). 

One of the main advantages of the scalar product notation is that the 
theory that is developed applies, not only to continuous least squares 
approximation problems, but also to discrete ones. Discrete calculations 
occur, for example, when one requires an approximation to a function/ in 
<(?[a, b ], but, instead of being able to calculate f(x) for any x in a~ x ~ b, 
one can only measure the value of f(x ), where the measuring process 
includes a random error. Let the values of x at which the measurements 
are taken be {x;; j = 1, 2, ... , m}, let Y; be the measured value of f(x;), 
and let the variance of the measurement be 1/w;. If d 0 is the set of 
approximating functions, and if the random errors have a normal dis­
tribution, then it is appropriate for statistical reasons to seek the function 
pt in d 0 that minimizes the weighted sum of squares 

Po E do. (11.5) 

It happens often that one minimizes this expression even when the 
distribution of data errors is not normal, because the numerical methods 
for calculating pt are easy to apply when do is a linear space. 

We wish to introduce scalar products in such a way that expression 
(11.5) is analogous to the square of the distance (11.4). However, the 
definition 

m 

(f, g) = I w;f(x;)g(x;) (11.6) 
i=l 

is unacceptable, because in this case expression (11.3) fails to satisfy the 
axioms of a norm, due to the fact that (f, f) is zero for some functions f 
that are not identically zero. Instead we take note of the fact that the data 
{y;;j= 1, 2, ... , m} define a vector yin £Jlm. For each p0 in d 0 , we let 
X(p0 ) be the vector in Pllm whose components have the values {p0 (x;); j = 
1, 2, ... , m }, and we let d be the set {X(p0 ); p0 E d 0}, which is a subset of 
fill m. Calculating the function pt in do that minimizes expression (11.5) is 
equivalent to obtaining the vector p* in d that gives the least value of the 
sum of squares 

p Ed, (11. 7) 

where {p;; j = 1, 2, ... , m} are the components of p. We can now let the 
scalar product (u, v) have the value 

m 

(u, v) = I w;u;v; 
j=l 

(11.8) 
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1 

for any vectors u and v in 9/lm, and we let llull be (u, u)2. Hence the 
calculation of p* becomes a best approximation problem, where we 
require to minimize the distance 

1 

II y - Pll = ( y - p, y - p )2, p Ed. (11. 9) 

In the usual case when stl.0 is a linear subspace of ~[a, b ], then d is a 
finite-dimensional linear subspace of 9/lm. Hence Theorems 1.2 and 2.4 
imply that a unique element of d minimizes expression (11.9). 

Because expressions (11.4) and (11.9) are both distances in a Hilbert 
space, and because some highly useful properties are satisfied when the 
set of approximating functions is a linear space, we study the following 
problem. Let d be a finite-dimensional linear subspace of a Hilbert space 
!lJ. For any f in !lJ, calculate the best approximation from d to f. 

11.2 The least squares characterization theorem 
The following characterization theorem shows that the solution 

to the problem that is stated in the last paragraph may be regarded as an 
orthogonal projection onto the set of approximating functions, where the 
elements f and g of a Hilbert space are defined to be orthogonal if the 
scalar product (f, g) is zero. 

Theorem 11.1 
Let d be a linear subspace of a Hilbert space !lJ, and let f be any 

element of !lJ. The point p* in dis the best approximation from d to f if 
and only if the error e* = f- p* satisfies the orthogonality conditions 

(e*,p}=O, pEd. (11.10) 

Proof. Suppose first that (e*, p} is non-zero for some pin d. Then the 
square of the distance from (p* + Ap) to f is the expression 

11/-p* -Apll2 = llf-p*ll2-2A (e.*, p} +A 2llPll2, (11.11) 

where A is a real parameter. The value of A that minimizes expression 
(11.11) is not equal to zero. Therefore p* is not the best approximation 
from d to f. 

Conversely, suppose that (e*, p) is zero for all p in d. Let q* be any 
element of d. From the properties of scalar products we deduce the 
equation 

llf-q*ll2-llf-p*ll2 

= llq*ll2 -llP*ll2 -2(/, q*) + 2(/, p*) 

= llq* - p*ll2 + 2(/- p*' p* -q*). (11.12) 
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The last term is zero by hypothesis. Hence we obtain the bound 

ll/-q*ll2 = ll/-p*ll2 +llq* -p*ll2 

:;;.:ll/-p*ll2 • (11.13) 

which holds for all q* in d. Therefore p* is the best approximation. D 
Figure 11.1 presents a geometric view of this theorem. The point p * is 

the best approximation from d to f. The point q* is any other point of d. 
The orthogonality condition is shown by the standard symbol for a 
right-angle. Moreover, the first line of expression (11.13) states that 
Pythagoras's Theorem is obtained by the points of Figure 11.1, namely 
the square of the distance from f to q* is equal to the square of the 
distance from f top* plus the square of the distance from q* top*. 

Expression (11.13) is useful in two other ways. It provides an alter­
native proof of the uniqueness of the best approximation, for it shows that 
11/-q*ll is larger than II/-p*ll if q* is not equal top*. Secondly, by letting 
q* be the zero element, we obtain the equation 

11/112-= llP*ll2 +II/-p*ll2 • (11.14) 

Some interesting consequences of this equation are found later. 

11.3 Methods of calculation 
In order to calculate a best least squares approximation from a 

linear space d, we choose a set of functions, { cPi; j = 0, 1, ... , n} say, that 
span d. Often a set of basis functions is present in the definition of d. We 
continue to let p* be the best approximation. Therefore we require the 
values of the coefficients {c i; j = 0, 1, ... , n} in the expression 

n 

p* = L CfcPi· (11.15) 
j~O 

Figure 11.1. A geometric view of the least squares characterization 
theorem. 

f 
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We suppose that the elements {c/>i; j = 0, 1, ... , n} are linearly indepen­
dent, which is equivalent to supposing that the dimension of dis (n + 1), 
in order that the problem of determining these coefficients has a unique 
solution. Because every element of d is a linear combination of the basis 
elements, it follows from Theorem 11.1 that expression (11.15) is the best 
approximation from d to f if and only if the conditions 

( c/>;,f-.I c'!c!>i)=o, i=0,1, ... ,n, (11.16) 
1=0 

are satisfied. They can be written in the form 
n 

I (c/>;, cf>Jci = (c/>;, f), i = 0, 1, ... , n. (11.17) 
j=O 

Thus we obtain a square system of linear equations in the required 
coefficients, that are called the 'normal equations' of the least squares 
calculation. 

The normal equations may also be derived by expressing a general 
element of d in the form 

n 

p = I C;c/>;, 
i=O 

(11.18) 

where {c;; i = 0, 1, ... , n} is a set of real parameters. Their values have to 
be chosen to minimize the expression 

n n n 

(f-p,f-p)=(f,f)-2 I e;(cf>;,f)+ I I C;Cj(c/>;,c/>j). (11.19) 
i=O i=O j=O 

Therefore, for i = 0, 1, ... , n, the derivative of this expression with 
respect to c; must be zero. These conditions are just the normal equations. 

We note that the matrix of the system (11.17) is symmetric. Further, if 
{z;; i = 0, 1, ... , n} is a set of real parameters, the identity 

(11.20) 

holds. Because the right-hand side is the square of III z;c/>;!I, it is zero only 
if all the parameters are zero. Hence the matrix of the system (11.17) is 
positive definite. Therefore there are many good numerical procedures 
for solving the normal equations. The technique of calculating the 
required coefficients {cj; j = 0, 1, ... , n} from the normal equations 
suggests itself. Often this is an excellent method, but sometimes it causes 
unnecessary loss of accuracy. 

For example, suppose that we have to approximate a function f in 
cg[1, 3] by a linear function 

p*(x)=ct +eh, (11.21) 
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and that we are given measured values of f on the point set {x; = i; i = 
1, 2, 3}. Let the data be y1 = 2.0 = /(1.0), Yz = 2.8 = /(2.0), and Y3 = 4.2 = 
/(3.0), where the variances of the measurements are 1/ M, 0.1 and 0.1 
respectively. In order to demonstrate the way in which accuracy can be 
lost, we let M be much larger than ten. The normal equations are the 

system 

( M+20 M+50 )(et) (2M+70) 
M+50 M+130 et = 2M+182' 

which has the solution 

et=0.96M/(M+2) } 
ci = (l.04M +2.8)/(M +2) . 

(11.22) 

(11.23) 

We note that there is no cancellation in expression (11.23), even if Mis 
large. In this case the values of et and et are such that the difference 
[p*(l.0)- y1] is small, and the remaining degree of freedom in the 
coefficients is fixed by the other two measurements of f. However, to take 
an extreme case, suppose that M has the value 109 , and that we try to 
obtain et and cf from the system (11.22), on a computer whose relative 
accuracy is only six decimals. When the matrix elements of the normal 
equations are formed, their values are dominated so strongly by M that 
the important information in the measurements y2 and y3 is lost. Hence it 
is not possible to obtain accurate values of et and et from the calculated 
normal equations by any numerical procedure. 

One reason for the loss of precision is that high relative accuracy in the 
matrix elements of the normal equations need not provide similar 
accuracy in the required solution {ej; j = 0, 1, ... , n }. However, similar 
accuracy is always obtained if the system (11.17) is diagonal. Therefore 
many successful methods for solving linear least squares problems are 
based on choosing the functions {c/>i; j = 0, 1, ... , n} so that the condi­
tions 

i ,e j. (11.24) 

are satisfied, in order that the matrix of the normal equations is diagonal. 
In this case we say that the basis functions are orthogonal. When d is the 
space !/JJ" of algebraic polynomials, a useful technique for generating 
orthogonal basis functions is by means of a three-term recurrence rela­
tion, which is described in the next section. 
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In the example that gives the system (11.22), .s4 is a subspace of 9/l 3 , and 
its basis vectors have the components 

~o ~ (:) and ~. ~ m (11.25) 

One way of making the basis vectors orthogonal is to replace </J1 by the 
vector 

~i = </J1 - a</Jo, (11.26) 

where a has the value (M + 50)/(M + 20). In this case the coefficients of 
the required least squares approximation 

p* = Eo<Po + C1~1 
satisfy the diagonal normal equations 

0 )(co) ( 2M +70 ) 
50M+l00 c = 52M+l40' 

M+20 I M+20 

which gives the values 

co=(2M+70)/(M+20) } 

c1 = (l.04M +2.8)/(M +2) . 

(11.27) 

(11.28) 

(11.29) 

Of course this calculation is equivalent to the earlier one in exact 
arithmetic. However, if we let M = 109 again, and if the calculation is 
carried out on a six-decimal floating point computer, then we avoid the 
serious loss of accuracy that occurred before. 

In general the use of orthogonal basis functions is recommended, 
because .it happens frequently that information is lost when the normal 
equations are constructed. The form of the best least squares approxima­
tion when the basis functions are orthogonal is sufficiently important to be 
stated as a theorem. 

Theorem 11.2 
Let d be a linear subspace of a Hilbert space flJ that is spanned 

by the basis functions {</J;; i = 0, 1, ... , n }. If the orthogonality condition 
(11.24) is satisfied, then, for any fin £ilJ, the best approximation from d to 
f is the function 

* ;. (<Pi>[) 
p = j=-0 ll<Pill2 <Pi· 

(11.30) 
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Proof. Equations (11.17) and (11.24) imply that the coefficients of the 
required approximation (11.15) have the values 

i = 0, 1, ... , n, (11.31) 

which proves the theorem. 0 
Often the space .st1 is defined by a sequence of independent basis 

functions {I/I;; i = 0, 1, ... , n }, say. For example, if .st1 is the space [l}"' then 
I{!; may be the function {l/l;(x) = x;; a,,,-;; x ,,,-;; b }. For i = 0, 1, ... , n, we let 
.stl; be the linear space that is spanned by the functions {I/I;; j = 0, 1, ... , i}, 
in order to describe a general method for choosing an orthogonal basis 
of .sti. 

We let <Po be the function r./10 • For i;;;. 1 we let Ji; be any member of .stl; 
that is not in .stl;-i. and we let qf be the best approximation from .stl;- 1 to 
Ji;. We define </J; by the equation 

- * </J; = I{!; - qi . (11.32) 

Because Theorem 11.1 states that </J; is orthogonal to all elements of .stl;-i. 
the condition 

(</J;, </J;) = 0, j < i,. (11.33) 

is satisfied. Hence the functions {</J;; i = 0, 1, ... , n }, that are obtained 
from this construction, are an orthogonal basis of .sti. 

This construction is particularly useful if we are given an element f and 
an infinite sequence of functions {I/I;; i = 0, 1, 2, ... } in a Hilbert space PA, 
and we wish to make the error II! - pjj less than a prescribed accuracy 8, 
where p is a linear combination of the first (n + 1) terms of the sequence, 
and where the value of n is not known in advance, because it is to be the 
smallest integer that is allowed by the required accuracy. The main 
advantage of the construction is that the definition of the orthogonal 
functions {</J;; i = 0, 1, 2, ... } does not depend on n. Hence the 
coefficients (11.31) are also independent of n. For i = 0, 1, 2, ... , we 
define pf to be the function 

* ~ (</J;, f) 
pi = i~O ll</J;lf </J;. 

(11.34) 

Because Theorem 11.2 shows that this function is the best approximation 
to f from the linear space .stl; that is spanned by the functions {I/I;; j = 

0, 1, ... , i}, we require n to be the least integer that satisfies the 
condition 

(11.35) 
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In fact it is not necessary to calculate each of the approximations 
(11.34 ), because equation (11.14) implies that expression (11.35) is 
equivalent to the inequality 

llP! 112 ;:,,: 111112 -82 • (11.36) 

Therefore we have only to choose n so that llP! II is sufficiently large. 
Because the orthogonality conditions and the definition (11.34) imply the 
equation 

(11.37) 
j=O 

it follows that the required value of n can be calculated by summing the 
terms {(cf>b 1)2 /llc!>ill2 ; j = 0, 1, 2, ... }, until the bound 

£ (cf>j,ft ;:.:111112 -82 (11.38) 
i=O llcf>jll 

is satisfied. 

11.4 The recurrence relation for orthogonal polynomials 
An important special case of least squares approximation is when 

the set of approximating functions .sl/. is the linear space PP n of all 
polynomials of degree at most n. In the case of approximation on a point 
set, where the scalar product has the value (11.6), we take the point of 
view that 'polynomial' means the vector that is obtained by evaluating the 
polynomial at the discrete points {xi; j = 1, 2, ... , m}. This point of view 
is tenable when the number of different discrete points is greater than n, 
so we assume that this condition is satisfied, in order that the work of this 
section is relevant to both continuous and discrete least squares approx­
imations. 

Orthogonal polynomials can be constructed by the method that is 
described immediately after Theorem 11.2, where the basis functions are 
{!/li(x) = x;; i = 0, 1, ... , n}. A version of this construction, that comes 
from a particular choice of the function (i;i in equation ( 11.32), is highly 
useful in practice, because it gives the following three-term recurrence 
relation. 

Theorem 11.3 
Let cf>o be the constant function 

cf>o(X) = 1, a ~x~b. 

For j;:,,: 0, let ai be the scalar 

aj = (cf>j, xcf>Nllc!>jll2 , 

(11.39) 

(11.40) 
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where x<Pi is the polynomial {x<Pi(x); a ~x ~b}. Let 4'1 be the linear 
function 

4'1 (x) = (x - ao)<Po(x ), 

For j ;a.1, let /3i be the scalar 

(11.41) 

/3i = ll<Pill2 /ll<Pj-1112 , (11.42) 

and let cPi+l be defined by the three-term recurrence relation 

cPi+1(x)=(x-ai)cPi(x)-/3icPi-1(x), a~x~b. (11.43) 

Then, for eachj, the function <Pi is a polynomial of degree j, the coefficient 
of xi being unity. Moreover, the polynomials {<Pi; j = 0, 1, 2, ... } are 
orthogonal. 

Proof. The first statement of the theorem is an immediate consequence 
of the definitions (11.39), (11.41) and (11.43). To establish the ortho­
gonality conditions, we show that the definitions (11.41) and (11.43) are 
equivalent to the construction (11.32) where ,fr; is the polynomial XcPi-1· 
Because we proceed by induction, we assume that the functions {cP;; i = 
0, 1, ... , j}, defined in the statement of the theorem, are orthogonal. 
Therefore, by applying Theorem 11.2 to equation (11.32), it follows that 
the polynomial 

a~x~b, (11.44) 

is orthogonal to {cfJ;; i = 0, 1, ... , j}. The definition of a 0 shows that this 
equation is equivalent to expression (11.41) whenj = 0. Hence it remains 
to prove that the functions (11.43) and (11.44) are the same when j ;a.1. 

Therefore we consider the terms under the summation sign of expres­
sion (11.44). When i = j we find the term a,-</>i(x), which is present in 
equation (11.43). When i ~ j - 2, we make use of the relation 

( cP;, x<Pi) = (x<fJ;, cPi) 

=O, (11.45) 

which holds because <Pi is orthogonal to every polynomial in r!Ji-1· Hence 
it is correct that cP;(x) is absent from equation (11.43) for i ~ j - 2. The 
remaining term of the sum depends on the identity 

(cPi-h x<Pi) = (x<Pi-1, cPi) 

=(<Pi> cPi)+(x<Pi-1-<Pi> cPi) 

= ll<Pil\2 , (11.46) 

which holds because (x<Pi-1-<Pi) is in r!Ji+ It follows that equation 
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(11.43) contains the correct multiple of </J;-i. which completes the proof 
that expressions (11.43) and (11.44) are equivalent. D 

When this theorem is applied in practice, to obtain the best polynomial 
approximation to an element f of a Hilbert space, it is usual to calculate 
the coefficient 

cj = (</J;, f)/ll<P;ll2 (11.47) 

immediately after </J; is determined. At the end of the fitting procedure, it 
is sufficient to provide the values of the parameters {cj; j = 0, 1, ... , n}, 
{a;; j = 0, 1, ... , n -1} and {{3;; j = 1, 2, ... , n -1}. Therefore the 
storage space that holds </J;-1 may be re-used by </J;+1 when formula 
(11.43) is applied, which is important sometimes in discrete calculations 
that have very many data. After the polynomial approximation is found, 
it may be necessary to calculate its value at several general points of the 
range a:;;;; x:;;;; b. For each value of x, the numbers {</J;(x); j = 0, 1, ... , n} 
are obtained in sequence from the three-term recurrence relation, and 
then p*(x) is determined by the equation 

n 

p*(x) = L Cf</J;(x). 
j=O 

11 Exercises 

(11.48) 

11.1 Let .sd be a finite-dimensional linear subspace of a Hilbert space 
£?1J, and, for any fin r!/3, let X (f) be the best approximation in .sd to 
f, with respect to the 2-norm that is induced by the scalar 
product. Prove that X is a linear operator, that it is a projection, 
and that llXl'2 = 1. 

11.2 Let f E ~[-5, 5], and let .sd be the linear space of dimension 
seven that contains all even polynomials in g>12. Show that there 
are many elements of .sd that minimize the expression 

5 

I [f(j)-p(j)]2, p E .sl/., 
j=-5 

but that there is only one optimal set of function values {p(j); 
j = -5, -4, ... ' 5}. 

11.3 Let f be the function {f(x) = x2; 0:;;;; x:;;;; l}, and let {p*(x) = c~ + 
c r x; 0 :;;;; x :;;;; 1} be the linear polynomial that minimizes the 
integral 

1 I [f(x)-p(x)]2dx, pEg>1. 

Calculate the coefficients c~ and cf from the normal equations 
(11.17), and verify that p* satisfies equation (11.14). 
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11.4 Suppose that one has to use a computer to calculate the 
coefficients c0 and c1 that minimize the sum of squares of 
residuals of the inconsistent linear equations 

(l+e)co+2c1=5+2e 

2c0 +(4+e)c1=10-e 

ec0 = 3e 

EC1 =E. 

Suppose also that the constant e is so small that e 2 is less than the 
relative accuracy of the computer arithmetic. Show that, if the 
normal equations are formed, then the matrix of the system can 
be exactly singular, but, if one makes the substitution c0 = 

c0 -2c1 in order to work with c0 and c 1 instead of with c0 and ci, 
then it is possible to achieve moderate accuracy. 

11.5 Use the three-term recurrence relation of Theorem 11.3 to 
calculate the polynomials {<Pk E rfJk; k = 0, 1, 2, 3} that are 
orthogonal on the point set {O, 1, 3}, which means that they 
satisfy the conditions 

cPi(O)cfJk (0) + cPi(l)cfJk (1) + cPi(3 )cPk (3) = 0, j ¥ k. 

You should find that the cubic polynomial cfJ 3 is zero on the point 
set {O, 1, 3}. 

11.6 For any f in ~[a, b ], let X(f) be the linear polynomial that 
minimizes the expression r [f(x)-p(x)]2 dx, 

Prove that, if the oo-norm is used in ~[a, b ], then the norm of the 
operator X has the value llXlloo =i. 

11.7 For i = 0, 1, 2, 3, let cPi be the function that is obtained by 
drawing straight lines between the function values {cfJJj) = 

8ii; j = 0, 1, 2, 3}. Thus {<Pi; i = 0, 1, 2, 3} is a basis of the space of 
linear splines that is called Y'(l, 0, 1, 2, 3) in Section 3 .4. Let f be 
the piecewise constant function {f(x) = 1, 0 ~ x ~ 1; f(x) = 0, 
1<x~3}. Use the normal equations (11.17) to calculate the 
coefficients {d; i = 0, 1, 2, 3} that minimize the integral r [t(x)-Jo d<Ph)r dx. 

Plot the function {L d<Ph); O~x ~3}. 
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11.8 Let f be the function {f (x) = 2x - 1 ; 0 ~ x ~ 1}. Find the smallest 
value of n such that a function of the form 

n 

p(x) = I ck cos (k7Tx), 
k~O 

satisfies the condition r [f(x)-p(x)]2 dx<10-4 • 

O~x~ 1, 

11.9 Given the values T0 (x) and T1 (x) of the first two Chebyshev 
polynomials, the recurrence relation 

k = 1, 2, 3, ... ' 

is applied to calculate Tn (x) where n is large. Show that, if T0(x) 
and T1 (x) are exact, but if every arithmetic operation can cause 
an absolute error of ±71, then the error in Tn(x) when x = 1 is at 
most ~11n(n -1). Investigate whether larger errors can occur for 
any other value of x in the interval [-1, 1]. 

11.10 Let .st11 and .st12 be finite-dimensional linear subspaces of a 
Hilbert space 9/J, and let X 1 and X 2 be the linear projection 
operators from 9lJ to .st11 and .st12 respectively, that give the best 
approximations in these spaces with respect to the norm of the 
Hilbert space. For any f 1 in 9/J, let the sequence {fk; 
k = 1, 2, 3, ... } be defined by the equation {fk+1 = X2(X1/k); k = 

1, 2, 3, ... }. Prove that the sequence converges to the best 
approximation to / 1 in the intersection of the spaces .st11 and .sd2. 
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Properties of orthogonal polynomials 

12.1 Elementary properties 
Orthogonal polynomials have several uses in addition to the 

method of calculating least squares approximations that has just been 
described. For example, we find in Section 12.2 that they are important to 
the construction of some efficient formulae for the numerical calculation 
of integrals. First, however, some of their elementary properties are 
established. Unless it is stated otherwise, it is assumed that each ortho­
gonal polynomial is defined on the range a ~ x ~b. However, by taking 
the point of view that is mentioned at the beginning of Section 11.4, it 
follows that some of the results of this chapter are also valid in the case 
when the range of x is a set of discrete points. 

Theorem 12.1 
Let £1J be a Hilbert space that contains the subspace PP" of 

algebraic polynomials of degree n. Let { </J;; i = 0, 1, ... , n} be a sequence 
of non-zero polynomials, where each </J; is in PP;, and where the ortho­
gonality conditions 

i ~ j, (12.1) 

hold (Theorem 11.3 shows that these conditions can be satisfied). Then 
the functions { </J;; i = 0, 1, ... , n} are linearly independent. Moreover, if 
l/Jk is any polynomial in PPk that is orthogonal to the elements of PPk-i. 
where k is any integer from [l, n], then the equation 

a~x,,;;;b, (12.2) 

is obtained for some constant c. 
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Proof. To prove the first part of the theorem, we have to show that, if the 
scalars {Ai; i = 0, 1, ... , n} satisfy the equation 

n 

I Ai</>i = 0, (12.3) 
i=O 

where 0 is the zero function, then they are all equal to zero. Because 
expression (12.3) implies the equations 

n 

I Ai(</>i> </>j) = 0, j = 0, 1, ... , n, (12.4) 
i=O 

and because (</>i> </>i) is positive if <Pi is a non-zero function, it follows from 
the orthogonality conditions (12.1) that the coefficients {Ai; j = 
0, 1, ... , n} are zero, which is the first required result. 

This result is useful to the second part of the theorem, because it shows 
that the functions {</>i; i = 0, 1, ... , k} are a basis of g>k· Therefore we may 
express l/Jk in the form 

i=O 

which gives the equations 
k 

C<l>i> l/lk) = I µ.,i(<l>i> <l>i), 
i=O 

(12.5) 

j=O,l, ... ,k-1. (12.6) 

Hence condition (12.1) and the orthogonality properties of l/Jk imply that 
the parameters {µ.,i; j = 0, 1, ... , k -1} are zero. It follows from expres­
sion (12.5) that equation (12.2) is satisfied, where c is equal to ILk· D 

Another elementary property of orthogonal polynomials, that is 
required in the next section, is as follows. 

Theorem 12.2 

Let <l>k be a non-zero polynomial that is in 9J>k, and that is 
orthogonal to the elements of g>k-l· Then <l>k has exactly k real and 
distinct zeros in the open interval a < x <b. 

Proof. Let r be the number of sign changes of the function {</>dx); 
a~ x ~ b }. There is a non-zero polynomial in 9J>,, l/J, say, such that the 
inequality 

</>dx )1/1,(x) ~ 0, a ~x ~b. (12.7) 

holds, the product <l>k (x )l/J,(x) being zero if and only if x is a zero of <l>k· It 
follows from the definition (11.2) of the scalar product that (</>k. l/J,) is 
positive. Therefore, because of the orthogonality properties of <l>k. r is not 
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less than k. Hence <Pk has at least k distinct zeros in the open interval 
a < x <b. The number of zeros cannot exceed k because <Pk is a non-zero 
element of PJ>k. Therefore the theorem is true. 0 

The extension of this result to the discrete case is not difficult, but it is 
different from the other extensions that have been made in a fundamental 
way. In all other theorems it does not matter if the approximating 
function is known only on the set {xi; j = 1, 2, ... , m }, where the scalar 
product has the value (11.6), but now we use the fact that polynomials are 
defined for all values of the variable x. In the statement of the discrete 
version of Theorem 12.2 we require k < m, and we let [a, b] be any 
interval that contains the points {xi; j = 1, 2, ... , m}. The proof of the 
theorem is unchanged, and rf!, is still constructed so that inequality (12.7) 
holds for all x in [a, b ]. It follows that the k real roots of the polynomial <Pk 
are usually not in the point set {xi; j = 1, 2, ... , m}, but they are in the 
shortest interval that contains the data points. 

Theorem 12.1 shows that all functions <Pk that satisfy the conditions of 
Theorem 12.2 are the same, except for a scaling factor. Therefore, the 
roots of <Pk depend only on the integer k and the definition of the scalar 
product. 

12.2 Gaussian quadrature 
Many formulae for approximating definite integrals have the 

form 

f b k 

a w(x)f(x) dx = ;~o c;f(x;), (12.8) 

where { w (x); a ~ x ~ b} is a fixed positive weight function, where f is in 
ce[a, b ], where {c;; i = 0, 1, ... , k} is a set of real coefficients, and where 
the abscissae are in ascending order 

(12.9) 

Hence the integral is estimated from (k + 1) point evaluations of f. One of 
the most useful methods for choosing the parameters {c;; i = 0, 1, ... , k} 
and {x;; i = 0, 1, ... , k} is to force the condition that equation (12.8) is 
exact when f is in a suitable linear subspace .stl of ce[a, b ]. 

For example, if the points {x;; i = 0, 1, ... , k} are given, then we may 
obtain the coefficients {c;; i = 0, 1, ... , k} by letting .stl be the space PJ>k. 
We recall from Chapter 4 that, when f is in PJ>k, it can be expressed in the 
form 

k 

f(x) = L l;(x)f(x;), a ~x ~b, (12.10) 
i=O 
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where {l;(x); a !!S; x !!S; b} is the cardinal function (4.3). It follows from the 
properties of cardinal functions that the two sides of expression (12.8) are 
equal when c; has the value 

b 

c; = t w(x)l;(x) dx, i = 0, 1,. .. , k. (12.11) 

Any other choice of c; causes an error in the approximation (12.8) when f 
is the cardinal polynomial {l;(x); a !!S; x !!S; b }. 

Gaussian quadrature formulae extend this idea, for their parameter 
values {x;;i=O,l, ... ,k} and {c;;i=O,l, ... ,k} are such that the 
approximation (12.8) is exact when f is in g>2 k+l· The abscissae {x;; i = 

0, 1, ... , k} may be calculated by satisfying a system of non-linear 
equations, but the purpose of this section is to show that they are the zeros 
of an orthogonal polynomial. 

Theorem 12.3 
Let the points {x;; i = 0, 1, ... , k} in the quadrature formula 

(12.8) be the zeros of a polynomial <Pk+l of degree (k + 1) that satisfies the 
orthogonality conditions 

b I w(x)<Pk+1(x)p(x) dx = 0, p E g>k, (12.12) 

where { w (x); a !!S; x !!S; b} is any integrable function. Let the coefficients 
{c;; i = 0, 1, ... , k} have the values (12.11), where I; is defined by equa­
tion (4.3). Then the approximation (12.8) is exact when f is any poly­
nomial in g>2k+l· 

Proof. If f is in g>2k+i. it may be expressed in the form 

f(x) = p(x)<Pk+1(x) +q(x), a !!S;x!!S;b, (12.13) 

where </Jk+l is given in the statement of the theorem, and where p and q 

are in g>k· Because <Pk+l is orthogonal top, we have the equation r w(x)f(x) dx = r w(x)q(x) dx. (12.14) 

Because the abscissae {x;; i = 0, 1, ... , k} are zeros of <Pk+i. the identity 
k k 

L c;f(x;) = L c;q(x;) (12.15) 
i=O i=O 

is satisfied. Because q is in g>k, it follows from the definition of the 
coefficients {c;; i = 0, 1, ... , k} that the right-hand sides of expressions 
(12.14) and (12.15) are equal. Therefore the left-hand sides are equal, 
which is the required result. 0 
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When formula (12.8) is applied, it is usual for some errors to be present 
in the function values {f(x;); i = 0, 1, ... , k}, due, for example, to the 
rounding errors of computer arithmetic. It is therefore advantageous if 

the sum 
k 

l!cll1 = I led (12.16) 
i=O 

is small. However, in order that equation (12.8) is exact when f is a 
constant function, it is necessary to satisfy the equation 

Jb k 

a w(x) dx = i~O C;. (12.17) 

Therefore expression (12.16) is least if and only if the coefficients 
{c;; i = 0, 1, ... , k} all have the same sign. Our next theorem shows that 
Gaussian quadrature formulae give this useful property. 

Theorem 12.4 
If the approximation (12.8) is exact for all functions fin 9l'2k+i. 

and if w is positive, then each of the coefficients {c;; i = 0, 1, ... , k} is 
positive. 

Proof. If we let f be the polynomial 

f(x) = [/;(x)]2, a ~x ~ b, (12.18) 

where I; is the cardinal function (4.3), then the left-hand side of expres­
sion (12.8) is positive, and the right-hand side is equal to c;. Because f is in 
9l'2k+i. it follows that c; is positive. D 

Gaussian quadrature formulae are not very convenient for adaptive 
numerical integration procedures, where the user specifies the accuracy 
that he requires in the calculated estimate of his integral. In these 
procedures the error of each approximation to the integral is estimated 
automatically, and the method of integration is refined until it seems that 
the required accuracy is achieved. In Gaussian quadrature formulae the 
positions of the abscissae {x;; i = 0, 1, ... , k} make it difficult to use 
previously calculated values of the integrand after each refinement 
process. Despite this disadvantage, Gaussian methods are found in many 
automatic integration algorithms. Moreover, if the integrand takes so 
long to calculate that one has to manage with not more than about four 
terms in the sum (12.8), then frequently a Gaussian formula is the best 
one to apply. Thus there is another reason for continuing the study of 
orthogonal polynomials. 
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12.3 The characterization of orthogonal polynomials 
The recurrence relation of Theorem 11.3 is not always the most 

convenient method for calculating orthogonal polynomials. Some other 
highly useful techniques come from the following characterization 
theorem. 

Theorem 12.5 
Let { w (x); a ,,,;; x ,,,;; b} be any continuous function. The function 

<Pk+l in ~[a, b] satisfies the orthogonality conditions r w(x)</Jk+1(x)p(x) dx = 0, p E g/Jk. (12.19) 

if and only if there exists a (k + 1)-times differentiable function {u (x); a,,,;; 
x ,,,;; b} that satisfies the equations 

w(x)<f>k+1(x)=u<k+l\x), a:o;;;x:o;;;b, (12.20) 

and 
u<0(a) = u<0(b) = 0, i = 0, 1, ... ' k. (12.21) 

Proof. If equations (12.20) and (12.21) hold, then integration by parts 
gives the identity 

b b L w(x)</Jk+i(x)p(x) dx = (- l)k+l L u(x)p<k+O(x) dx. (12.22) 

Therefore, because of the term p<k+i>(x), the orthogonality condition 
(12.19) is obtained when p is in g;k· 

Conversely, when equation (12.19) is satisfied, we let u be defined 
by expression (12.20), where the constants of integration are chosen to 
give the values 

u<0(a) = 0, i = 0, 1, ... ' k. (12.23) 

Expression (12.20) is substituted in the integral (12.19). For each integer j 
in [O, k ], we let p =Pi be the polynomial 

Pi(x)=(b-x)i, a:o;;;x:o;;;b, (12.24) 

and we apply integration by parts (j + 1) times to the left-hand side of 
expression (12.19). Thus we obtain the equation 

[(-l)iu<k-i>(x)pjn(x)]~ 
b 

+(-l)i+l L u<k-i)(x)pji+l>(x)dx=O. (12.25) 

Because pji+1> is zero, it follows that u<k-i)(b) is zero for j = 0, 1, ... , k, 
which completes the proof of the theorem. D 
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In order to apply this theorem to generate orthogonal polynomials, it is 
necessary to identify a function u, satisfying the conditions (12.21), such 
that the function cPk+i. defined by equation (12.20), is a polynomial of 
degree (k + 1). There is no automatic method of identification, but in 
many important cases the required function u is easy to recognize. For 
example, if we satisfy the equations (12.21) by letting u be the function 

u(x)=(x-a)k+ 1(x-b)k+i, a~x~b, (12.26) 

then it follows that <!>k+l is in ~k+l when the weight function w is constant. 
In other words the polynomials 

d' . . 
</>1(x)=dx1[(x-a)1(x-b)1], j=0,1,2, ... , (12.27) 

satisfy the orthogonality conditions r <f>;(x )</>,(x) dx = 0, i ~ j. (12.28) 

Many of the families of orthogonal polynomials that have been given 
special names can be obtained from Theorem 12.5. Each family is 
characterized by a weight function { w (x); a~ x ~ b }. For example, if a 
and (3 are real constants that are both greater than minus one, then the 
polynomials {</>1; j = 0, 1, 2, ... } that satisfy the orthogonality conditions 

rl (1-x)"(l +x)13</J;(x)</>,(x) dx = 0, i ~ j, (12.29) 

are called Jacobi polynomials. In this case we require the function (12.20) 
to be a polynomial of degree (k + 1) multiplied by the weight function 
{(1- x)" (1 + x )13 ; -1 ~ x ~ l}. Therefore we let u be the function 

u (x) = (1- x r+k+l(l + x )(3+k+l, -1~x~1. (12.30) 

Because condition (12.21) is satisfied, it follows that the Jacobi poly­
nomials are defined by the equation 

<P1(x) = (1-x)-"(1 +x)-13 d', [(1-x)"+1(1 +x)13 +1], 
dx 

j = 0, 1, 2, ... ' 

which is called Rodrigue's formula. 

(12.31) 

In the special case when the range of x is [ -1, 1] and when a = f3 = 0, 
the Jacobi polynomials are called the Legendre polynomials. If instead, 
for this range of x, we let a = (3 = -t, then we obtain the Chebyshev 
polynomials, that we met for the first time in Chapter 4. Further attention 
is given to the Chebyshev polynomials in the next section, because they 
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provide least squares approximation operators that are important to the 
work of Chapter 17. 

We may allow the range of x to be infinite in Theorem 12.5, provided 
that the integral (12.19) is well defined. For example, because it is 
necessary sometimes to integrate functions that decay exponentially, 
there is a need for Gaussian quadrature formulae of the type 

Joo k 

0 
e-xf(x)dx=i~o cJ(x;). (12.32) 

Therefore, in order to make use of Theorem 12.3, we seek polynomials 
{<Pi E P/Jt; j = 0, 1, 2, ... } that satisfy the conditions 

Loo e-x</J;{x)</Ji(x) dx = 0, i ~ j, (12.33) 

which are called Laguerre polynomials. If u is the function 

o~x <oo, (12.34) 

in Theorem 12.5, then the conditions (12.21) are obtained, and the 
function </Jk+i. defined by equation (12.20), is in P/Jk+l· Hence the 
Laguerre polynomials have the values 

( ) x di ( - x i) 0 1 2 <Pi x = e dxi e x , j = , , , .... 

Similarly, the Hermite polynomials 

( ) x2 di ( -x2) 
<Pi x = e dxi e ' j = 0, 1, 2, ... ' 

obey the orthogonality conditions L: e-x2 </J;{x)</Ji(x) dx = 0, i ~ j. 

(12.35) 

(12.36) 

(12.37) 

It is possible to deduce from each of the expressions (12.31), (12.35) 
and (12.36) that each family of orthogonal polynomials satisfies a three 
term recurrence relation. Thus, in these three cases, algebraic expressions 
can be found for the coefficients {ai; j = 0, 1, 2, ... } and {/3i; j = 
1, 2, 3, ... } that occur in Theorem 11.3. 

12.4 The operator Rn 
The operator Rn is a linear projection from ~[ -1, 1] to PPn. For 

each fin~[ -1, 1], R,.f is defined to be the element of PPn that minimizes 
the expression 

rl (1- x2)-! [f(x )- p(x )]2 dx, (12.38) 
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Therefore Theorem 11.2 shows that RJ is the function 

R,J ~ ( </>i> f) "' 
= j:-0 ll4>J2 'Pi> 

where the scalar product has the value 

(<Pi> f) = rl (1- x 2)-~<f>; (x )f (x) dx, 
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(12.39) 

(12.40) 

provided that the polynomials { <f>; E (JJ;; j = 0, 1, ... , n} are mutually 
orthogonal. Three properties of Rn that are proved later are that its norm 
is quite small, it is closely related to Fourier approximation, and, if f is in 
(f}n+i. then RJ is the best minimax approximation from (f}n to f. The 
calculation of RJ is helped by the fact that the functions { </>;; j = 
0, 1, ... , n} in equation (12.39) are Chebyshev polynomials, which is 
established in the next theorem. 

Theorem 12.6 
The Chebyshev polynomials 

T;(x) =cos (j8), x =cos 8, 

satisfy the orthogonality conditions 
I 

f_
1 
(1-x 2)-~T;(x)Tk(x)dx=O, 

(12.41) 

j-:;!. k. (12.42) 

Proof. By letting x =cos 8 in the integral (12.42), it follows that the 
integral has the value 

I'1T cos (j8) cos (k8) d(J 

= ! r· {cos [(j +k)8]+cos [(j-k)8]} d8 

=0, (12.43) 

which is the required result. 0 
It is now straightforward to deduce that RJ is the best minimax 

approximation from (JJ" to f when f is a polynomial of degree (n + 1). In 
this case the error function (/ - RJ) is in (fJ n + 1 and, by Theorem 11.1, it is 
orthogonal to all elements of (fJ n· Hence, by Theorem 12 .1, it is a multiple 
of a polynomial that is independent of f. Theorem 12.6 shows that we may 
let this fixed polynomial be Tn+I· Therefore the approximation Rnf 
satisfies the characterization condition, given in Theorem 7 .2, for the best 
minimax approximation from (fJ n to f. 
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When we claimed that the norm of the operator Rn is quite small, we 
did not have in mind the operator norm that is induced by the definition 

I 

llfll = (f, /)2, I E <€[ -1, l], (12.44) 

where the scalar product has the value (12.40). This case is rather 
uninteresting, because equation (11.14) and the fact that Rn is a pro­
jection imply that llRnll is one. Instead, the following theorem gives the 
value of llRnll that is induced by the maximum norm 

llflloo = max \/(x)I, /E <€[-1, l]. (12.45) 
-l~x:s;;l 

Theorem 12. 7 
The norm of the operator Rn has the value 

= - 1-+ ~ I .!. tan (_j!!__) 
2n+l 1Ti=d 2n+l' 

(12.46) 

with respect to the oo-norm (12.45). 

Proof. Not all of the steps of the proof are given explicitly, because the 
details are rather tedious. First we let the functions {t/>i; j = 0, 1, ... , n} in 
the definition (12.39) be the Chebyshevpolynomials{7j;j = 0, 1, ... , n}. 
We make the change of variable x =cos 8 in the integrals that occur, and 
we calculate the denominators of expression (12.39) analytically. Thus, 
for all values oft in [O, 1T ], we obtain the equation 

2 n J"' (RJ)(cos t) = 1T i~~ 
8

=
0 

cos (j8)/{cos 8) d8 cos (jt) 

2 J"' n = 1T 
8

=
0 

/(cos 8) i~~ cos (j8) cos (jt) d8, (12.47) 

where the prime on the summation sign indicates that the first term is 
halved. The required value of llRn 11 is the least upper bound on expression 
(12.47) subject to the conditions 0 :o;;;; t :o;;;; 1T and llflloo :o;;;; 1. By taking the 
supremum over f, we deduce the value 

(12.48) 

We express the product cos (j8) cos (jt) in terms of cos [j(8 + t)] and 
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cos [j(e- t)], and we extend the range of integration. Hence we obtain 
the bound 

llRnll ~ m~x 2~ L~-,. {Ii~ cos [j(e + t)]I 
+ j i~ cos [j(e-t)]I} de. (12.49) 

By periodicity the right-hand side of this inequality is independent of t. 
Therefore, because expressions (12.48) and (12.49) are equal when t = 0, 
we have the identity 

(12.50) 

The first part of expression (12.46) now follows from the elementary 
equation 

£· cos (je) = t sin [(n + tWJ/sin (te). (12.51) 
i=O 

We see that this result implies that the zeros of the integrand (12.50) 
occur when e has the values 

ek = kn/(n +t), k = 0, 1, ... ' n. (12.52) 

We let en+t = Tr, in order to obtain from equation (12.50) the expression 

2 n f 8k+1 n llRnll = - I ( - l)k I' cos (je) de. (12.53) 
1T k=O 8k 1=0 

Thus, by analytic integration, by exchanging the orders of summation, 
and by giving special attention to the contribution from j = 0, the equa­
tion 

llRnll = - 1-+ I :/:--- I ( - l)k[sin (je)J!:+ 1 

2n + 1 j=l f1T k=O 

1 ;. 4 ;. ( l)k+l . ( jk1T) =--+"'-;-- "' - sm --1 
2n + 1 i=l f1T k=t n +:z 

(12.54) 

is satisfied. By expressing the sine terms of this equation as imaginary 
parts of exponential functions, one can deduce the identity 

n k+l , ( jk1T) 1 ( j1T ) L ( - 1) sm -----r = 2 tan -2 - 1 . 
k=t n+2 n+ 

(12.55) 

Therefore the last line of expression (12.46) is implied by equation 
(12.54). D 

Some values of llRnll were calculated from equation (12.46). They are 
given in Table 12.1. They are so similar to the norms that are listed in the 
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last column of Table 4.5, that the norms do not provide a good reason for 
preferring the operator Rn to an interpolation method for calculating a 
polynomial approximation to a function f. The main reason for our 
interest in the values of llRn II is given in Chapter 17. 

12 Exercises 
12.l Let {</>;EPP;;j=O, 1, 2, ... } be a sequence of orthogonal poly­

nomials, and let U°;k; k = 1, 2, ... , j} be the zeros of <f>;. By 
considering equation (11.43) when {x = g;k; k = 1, 2, ... , j}, 
prove by induction that, for all positive integers j, there is a zero 
of <f>; in each of the intervals {(g;+1 k, g;+1 k+1); k = 1, 2, ... , j}. 

12.2 Calculate the coefficients w0 , wi. x0 and x1 that make the 
approximation 

1 1 xf(x) dx = wof(xo) + wif(x1) 

exact when f is any cubic polynomial. Verify your solution by 
letting f be a general cubic polynomial. 

12.3 Let f be a function in ce<2k+2>[a, b ], and let the approximation 
(12.8) be a Gaussian quadrature formula. Therefore the error of 
the approximation is unchanged if a polynomial p of degree 
(2k + 1) is subtracted from/. By lettingp be the function in PP2k+1 
that satisfies the conditions {p(xi) = f(xi); i = 0, 1, ... , k} and 
{p'(xi) = f'(xi); i = 0, 1, ... , k}, and by using an extension of 
Theorem 4.2, prove that the error has the value r w(x) }\ (x-x;)2dxi2k+Z)(g)/(2k+2)!, 

where g is a point of [a, b ]. 
12.4 Use equation (12.36) to generate the first six Hermite poly­

nomials, and verify that they satisfy a three-term recurrence 
relation of the form that is given in Theorem 11.3. 

Table 12.1. Some values of llRnll 

n llRnll n llRnll 

2 1.6422 12 2.2940 
4 1.8801 14 2.3542 
6 2.0290 16 2.4065 
8 2.1377 18 2.4529 

10 2.2234 20 2.4945 
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12.5 Let p be a function in rffJk. and let n be an integer in the range 
[O, k -1]. Let the telescoping procedure of Section 8.4 be ap­
plied (k - n) times to derive from p a polynomial p in rffJ n· Prove 
that p is the function Rnp, where the operator Rn is defined in 
Section 12.4. 

12.6 For any fin <€[-1, 1], let Lnf be the polynomial in r1'n that 
interpolates f at the Chebyshev points (4.27). Given that the 
largest value of the sum 

-1,,;;x:;;;; 1, 

occurs when x = -1and1, where lk is the cardinal function (4.3), 
deduce that the oo-norm of the operator Ln has the value 

1 n [ (j +t)7T] llLnlloo = - 1 .L tan 2( 1) · n+ i=o n+ 

12.7 Let {</>iErffJi;j=O, 1, 2, ... } be a sequence of polynomials that 
are orthogonal with respect to a positive integrable weight 
function {w(x); a :;;;x:;;;; b}, and let ujk; k = 1, 2, ... 'j} be the 
zeros of <Pi· Deduce from the theory of Gaussian quadrature that, 
if p is in rffJi> then the inequality 

b b 

{ [p(x)]2 w(x) dx:;;;; { w(x) dx 1 ,.,~!~ 1 [p(~i+lk)]2 

is satisfied. For any function f in <€[a, b ], let pj be the best 
minimax approximation from rffJi to f, let Lf be the element of rJ>; 

that interpolates f at the zeros of </>;+i. and let p be the poly­
nomial (pj - LJ). Thus, using the triangle inequality 

II!-LJllz:;;;; II! - pj 112 + llPllz. 
obtain the 'Erdos Turan theorem' 

b 

lim f [f(x)-(L;f)(x)] 2w(x) dx = 0. 
J-"'OO a 

12.8 Let [a, b] be the interval [ -1, 1], and let w be the function 
{w(x)=x 2 ; -l:;;;x:;;;l}. Prove that, if k is even, then the 
function 

1 dk+l 
<f>k+1(x)=2 d k+l [(l-x 2)k+1(1+x 2)], 

x x 

is in r1'k+i. and satisfies the orthogonality condition (12.19). Find 
a similar definition of a polynomial <f>k+1 that satisfies equation 
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(12.19) when k is odd. Check that your definition is correct when 
k=3. 
Prove that the Legendre polynomials 

di 2 . 
</Ji(x)= dxi[(x -1)1], -los;xos;l, j = 0, 1, 2, ... , 

satisfy the three-term recurrence relation 

<Pi+1(x) = (4j +2)x</Ji(x)-4/<Pi-1(x), -1<S;xos;1. 

A good method of solution comes from expressing each term in 
the form 

d~;~1 [(x 2 - l)i-l x quadratic polynomial]. 

The middle term has this form, because the Leibniz formula for 
calculating the jth derivative of a product gives the identity 
dj-l d . dj-l . 

dxi-1 {dx [x(x 2 - lY]} = x<Pi(x) + j dxi-l [(x 2 -1)1]. 

12.10 Prove that the Legendre polynomials, defined in Exercise 12.9, 
satisfy the equation 

(x 2 - l)<P j (x) = jx</Ji(x )- 2j2 <Pi-1 (x ), -1os;xos;1. 

A convenient expression for the term (x 2 - l)<P j (x) can be 
obtained by regarding the right-hand side of the definition 

j+l 
<Pi+l (x) = d~i+l [(x 2 - l)i+t] 

2 2 . 
as the (j + l)th derivative of the product (x -1) x (x -1)1. 
Investigate extensions of the formulae of this exercise and the 
previous one to the Jacobi polynomials that are defined in 
Section 12.3. 
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Approximation to periodic functions 

13.1 Trigonometric polynomials 
In many branches of science and engineering, periodic functions 

occur naturally, and there is a need to estimate periodic functions from 
measured data. Because the variable x may be scaled if necessary, we 
assume that the functions f that occur are in the space <f6 2 11", which is the set 
of all continuous functions from 9i'l 1 to 9i'l 1 that satisfy the periodicity 
condition 

f(x +27T) = f(x), -oo<x <oo. (13.1) 

In approximation calculations the set .st1 of approximating functions is 
composed usually of functions of the form 

q(x)=!ao+ £ [aicos(jx)+bisin(jx)], 
i=l 

-oo<x < oo, 

(13.2) 

where {ai; j = 0, 1, ... , n} and {bi; j = 1, 2, ... , n} are real parameters. If 
n is fixed, then .st1 is a linear subspace of <f62 11" of dimension (2n + 1), which 
we denote by 21.n. It is called the space of trigonometric polynomials of 
degree n. The actual degree of the trigonometric polynomial (13.2) is the 
greatest integer j such that at least one of the coefficients ai and bi is 
non-zero. 

It is important to note that, if j and k are non-negative integers whose 
sum is not greater than n, then the function {cosi x sink x; -oo < x < oo} is 
in 22n. Thus, if p is in 21.m and q is in 21.n. then the product function 
{ p (x )q (x); -oo < x < oo} is in 21.m +n· We note also that the zero function is 
the only element of 21.n that has more than 2n zeros in the interval [O, 27T ). 

It is usual to calculate an approximation from 21.n to f by a least squares 
algorithm. The main methods that are used are studied in this chapter. 
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First, however, it is proved that, by choosing n to be sufficiently large, it is 
possible to approximate any continuous periodic function to arbitrarily 
high accuracy by a trigonometric polynomial. 

Theorem 13.1 
For any fin <g2,,, and for any e > 0, there exists a polynomial of 

the form (13.2) that satisfies the condition 

\\f-q\\oo,,;;e, (13.3) 

where n is a finite integer. 

Proof. The function f is the sum of the even and odd functions f i and h 
that are defined by the equations 

fi(x) = ![f(x) + f(-x}], 

fi(x) = ![f(x)-f(-x}], 
-oo<x <oo}. 
-oo<x <oo 

(13.4) 

We show that fi can be approximated to accuracy !e and that fi can be 
approximated to accuracy ie. Thus inequality (13.3) is satisfied when q is 
the sum of the two approximations. 

In order to find a suitable approximation to fi. we let gibe the function 

gi(cosx)=fi(x), O,,;;x,,;;1T, (13.5) 

which is in <g[-1, 1]. Hence, by Theorem 6.1, there is an algebraic 
polynomial Pi that satisfies the condition 

\gi(t)-pi(t)\,,;;!e, -1,,,;r,,;;l. (13.6) 

It follows that the inequality 

\gi (cos x )-Pi (cos x )\,,;; !e, (13.7) 

holds. We define the function {qi (x); -oo < x < oo} to be the trigo­
nometric polynomial {pi(cos x); -oo < x < oo}. Hence the required bound 

\\fi -qi\\oo,,;; !e (13.8) 

is a consequence of expressions (13.5) and (13.7), and the fact thatfi and 
qi are even functions in <g2 ,,,. 

In order to obtain a suitable approximation to fi we note that the values 
fi(O) and /2(,,,.) are both zero. We let x 0 be the largest number in the 
interval [O, !,,,. ] such that the inequality 

lf2(x)\,,;;!e, O,,;;x,,;;xo, (13.9) 

is satisfied, and we let xi be the smallest number in [!7T, 7T] that is allowed 
by the condition 

\h(x )\,,;; !e, (13.10) 
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Further, h is the even function in f(62,,, that takes the values 

1
fi(xo)/sinxo, O:s;;x:s;;xo, 

f3(x) = fi(x)/sin x, Xo ,,-;;; x ,,-;;; Xi, 
fi(x1)/sin xi, x1:s::x:;-;;;1T, 

(13.11) 

on [O, 1T ]. By applying to h the method that was used to approximate fi. it 
follows that there is an even trigonometric polynomial, q3 say, such that 
the inequality 

llh- q3lloo ,,-;;; l-e (13.12) 

holds. We show that the function {q2(x)=sinxq3(x); -oo<x<oo} is a 
sufficiently accurate approximation to f 2 • When x is in [O, x 0 ] we have the 
bound 

ifi(x )-q2(x )j = ifi(x )- sin x q3(x )j 

,,-;;; lf2(x )j + lsin x h(x )j +sin x ih(x )- q3(x )j 

(13.13) 
where the last line depends on the definitions of x0 , h and q3 • Similarly 
this bound is satisfied when x is in [xi, 1T ]. Moreover, when x is in [x0 , x1], 
the inequality 

lf2(x )-q2(x)j =sin xih(x)-q3(x)j 

(13.14) 

holds. Because these remarks give the condition 

ifi(x)-q2(x)j:s;;ie, O:s;;x:;-;;;1T, (13.15) 

the required bound 

llfi - q2lloo ,,-;;; ie (13.16) 

follows from the fact that fi and q2 are both odd functions in Cf62 ,,,. The 
theorem is proved. 0 

13.2 The Fourier series operator Sn 
Sn is an operator from Cf6 2,,, to 22n. For each fin Cf6 2,,,, the function 

Snf is defined to be the trigonometric polynomial that minimizes the least 
squares distance function 

1 

d(f, q) = [f_: {f(x)-q(x)}2 dx r. q E 22n. (13.17) 

Therefore Sn is a linear projection. It has several interesting theoretical 
properties. For example, it is proved in Chapter 17 that llSnlloo is less than 
or equal to the norm of any other linear projection from Cf62 ,,, to 22n that 
leaves functions in 22n unchanged. Moreover, almost all of the usual 
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algorithms for calculating trigonometric approximations are derived 
from Sn. 

In order to apply the results of Chapter 11 to Sm we let (f, g) be the 
scalar product 

(f, g) = f_1TJ(x)g(x) dx, (13.18) 

for all functions f and g in <fi2 ,,n which is consistent with the distance 
function (13.17). We note that the orthogonality conditions 

L: cos (jx) cos (kx) dx = 0, j ¥:- k 

L: sin (jx) sin (kx) dx = 0, 

J :1T cos (jk) sin (kx) dx = 0 

(13.19) 

are satisfied, where j and k are any non-negative integers, which give 
the following expressions for the coefficients of the trigonometric 
polynomial Snf. 

Theorem 13.2 
The trigonometric polynomial (13.2) minimizes the distance 

function (13.17) if and only if the coefficients have the values 

1 f 1T ai ='TT _J(O) cos (jO) do, j=O, 1, ... , n, (13.20) 

and 

1 f 1T bi= - f(O) sin (jO) do, 
'TT -1T 

j = 1, 2, ... , n. (13.21) 

Proof. The orthogonality conditions (13.19) and Theorem 11.2 imply 
that the required coefficients satisfy the equations 

!ao = (f, cos {O.})/(cos {O.}, cos {O.}), (13.22) 

ai = (f, cos {j.})/(cos {j.}, cos{j.}), j= 1, 2, ... , n, (13.23) 
and 

bi= (f, sin {j.})/(sin {j.}, sin {j.}), j = 1, 2, ... , n, (13.24) 

where cos {j.} and sin {j.} are the functions {cos (jx); -oo < x < oo} and 
{sin (jx); -oo<x <oo} respectively. The values (13.20) and (13.21) 
follow from the definition of the scalar product, where each denominator 
is integrated analytically. D 
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Because Theorem 13 .1 implies that the least value of expression 
(13.17) tends to zero as n tends to infinity, one expects the sequence of 
trigonometric polynomials {Snf; n = 1, 2, 3, ... } to converge uniformly to 
f, except perhaps in some pathological cases. However, the convergence 
properties are not shown well by Theorem 13.2. Therefore another 
expression for Sn is derived that shows explicitly the relation between Snf 

and/. 

Theorem 13.3 
The value of Snf at the point x is the expression 

(Snf)(x) = _!_ J., sin [~n ~ !)8] f(x + e) de. 
tr _., 2 sm (2e) 

(13.25) 

Proof. By substituting the values (13.20) and (13.21) in equation (13.2), 
and by reversing the order of integration and summation, we deduce the 
identity 

1 J., { n 
(Snf)(x)= 7r _., !+;~i [cos(jx)cos(je) 

+sin (jx) sin (je)] }tee) de 

= !L:{t+i1 cos[j(e-x)]}f(e)de 

=.; f_.,., [ t+ ;t cos (je) ]tcx + e) de 

1 J., sin [(n +!)e]f( ) d 
=- . 1 x+e e, 

tr -., 2 sm (2e) 
(13.26) 

where in the fourth line we have changed the variable of integration by the 
addition of the parameter x, and where the last line depends on equation 
(12.51). This is the required result. D 

It is interesting to consider equation (13.25) when n tends to infinity. If 
a and /3 are any two fixed points of the range [ -tr, tr ], and if the interval 
[a, /3] does not contain zero, then the rapid periodic oscillations of the 
function {sin [(n + !)e]; -tr,;;;; e,;;;; tr} cause the integral 

1 I (3 • 1 1cx + 8) 
- sm[(n+2)e] 2 . (1 ) de 
1r a sm 2e 

(13.27) 

to tend to zero. It follows that (Snf)(x) tends to be dominated by the 
behaviour of {f(x + e); -tr,;;;; e,;;;; tr} when lei is small. It therefore seems 
plausible that the limit as n tends to infinity of expression (13.25) is 
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unchanged if f(x + 8) is replaced by f(x). When this suggestion is valid, 
then it is easy to deduce that {(Snf)(x); n = 1, 2, 3, ... } converges to f(x), 
but it is shown in Chapter 17 that there exist functions fin C€2 ... such that 
the sequence of maximum errors {llf - Snflloo; n = 1, 2, 3, ... } fails to tend 
to zero. In Chapter 16, however, it is proved that {Snf; n = 1, 2, 3, ... } 
does converge uniformly to f, provided that some mild smoothness 
conditions are satisfied. 

We may use Theorem 13.3 to obtain the value of llSnlloo· Expression 
(13.25) shows that, if f is in Cff2 ... and if llflloo is not greater than one, then 
the least upper bound on ICSJ)(x)i has the value 

_!_ J ... jsin [~n ~!)8]1 d 8. 
1T -... 2 sm (z-8) 

(13.28) 

Because this expression is independent of x, it must be equal to llSnlloo. It 
follows from Theorem 12.7 that the equation 

n = 1, 2, 3, ... , (13.29) 

is satisfied. Therefore Theorem 3.1 and Table 12.1 imply that when 
n = 20, for example, the error llS20f- flloo is within the factor 3.4945 of 
the least maximum error that can be achieved when f is approximated by 
a trigonometric polynomial of degree twenty. Results of this kind help to 
justify the attention that is given to the approximation operator Sn. 

The coefficients (13.20) and (13.21) of the trigonometric polynomial 
Snf have some useful properties. We see that ai and bi are independent of 
n. We derive some other properties from the equation 

II/ - Snfll~ + llSnfll~ =II/I@, (13.30) 

which is a special case of equation (11.14). Because analytic integration 
and the orthogonality conditions (13.19) imply that the 2-norm of the 
function (13.2) has the value 

1 

11q11i=[i1Ta~+1T it ca7+b7)r. c13.31) 

it follows from equation (13.30) that the coefficients (13.20) and (13.21) 
satisfy the condition 

i1Ta~+1T ii (aI+bI)~L: [f(x)fdx, (13.32) 

which is known as 'Bessel's inequality'. Hence the sequences {ai; j = 
0, 1, 2, ... } and {bi; j = 1, 2, 3, ... } tend to zero. Further, the difference 
between the two sides of expression (13.32) is a measure of the accuracy 
of the approximation Snf to f, because equation (13.30) shows that the 
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difference is equal to II/- Sn/II~- Theorem 13.1 and the definition of Sn 
imply that the sequence {llf-Snflb; n = 1, 2, 3, ... } converges to zero. 
Therefore inequality (13.32) becomes an equality in the limit as n tends 
to infinity. 

13.3 The discrete Fourier series operator 
It happens often in practice that, instead of knowing the value of 

f (x) for all x in [-'TT', 1T' ], the function is given on only a discrete set of 
points. Even when f (x) can be calculated for any x, it may be necessary to 
make numerical approximations to the integrals (13.20) and (13.21). 
Therefore, in this section, we consider the important problem of obtain­
ing an approximation from !!ln to a function f in C€2 ,,., using only the 
equally spaced function values 

t(2~k). k = 0, 1, ... , N -1. (13.33) 

By periodicity the value of f(27rk/ N) is known for all integral values of k. 
There is no loss of generality in supposing that f (O) is available, because, if 
we are given the function values 

k=O, 1, ... ,N-1, (13.34) 

for some constant a, then the change of variable () = x - a can be made. 
The data (13.34) are suitable for the approximation of the function 
{!(8 +a); -oo < () < oo}, which gives a trigonometric polynomial in (). 
Hence the approximation is also trigonometric polynomial in x. 

The 'discrete Fourier series approximation' from 22n to the function f is 
obtained from the data (13.33). It has the form (13.2), where the 
coefficients {ai; j = 0, 1, ... , n} and {bi; j = 1, 2, ... , n} are defined by 
replacing the integrals of expressions (13.20) and (13.21) by estimates of 
the form 

1 J"' 2 N-1 ~21T'k) - g(8)d8=- I - . 1T' --rr N k=O N (13.35) 

Hence the coefficients have the values 

_ 2 N~l t(21T'k) (21T'jk) a·-- 1... -- cos --
1 N k=o N N ' 

j=O, 1, ... , n, (13.36) 

and 

b _ 2 N~l t(21T'k) . (21T'jk) 
·-- 1... -- sm --
1 N k=o N N ' 

j = 1, 2, ... , n. (13.37) 
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Section 13.4 describes a way of organizing the calculation of these 
coefficients, so that they can all be found in only of order N log2 N 
operations, provided that N is a power of two. The technique is so 
successful that it is applied frequently for very large values of N and n. 
The next theorem shows that the estimate (13.35) has some remarkably 
strong properties. 

Theorem 13.4 
If g is the function {cos (jO); -oo < (} < oo}, where j is any integer 

that is not a positive or negative integral multiple of N, or if g is the 
function {sin (jO); -oo < (} < oo}, where j is any integer, then the approx­
imation (13.35) is exact. 

Proof. It is clear that the estimate (13.35) is exact when g is a constant 
function. In all other cases that are given in the statement of the theorem, 
the left-hand side of the estimate is zero, and adding or subtracting a 
multiple of N to the integer j does not alter the terms of the sum (13.35). 
Hence it is sufficient to establish the equations 

N-1 (21Tjk) I cos -- =O, 
k=O N 

j=l,2, ... ,N-1, (13.38) 

and 

N~l • (21Tjk) 0 
L. sm -- = 

k=O N , 
j= 1, 2, ... ,N. (13.39) 

Expression (13.38) holds, because, by substituting(}= 2TTj/ N and n = N 
in equation (12.51), we find the identity 

t+ NI 1 cos ( 27Tjk) = hin [(2N + l)TTj/ N]/sin (TTj/ N) 
k=O N 

= t, j = 1, 2, ... , N -1. (13.40) 

Expression (13.39) follows from the symmetry properties of the sine 
function. 0 

Another method that suggests itself, for calculating an approximation 
from 22.n to a function f in Cf!2 "' from the function values (13.33), is to 
minimize the sum of squares 

q E 22.n. (13.41) 

In this case it is appropriate to define the scalar product 

(13.42) 
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between periodic functions that are defined on the point set 
{21Tj/N;j integral}. Minimizing expression (13.41) determines the 
coefficients of q uniquely only if the number of coefficients does not 
exceed the number of data. Therefore we assume that the inequality 

n<!N (13.43) 

is satisfied. Because expressions (13.38) and (13.39) imply the ortho­
gonality conditions 

NII cos (27Tjk) cos (2TTlk) = 0, j ~ l 
k=O N N 

N~I . (2TTjk) . (21Tlk) 
1... sm -- sm -- = 0 

k=O N N ' 
j~l (13.44) 

NII cos (2TTjk) sin (2TTlk) = 0 
k=O N N 

when the integers j and l are in the interval [O, !N -!], it is straightfor­
ward to obtain from Theorem 11.2 the function in 22n that minimizes 
expression (13.41). We find that its coefficients have the values (13.36) 
and (13.37). Therefore this method of calculating q is equivalent to the 
discrete Fourier series method. Hence, if n < !N, then the discrete 
Fourier series operator is a projection, and it maps functions in 22n into 
themselves. However, these projection properties are not obtained if 
n;;;,:!N. 

13.4 Fast Fourier transforms 
In this section we consider the calculation of the coefficients 

(13.36) and (13.37), when N is a power of two, and when the value of n is 
close to !N. If each sum is evaluated separately, then the number of 
computer operations is of order N 2 , but we can do better. For example, 
consider the two coefficients ai and atN-i· Because the second coefficient 
has the value 

2 N-I (21Tk) k (21Tjk) 
atN-i= N k~of N (-1) cos N , (13.45) 

it follows that, if we sum separately over the odd and the even values of k 
in expression (13.36), then we can obtain both ai and a~N-i using little 
more work than the calculation of ai alone. The FFT (fast Fourier 
transform) method is a development of this remark. 

In order to describe it, we let a[m, a, j] and b[m, a, j] be the sums 

2 m-1 (21Tk ) (21Tjk) a[m,a,j]=- L f -+a cos --
m k=o m m 

(13.46) 
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and 

2 m-1 (27Tk ) , (27Tjk) b[m,a,j]=- L f -+a sm -- . 
m k=O m m 

(13.47) 

They are useful because only a small amount of work is required to obtain 
a[2m, a, j] and b[2m, a, j] from the numbers a[m, a, j], a[m, a+ 
7r/m,j], b[m,a,j] and b[m,a+'TT/m,j], and because they are the 
required coefficients when m =Nanda= 0. The value of a[2m, a, j] is 
defined by the equation 

1 2m-1 (1Tk ) (7Tjk) a[2m, a,j]=- L f -+a cos -
m k=o m m 

1 m~l t(21Tk ) (21Tjk) =- 1... --+a cos --
m k=o m m 

1 m-1 (21Tk 1T ) (27Tjk 'TT]) +-I! -+-+a cos --+-
m k=o m m m m 

= !a[m, a, j]+! cos (:)a[m, a+ 'TT/m, j] 

-t sin (:)b[m, a +7r/m, j]. 

Similarly the identity 

b[2m, a,j]=!b[m, a,j]+hin (:)a[m, a +7r/m,j] 

+!cos (:)b[m, a+ 'TT/m, j] 

(13.48) 

(13.49) 

is satisfied, which is used to evaluate b[2m, a, j]. It is important to note 
that the definitions (13.46) and (13.47) imply the equations 

a[m, a,~]: :[m, a, m - ~]. }• (1 3.50) 
b[m,a,1]- b[m,a,m J] 

and that b[m, a, j] is zero when j = !m. 
The FFf method begins by setting the numbers 

a[l, a, OJ= 2f(a ), (13.51) 

where the values of a are the numbers in the set {27rk/ N, k = 
0, 1, ... , N -1}. Then an iterative process is applied, where each itera­
tion depends on the value of m, which initially has the value one. At the 
beginning of each iteration the numbers {a[m, a,j]; O,;;;j,;;;!m} and 
{b[m,a,j];O<j<!m} are available, where the second set is empty 
until m :;.. 4, and where the range of a is the set {27rk/ N; k = 0, 1, ... , 
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N/m -1}. The iteration uses equations (13.48), (13.49) and (13.50) to 
calculate the coefficients{a[2m, a,j]; Oo;;;j,;;; m} and{b[2m, a, j]; O<j < 
m}, where the newrangeofa istheset{27Tk/N; k = 0, 1, ... , N/2m -1}. 
Because the term (a+ 7T/ m) occurs in the formulae (13.48) and (13.49), 
all the data that are available at the beginning of the iteration are 
necessary. All terms that are not available explicitly as data are either 
zero or are obtained from equation (13.50). At the end of the iteration the 
value of m is multiplied by two and is tested. If the new value is less than 
N, then a new iteration is begun. Otherwise, when m = N, all the required 
values of the coefficients are found. Because the number of computer 
operations of each iteration of this process is of order N, the total work of 
the FFf method is only of order N log2 N. 

The FFT method can be extended to the case when N has the value 

N = rirz ... r., (13.52) 

where the terms {rs; s = 1, 2, ... , t} are any integers that are greater than 
one. Then t iterations of a process are applied, each iteration being 
similar to the one that is described in the previous paragraph. Initially the 
parameters (13.51) are set as before, and m is equal to one. The later 
values of m are defined by multiplying m by rs at the end of each iteration, 
where s is the number of the iteration. At the start of the sth iteration, 
the numbers {a[m,a,j];Oo;;;jo;;;tm} and {b[m,a,j];O<j<tm} are 
known, where, as before, the range of a is the set {27Tk/ N; k = 0, 1, ... , 
N/m -1}. The iteration calculates the terms {a[rsm, a,j]; Oo;;;jo;;;trsm} 
and {b[rsm,a,j];O<j<trsm}, where the new range of a is the 
set {27Tk/N; k =O, 1, ... ,N/(r5m)-1}. Hence, after t iterations, the 
required coefficients are found. 

In order to calculate a[rm, a, j] and b[rm, a, j], we replace m by rm in 
the definitions (13.46) and (13.47). The sums over k are split into r parts, 
where in each part the value of k (modulo r) is constant. Thus we find 
expressions for a[rm, a,j] and b[rm, a, j], in terms of a[m, a +27Tl/rm, j] 
and b[m,a+27Tl/rm,j] where I takes the values /=0, 1, ... ,(r-1), 
which are suitable for the change to the range of a that is made by the 
iteration. Because the greatest new value of j is trsm, it happens some­
times that j exceeds m. It is therefore important to note that the 
definitions (13.46) and (13.47), not only provide the equations (13.50), 
but also they give the identities 

a[m, a,~+ m]: a[m, a,~]}· 
b[m, a,J +m]- b[m, a, J] 

(13.53) 
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It is helpful to work through a simple example, in order to verify that all 
the formulae that are needed by the general FFT method have been 
mentioned. 

13 Exercises 
13.1 Let j and n be positive integers such that j,,,,;; 2n. Show that there 

is a non-zero function in 2l" that has zeros at any j distinct points 
of the interval [O, 27T). A convenient method is to express the 
required function as the product of functions from 2l 1 • Hence 
develop a procedure, that is analogous to Lagrange inter­
polation, for calculating the function q in 2ln that satisfies the 
conditions {q(g;) = f(gi); i = 0, 1, ... , 2n} where the function 
values {f(g;); i = 0, 1, ... , 2n} are given, and where the points 
Ui; i = 0, 1, ... , 2n} are all different and are all in [O, 27r). 
Further, prove that no non-zero element of 2ln has more than 2n 
zeros in [O, 27T ). 

13.2 Let f be the odd function in Cfi2 .,.. that satisfies the equation 

f(x) = 1-(4/ 7T 2)(x -!7T)2 , 0,,,,;; x,,,,;; 1T. 

Calculate the Fourier series approximation to f, and deduce the 
identity 

1 + (t)6 + (~)6 + <+)6 + ... = 1T6 /960 

from Bessel's inequality. 
13.3 Let n be a fixed positive integer, let S[n, N] be the linear 

operator from Cfi2 .,.. to 2ln that is equivalent to the discrete Fourier 
method of Section 13.3, and let f be any function in Cfi2 .,... Prove 
that the limit 

lim llS[n, N]f - Sn/lloo = 0 
N-+oo 

is obtained, where Sn is the Fourier series operator that is defined 
in Section 13.2. 

13.4 Given the function values /(0) = 0.2,f(!7T) = 0.25,f( 1T) = 1.0 and 
/(1!7T) = 0.5, use the discrete Fourier method to obtain an 
approximation to f of the form 

q(x) = !a0 +a1 cos x +b1 sin x +a2 cos (2x), 

Let ij be the function 

-oo<x<oo. 

ij(x) = !a0 +a1 cos x +b 1 sin x +!a2 cos (2x), -oo<x <oo. 

Explain why ij interpolates the data but q does not. 
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13.5 Let S[n, N] be the operator that is defined in Exercise 13.3, and 
let DA be the operator from 1(62-rr to 1{6z,,, such that, for any f in 
%,,,, DAf is the function 

(DA[)(x) = f(x +A), -oo<x <oo. 

Prove that S[n, 2N] is the operator 

S[n, 2N]= !{S[n, N]+D_,,,fNS[n, N]D,,,;N}. 

Relate this equation to the FFT method. 
13.6 Apply the FFT method to calculate an approximation in 223 to 

the data 

f (O) = -0.112 178 f( 'TT) =-0.321412 

f(TT/4) 1.079 659 /(57r/4) = -0.528 113 

f( 'TT/2) 2.172667 /(37r/2) = -0.562 326 

f(37r/4) = 0.376 607 f(77r/4) = -0.466 261, 

using the results of the previous two exercises to check your 
calculation. 

13.7 State and prove a characterization theorem for the best minimax 
approximation from 22n to a function fin 1(62 ,,,, that is analogous 
to Theorem 7.2. 

13.8 Let f be a function in 1(62 ,,, that takes the values 

f(x) =Ix -gl, g-e ==;;x ==;;g+e, 

where g is a fixed number, and where e is a positive constant that 
is much less than TT. Prove that the limit 

is obtained, and that, if f satisfies the Lipschitz condition 

lf(x1)-f(xo)I::;:: Llx1 - xol 

for all real numbers x0 and xi, where L is a constant, then the 
difference lf(g)-(Snf)(g)I is of order 1/ n. 

13.9 Deduce from Exercises 13.3 and 13.5 that the inequality 
llS[n, NJlloo ~ llSnlloo is satisfied. 

13 .10 Prove the analogy of Theorem 6.2 for trigonometric approxima­
tion, namely that, if {Gk; k = 1, 2, 3, ... } is a sequence of linear 
monotone operators from 1(6 2 ,,, to 1(6 2 ,,,, then the sequence 
{ Gd; k = 1, 2, 3, ... } converges uniformly to f for all f in 1(6 2,,,, if 
and only if it converges uniformly for the functions {f (x) = 
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1;-oo<x<oo}, {f(x)=cosx;-oo<x<oo}, and {f(x)= 
sin x; -oo < x < oo}. By establishing that the Fejer operator 

1 
Gk =k[So+S1 + ... +Sk-1] 

is monotone, where Sn is still the Fourier series operator, deduce 
another proof of Theorem 13.1. 



14 

The theory of best L 1 approximation 

14.1 Introduction to best L1 approximation 
In Chapter 1 we noted that a best Li approximation from a 

subset .sll of C(?[a, b] to a function f in C(?[a, b] is an element of .sll that 
minimizes the expression 

b 

ltf-plli = L lf(x)-p(x)I dx, p E .sl/. (14.1) 

The theory that is given in this chapter is for the frequently occurring case 
when .sll is a linear space. Necessary and sufficient conditions for the 
function p* in .sll to be a best Li approximation to fare given in the next 
section. They have the interesting property that all the dependence on f is 
contained in the sign function 

{
-1, f(x)<p*(x) 

s*(x)= 0, f(x)=p*(x) 

1, f(x)>p*(x), 
a ~x ~b. (14.2) 

It follows, therefore, that if p* is a best approximation to f, and if f is 
changed in any way that leaves the sign function (14.2) unaltered, then p* 
remains a best approximation to f. A similar result holds in the discrete 
case, where we require the function in .sll that minimizes the expression 

m 

L lf(x,)- p(x,)I, p E .sl/, (14.3) 
t=i 

where {x,; t = 1, 2, ... , m} is a set of data points in [a, b]. This property 
explains the statement, made in Chapter 1, that, if there are a few gross 
errors in the data {f(x1); t = 1, 2, ... , m}, then the magnitudes of these 
errors make no difference to the final approximation. 

In order to introduce the characterization theorem, we consider first 
the approximation of a strictly monotonic function f in C(?[a, b ], by a 
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constant function p, where the value of the constant is to be determined. 
Thus .stl is a linear space of dimension one. The value of expression (14.1), 
when p is the function {p(x)=f(g); a:o;;x:o;;b}, is the total area of the 
shaded regions of Figure 14.1. We require the value of g that minimizes 
this area. The figure shows that, if we replace p by the function {p(x) = 
f(g) + s; a ,,-;; x,,;; b }, where s is small, then the change to the area of the 
left-hand shaded region is approximately s (g- a), and the change to the 
area of the other shaded region is approximately - s (b - g), which gives a 
total change of about 2s(g-![a +b]). Therefore, if g<![a +b], we can 
reduce llf-Pll1 by letting s be positive, and, if g >![a+ b ], there exists a 
negative value of e that reduces the error. It follows that the required 
approximation is the constant function {p(x) = f(![a + b ]); a,,;; x,,;; b }. 
This approximation is optimal because the measures of the sets {x: f (x) < 
p (x)} and {x: f (x) > p (x)} are equal. Thus we have an example of a 
condition for a best approximation that depends just on the sign of the 
error function. 

Another useful property of this example is that, if we know in advance 
that f is monotonic, then the calculation of f(x) at the single point 
x =!(a+ b) provides all the data that are needed to determine the best 
approximation. It is shown in Section 14.3 that this property generalizes 
to the case when .stl satisfies the Haar condition. 

14.2 The characterization theorem 
The following theorem gives the basic necessary and sufficient 

condition for the function p* to be a best L 1 approximation from .stl to f. It 
is an extension of the example of the last section. It includes a condition 

Figure 14.1. The value of llf-pll1· 
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on the set of zeros of the function {f (x) - p * (x); a ~ x ~ b}, that fails only 
in pathological cases. 

Theorem 14.1 
Let .s4 be a linear subspace of <e[a, b]. Let f be any function in 

<e[a, b ], and let p* be any element of d, such that the set 

~ = {x: f(x) = p*(x), a ~x ~ b} (14.4) 

is either empty or is composed of a finite number of intervals and discrete 
points. Then p* is a best Li approximation from .s4 to f, if and only if the 
inequality 

b IL s*(x)p(x)dxl~Llp(x)ldx (14.5) 

is satisfied for all p in d, where s* is the function (14.2). 

Proof. If condition (14.5) does not hold for all functions p in d, we let p 
be an element of .s4 such that the number 

b 

T/ = L s*(x)p(x) dx - L lp(x)I dx (14.6) 

is positive, and such that the normalization condition 

llPllro = 1 (14.7) 

holds. We prove that p* is not a best Li approximation from .s4 to f by 
showing that, if the number 0 is sufficiently small and positive, then the 
inequality 

llf-(p* +Op )Iii< llf-p*lli 
is obtained. The upper bound on () depends on the set 

~6 = {x: 0< lf(x)-p*(x)I ~ 0, a ~x ~ b}. 

We require 0 to be so small that the condition 

I dx<h 
:x. 

(14.8) 

(14.9) 

(14.10) 

is satisfied, which is possible because of the restri.ctions on ~ that are 
given in the statement of the theorem. We let ~R be the set that contains 
the points of [a, b] that are neither in ~ nor in ~6• Inequality (14.8) is 
proved by dividing the range of integration in the definition 

b 

llf-(p*+Op)lli= L lf(x)-p*(x)-Op(x)ldx (14.11) 
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into the three parts~. ~9 and ~R· The definition (14.4) gives the identity 

lf(x)- p*(x)- 8p(x )I= 8lp(x)I, XE~, (14.12) 

condition (14.7) provides the bound 

lf(x)- p*(x)- 8p(x)l ,,,s; lf(x )- p*(x)\ + 8lp(x)I 
,,,;;; lf(x)- p*(x )I+ 8[2-s*(x)p(x)], x E ~9, (14.13) 

and equations (14.7) and (14.9) imply that, when x is in ~R. the sign of 
{f(x )- p*(x )- 8p(x)} is the same as the sign of {f(x)- p*(x)}, which gives 
the relation 

lf(x)- p*(x )- 8p(x )I= lf(x)- p*(x)I- 8s*(x)p(x), XE~R· 
(14.14) 

Therefore it follows from equations (14.2) and (14.11) that the condition 
b 

llf-(p* + 8p)JJ1,,,s;Jlf-p*Jli + 8 Lip(x)I dx -8 L s*(x)p(x) dx 

+28 J dx 
:z. 

(14.15) 

is obtained. Inequality (14.8) is now a consequence of expressions (14.6) 
and (14.10), which proves the first half of the theorem. 

To prove the second part of the theorem, we let q be a general element 
of sti., we let p be the function (p* - q ), which is also in sti., and we deduce 
from inequality (14.5) that the distance llf-qJ\1 is not less than the 
distance llf- p*J\1. Specifically, from expressions (14.2), (14.4) and (14.5) 
we obtain the relation 

b b L lf(x)-q(x)ldx~ L s*(x)[f(x)-q(x)]dx+ L\f(x)-q(x)ldx 

b b 

= L s*(x)[f(x)-p*(x)]dx+ L s*(x)[p*(x)-q(x)]dx 

+ Llp*(x)-q(x)I dx 

b 

=llf-p*Jl1+ L s*(x)p(x)dx+ f:zlp(x)ldx 

~ llt - p*lli. (14.16) 

where the first line depends on the property {s*(x) = 0, x E ~}.Because 

this inequality shows that q is not a better L 1 approximation than p*, the 
theorem is proved. D 

Frequently the set~. defined by equation (14.4), contains only a finite 
number of discrete points. In this case, because the right~hand side of 
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expression (14.5) is zero, p* is a best Li approximation from d to f if 
and only if the condition 

(s*, p) = 0, p Ed, (14.17) 

holds, where s* is the function (14.2), and where (s*, p) is the scalar 
product 

b 

(s*, p) = L s*(x)p(x) dx. (14.18) 

Scalar products are mentioned, because it is interesting to compare a best 
approximation in the 1-norm with the best approximation in the 2-norm. 
We recall from Theorem 11.1 that the condition for p* to be the function 
in d that minimizes the expression 

b ! 

llf-pllz = [t [f(x)-p(x)]2 dx r 
is the equation 

(f-p*,p)=O, pEd. 

pEd, (14.19) 

(14.20) 

Therefore, to minimize the 2-norm of the error, we require the error 
function to be orthogonal to every element of d, but, to minimize the 
1-norm of the error, it is the sign function (14.2) that has to be orthogonal 
to every element of d. 

The reason for the similarity between these characterization theorems 
is that expressions (14.1) and (14.19) are both special cases of the q-norm 
error 

[f b ]i/q 
llf-pllq = a ltCx)-pCxW dx , pEd, (14.21) 

where q is a real constant that is not less than one. In order to develop this 
remark, we let p* be an element of d that minimizes expression (14.21), 
we let p be any element of d, and we let <P be the function 

b 

</J(O)= t lf(x)-p*(x)-Op(xW dx, -oo<(J<oo. (14.22) 

It follows that </J(O) is least when (} is zero. Therefore, if <P is differenti­
able, the term </J'(O) must be zero. This derivative can be calculated w.hen 
q is greater than one. Hence we obtain the condition 

b t s*(x)p(x)if(x)-p*(x)lq-idx=O, pEd, (14.23) 

on p*, where s* is the function (14.2). We note that, when q = 2, this 
condition is the same as equation (14.20). Moreover, if we let q tend to 
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one, then the conditions (14.17) and (14.23) on p* become the same. 
Thus the similarity between the characterization theorems 11.1 and 14.1 
is explained. 

Two uses of Theorem 14.1 are as follows. The proof of the first part of 
the theorem provides a constructive method for obtaining an approxi­
mation from d to f that is better than p* if condition (14.5) is not 
satisfied. Secondly, the theorem can be used sometimes to calculate the 
best approximation directly. For example, in the approximation problem 
that is shown in Figure 14.1, the required approximation is the function 
{p*(x)=f(![a+b]); a,;;;x,;;;b}, because then the sign function (14.2) 
satisfies the characterization condition (14.5). 

14.3 Consequences of the Haar condition 
As in the case of minimax approximation, one can say much 

more about the best L 1 approximation from d to f, if the linear spaced 
satisfies the Haar condition. We refer to the properties (1)-( 4) of the Haar 
condition that are stated in the second paragraph of Section 7 .3. First we 
prove a theorem on the number of zeros of the error function of a best L 1 

approximation, that is applied in two ways. It helps to show that the best 
approximation is unique. Moreover, it is used to generalize our earlier 
remark, that the best L 1 approximation can be calculated sometimes by 
interpolation at points of the range [a, b ], that are independent of the 
function that is being approximated. 

Theorem 14.2 
Let d be an (n + 1)-dimensional linear subspace of ~[a, b] that 

satisfies the Haar condition, and let f be any function in ~[a, b ]. If p* is a 
best L1 approximation from d to f, and if the number of zeros of the error 
function 

e*(x) = f(x)-p*(x), a ,;;;x ,;;;b, (14.24) 
is finite, then e* changes sign at least (n + 1) times. 

Proof. Suppose that e* has a finite number of zeros, and that it changes 
sign fewer than (n + 1) times. Then, by property (2) of Section 7.3, there 
exists a function pin d, such that the product s*(x )p(x) is positive for all 
values of x in [a, b ], except for the zeros of e*, where s* is the function 
(14.2). Hence the integral (14.18) is positive, but the right-hand side of 
expression (14.5) is zero, because :!l has measure zero. Therefore p* fails 
to satisfy the characterization theorem 14.1. This contradiction proves 
the theorem. D 
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One application of this theorem is to show that the best Li approxima­
tion is unique when the Haar condition is satisfied. 

Theorem 14.3 
Let .stl be a linear subspace of ~[a, b] that satisfies the Haar 

condition. Then, for any fin ~[a, b ], there is just one best Li approxima­
tion from .stl to f. 

Proof. Let q* and r* be best Li approximations from .sti to f, and let p* 

be the function t(q* + r*). We consider the inequality 
b b L lf(x)-p*(x)I dx = L l![f(x)-q*(x)J+![f(x)-r*(x)JI dx 

b b 

~t L lf(x)-q*(x)ldx+! L lf(x)-r*(x)ldx, (14.25) 

which depends on the definition of the modulus of a number. Because the 
right-hand side is the least distance from .stl to f, and because p* is in .st/, 
this inequality is satisfied as an equation. Therefore, because all functions 
are in ~[a, b ], the identity 

lf(x )- p*(x)I = tlf(x)-q*(x)I +ilf(x)-r*(x)I (14.26) 

holds for all x in [a, b]. In particular, when f(x) is equal to p*(x ), then 
both q*(x) and r*(x) must be equal tof(x). Itfollows from Theorem 14.2 
that the function {q*(x)-r*(x); a~x~b} has at least (n+l) zeros. 
Therefore the Haar condition implies that the functions q* and r* are the 
same. D 

Most algorithms for calculating best Li approximations aim to find the 
zeros of the error function. Often the number of zeros is exactly (n + 1), 
where (n + 1) is the dimension of .stl. For example, this case occurs if .stl is 
the space PP"' if f is in ~(n+i)[a, b ], and if the derivative f(n+ll(x) is positive 
for all x in [a, b]. Therefore the following theorem is useful. 

Theorem 14.4 

Let .stl be an (n + 1)-dimensional linear subspace of ~[a, b] that 
satisfies the Haar condition, and letf be a function in ~[a, b] such that the 
error function (14.24) has exactly (n + 1) zeros, where p* is the best Li 
approximation from .stl to f. Then the positions of the zeros do not depend 
on f. 

Proof. Let s* be the function (14.2), and let the zeros of the error 
function {f(x)- p*(x ); a~ x ~ b} be at the points{~;; i = 0, 1, ... , n }. Let 
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g be a function in C€[a, b] such that the error function 

d*(x) = g(x)-q*(x), a :c;;;x :c;;;b, (14.27) 

also has exactly (n + 1) zeros, where q* is the best L 1 approximation from 
d to g. Let these zeros be at the points { 77;; i = 0, 1, ... , n }, and let t* be 
the function 

{
-1, g(x)<q*(x) 

t*(x)= 0, g(x)=q*(x) 

1, g(x)>q*(x), 
(14.28) 

We have to show that the setsU';; i = 0, 1, ... , n} and{77;; i = 0, 1, ... , n} 
are the same. The method of proof depends on the Haar condition, and 
on the fact that Theorem 14.1 gives the equations 

b b L s*(x)p(x)dx= L t*(x)p(x)dx=O, pEd. (14.29) 

We also require two consequences of Theorem 14.2, namely that the 
error functions (14.24) and (14.27) both change sign at their zeros, and 
that e*(a) and d*(a) are both non-zero. 

We assume without loss of generality that ~o:;;;; 77 0 , and that the signs of 
e*(a) and d*(a) are the same. Because of property (2) of Section 7.3, we 
may let p be a function in d that changes sign at the points {~;; i = 
1, 2, ... , n }, and that has no other zeros. We choose the overall sign of p 
so that the signs of p(a) and e*(a) are opposite. We consider the equation 

b L [s*(x)-t*(x)]p(x)dx=O, (14.30) 

which follows from condition (14.29). The sign of the integrand is 
important. Our assumptions imply that [s*(x )- t*(x )] is zero when x is in 
the interval [a, fo). Further, in the range (~0, b], the product s*(x)p(x) is 
positive, except on a set of measure zero, namely the point set {~;; 
i = 1, 2, ... , n }. Moreover, the definitions (14.2) and (14.28) show that, if 
s*(x )p(x) is positive, then the product [s*(x )- t*(x )]p(x) is non-negative. 
By combining all these remarks, we deduce that the inequality 

[s*(x)-t*(x)]p(x);;,: 0, (14.31) 

is satisfied. It follows from equation (14.30) that the function {s*(x )­
t*(x ); a:c;;;x:c;;;b} is zero almost everywhere. Therefore the sets{~;; 
i = 0, 1, ... , n} and {77;; i = 0, 1, ... , n} are the same. D 

This theorem provides the main method for calculating best L 1 

approximations to continuous functions. One begins by assuming that the 
error function will change sign only (n + 1) times. In this case, because the 
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zeros of the error function are independent of f, they may be found by 
detailed consideration of .s!L. An approximation from .s!L to f is calculated 
by interpolation at these zeros, and then a check is made to find out if its 
error function satisfies the assumption. If the assumption holds, then the 
required approximation has been found. Otherwise a more elaborate 
approximation algorithm is necessary, for example a linear programming 
method of the type that is described in Section 15.4. The interpolation 
points for the case when .s!L is the space PYn are given in the next section. 
Some applications of this method are given in Chapters 15 and 24. 

14.4 The L1 interpolation points for algebraic polynomials 
In order to apply the algorithm for calculating best Li approxi­

mations, that is described in the previous paragraph, it is necessary to 
identify the interpolation points that are the subject of Theorem 14.4. 
The interpolation points for the important special case when .s!L is the 
space PY n are given in the next theorem. 

Theorem 14.5 
Let the conditions of Theorem 14.4 be satisfied, where .s!L is the 

space PYm and where [a, b] is the interval [ -1, 1]. Then the zeros of the 
error function 

e(x) = f(x)-p*(x), -1,;;;x,;;; 1, (14.32) 

have the values 

[ (n + 1- i)7TJ 
t:. =cos 
~· n +2 ' 

i = 0, 1, ... , n. (14.33) 

Proof. Theorem 14.2 implies that the error function (14.32) changes 
sign at its zeros. Therefore, because of the characterization theorem 14.1, 
it is sufficient to prove that the equation 

i Li s*(x)p(x) dx = 0 (14.34) 

holds for all polynomials p in PYm where s* is the sign function ll, -1 <x <(o 

(-1)', (,-i<x<(,, i=l,2, ... ,n, 
s*(x)-

- (-1r+\ (n<x<l 

0, otherwise. 

(14.35) 

The numbers s*( -1) and s*(l) are defined to be zero, in order that the 
function 

u(O) = s*(cos 0), (14.36) 
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satisfies some periodicity conditions. We extend u to the infinite range by 
defining {u(-(J) = -u((J); o~ (J ~ 7T}, and by letting (T be a 27T-periodic 
function. It follows from equations (14.33) and (14.35) that the graph of 
{u(e); -oo<(J<oo} is a square wave that changes sign when (J is any 
integral multiple of 7T/(n + 2). Hence the condition 

u( e + n: 2) = -u(e), -oo < e < oo, (14.37) 

is obtained. 
It will be shown that, if the change of variables {x =cos (J; 0 ~ (J ~ 7T} is 

made in the integral (14.34), then condition (14.37) enables equation 
(14.34) to be proved when p is any one of the Chebyshev polynomials 

Ij(x) =cos (j cos-1 x ), -l~x~l, j = 0, 1, ... , n. 
(14.38) 

Because these polynomials are a basis of {lP m we complete the proof of the 
theorem by establishing the equations 

1 

J_
1 
s*(x)Ij(x) dx = 0, j = 0, 1, ... , n. (14.39) 

The identity 
I ~ 

J s*(x)Ti(x) dx = f s*(cos (J) cos (j(J) sin (J d(J 
-1 Jo 

=!fa~ u( e){sin [(j + 1 )(}]-sin [ (j -1 )e]} de 

= ! L: u(e){sin [(j + l)e]-sin [(j- l)(J]} de (14.40) 

is satisfied, where the last line depends on the fact that u is an odd 
function. Therefore it is sufficient to show that the integrals 

Ik = L: u(e) sin (ke) de, k = 0, 1, ... , n + 1, (14.41) 

are zero. We use the periodicity of the integrand of Ik, then condition 
(14.37), and then the fact that u is odd, to deduce the equation 

h = L: u( (J + n : 2) sin [ k( (J + n : 2)] d(J 

=-cos (nk:2) L: u(e) sin (ke) de 

-sin (n ~2) L: u(e) cos (ke) de 

=-cos ( k7T )h 
n+2 ' 

k = 0, 1, ... , n + 1. (14.42) 
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Because the factor -cos [k7T/(n + 2)] is not equal to one, it follows that h 
is zero, which gives the required result. D 

We note that the points (14.33) are the abscissae of the extrema of the 
Chebyshev polynomial Tn+ 2 • We note also that the extension of Theorem 
14.5, to the case when the range of the variable is [a, b ], is that the zeros of 
the error function occur at the points 

i i [(n+l-i)7TJ g;=2(a+b)+2(b-a)cos n+ 2 , i = 0, 1, ... , n. 

Therefore the polynomial in (f/Jn that minimizes the L 1 error 
b 

{ lf(x)-p(x)ldx, pE(f/Jn. 

(14.43) 

(14.44) 

may be calculated by satisfying the conditions {p(g;) = f(g;); i = 0, 1, 
... , n}, provided that the error function of the resultant approxi­
mation changes sign just at the interpolation points. 

14 Exercises 
14.1 Find the best Li approximation to the function {f(x) = x 3 ; 1 =s: 

x =s: 2} by a multiple of the quadratic polynomial {p(x) = x2 ; 

1=s:x=s:2} in the following two different ways. Firstly calculate 
the integral 

2 

11(a)= l lx 3 -ax2
1 dx 

analytically, and obtain the required value of a from the equa­
tion 11'(a) = 0. Secondly calculate the number b such that the 
integral of the function {x 2 sign (b - x); 1 =s: x =s: 2} is zero. You 
should find that b = a. 

14.2 Let d be the three-dimensional linear space of functions in 
~[ -1, 1] that are composed of two straight line segments that 
join at x = 0. In other words d is the space of splines of degree 
one that have only one interior knot, at the point x = 0. Calculate 
the element of d that minimizes the integral 

i Li lx 2 -p(x)ldx, pEd. 

14.3 Let d be the one-dimensional linear space that contains all 
multiples of the function {p(x) = x - c; -1 =s: x =s: l}, where c is a 
constant. Prove that, if c is non-zero, then each function in 
~[ -1, 1] has only one best Li approximation in d. 
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14.4 Let .s4 be the two-dimensional linear subspace of C(!;'[O, 1] 
that is spanned by the functions { </J 0 (x) = 1 ; 0,;;; x ,;;; 1} and 
{</Ji(x) = x 2 ; 0,;;; x,;;; 1}. Calculate the points g0 and gi such that, if 
p* E .s4, if f E ce[o, 1], and if the errorfunction e* = f- p* changes 
sign just at the points g0 and gi, then p* is the best L 1 approxi­
mation to f from .s4. Hence show that the least value of the 
integral 

1 t Ix -p(x)I dx, p E .s4, 

is equal to !(v'5-2). 
14.5 Let .s4 be the set of monic polynomials in g>n+ 1 , which means 

that the coefficient of xn+i is one, and let the range of the variable 
be[-1, 1].DeducefromTheorem 14.5 thatthenorm{llPlli;p Ed} 
is least when p is the function {p(x) = T~+z (x )/[2n+\n + 2)]; 
-1,;;; x,;;; l}. Hence obtain the bound 

llPlli ~ Tn, PE .s4, 

and verify that it is correct by applying Theorem 14.5 directly in 
the case when n = 1. 

14.6 Let f be a function in ce[-1, 1] that is identically zero on the 
intervals [ -1, -c] and [c, 1], but that is positive on the interval 
(-c, c ), where c is a positive constant. Prove that the zero 
function is a best Li approximation from g>2 to f if and only if 
c ,;;;!(v'5-1). 

14.7 Let p* be the linear function {p*(x) = x; -1,;;; x,;;; l}, and let f 
be a function in C(!;'[-1, l], such that the error {e*(x)=f(x)­

p*(x); -1,;;;x,;;;l} changes sign just at the points x=O and 
x = ±l/v'2. It follows from Theorem 14.5 that p* is the best L 1 

approximation to f from g>2. By choosing a suitable f, show that 
p* need not be a best Li approximation to f from the space of 
rational functions that is called d 11 in Exercise 10 .1. 

14.8 Let d be a finite-dimensional linear subspace of ce( 0 [a, b] that 
satisfies the Haar condition, let f be any fixed function in 
ce< 0 [a, b ], and let p* be the best L 1 approximation from d to f. 
Prove that there exist positive constants c and d such that the 
inequality 

II!-viii~ II!-p*lli + min [cllP - p*lli, dllP - p*lliJ 
is satisfied for all p Ed. Show, however, that this condition need 
not be obtained if the function f is continuous but not differenti­
able. 
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14.9 Let q* be the best L 1 approximation from the space !!ln of 
trigonometric polynomials to a function fin <(62,,.. Show that the 
error function (f-q*) has at least (2n +2) zeros in the interval 
[O, 27T). Further, show that, if the number of zeros in this interval 
is equal to (2n + 2), then the spacing between adjacent zeros is 
constant. 

14.10 Let the linear subspace d of <(;S[a, b] be composed of splines of 
degree one whose knots are fixeu. Prove that each function in 
cgr a, b] has only one best L 1 approximation in d. 



15 

An application of L1 approximation and the 
discrete case 

15.1 A useful example of L1 approximation 
A particular L 1 approximation problem is solved in this section, 

in order to demonstrate the method of calculation when the number of 
sign changes of the error function is equal to the dimension of d, and in 
order to provide a result that is required in Section 15.2. The problem is 
to calculate the value of the expression 

(15.1) 

where the quantities {bk; k = 1, 2, ... , n} are real parameters. We see 
that it is equivalent to finding the best L 1 approximation to the function 
{f (x) = x; 0:.;;;; x :.;;;; 1T} from the n-dimensional linear space d, that is 
spanned by the functions {<f>k(x)=sin(kx);O:;;;;x:.;;;;1T;k=l,2, ... ,n}. 

We take the optimistic view that this problem can be solved by the 
procedure that is described at the end of Section 14.3. Therefore we seek 
points {g;; i = 1, 2, ... , n}, satisfying the conditions 

O<g1 <g2<. · .<gn <1T, 

such that the equation 

1,,. s*(x)p(x) dx = 0, pE.sd, 

holds, where s* is the sign function 

O<x<6 

1
1, 

s*(x)= (-1);, g;<x<g;+i. 

(-lt, gn<x<1T. 

(15.2) 

(15.3) 

i = 1, 2, ... , n - l (15.4) 

Because the integrals (14.41) are zero, it is suitable to replace n by (n -1) 



An application of Li approximation 178 

in the definition of u, given in the proof of Theorem 14.5, and to let 
{s*(x ); 0:;;; x:;;; 1T} be the function {u(O); 0:;;; 8:;;; 1T }. Thus the values 

~; = i1T/(n + 1), i = 1, 2, ... , n, (15.5) 

cause equation (15.3) to be satisfied. It follows that, if p* is an element of 
d that is defined by the interpolation conditions 

p*(~;) = f(g;) = g;, i = 1, 2, ... , n, (15.6) 

and if the error function 

e*(x)=x-p*(x), O:;;;x:;;; 1T, (15.7) 

has no other zeros in the open interval (0, 1T ), where a double zero at any 
g; would count as an extra zero, then p* is the approximation that 
provides the least value of expression ( 15 .1). 

In order to prove that the equations (15.6) have a solution, we recall, 
from the proof of Theorem 5.4, that it is sufficient to show that the zero 
function is the only element of d that vanishes at the interpolation points. 
If this condition is not satisfied, then an odd trigonometric polynomial of 
degree n has n zeros in the interval (O, 1T), and therefore it has (2n + 1) 
zeros in (-1T, 1T), which is a contradiction. Hence the equation (15.6) 
defines p* uniquely. We now consider the number of zeros of the function 
(15.7). 

We see that the first derivative of e* is an even trigonometric poly­
nomial of degree at most n. Therefore it is zero at not more than n points 
of the open interval (0, 1T). Hence the error function itself has at most 
(n + 1) zeros in the closed interval [O, 1T ]. We know already, however, that 
e* is zero at the interpolation points and at x = 0. Therefore there are no 
extra zeros. It follows that the coefficients of the function p* in d, that is 
defined by the interpolation conditions (15.6), are the values of the 
parameters {b;; i = 1, 2, ... , n}, that minimize expression (15.1). 

Next we make the very useful observation that there is no need to 
calculate the coefficients of p*. The reason is that equation (15.3), and the 
definitions of {s*(x);O:;;;x:;;;1T} and the interpolation points, give the 
identity 

L1T \x - p*(x)\ dx = I('" s*(x )[x - p*(x)] dxl 

=It.,,. s*(x)x dxl. (15.8) 
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Therefore expression (15.1) has the value 
'TT n J (j+1)'1T/(n+1) I 

J \x-p*(x)\dx=IL (-1); xdx 
0 j=O j'TT/(n+l) 

= 7r 2 /2(n + 1), (15.9) 

which is the required result. This example shows that the interpolation 
procedure for calculating best L 1 approximations can be used sometimes 
when .stl does not satisfy the Haar condition. 

15.2 Jackson's first theorem 
Equation (15.9) is important to the following question. Let f be 

any function in r52'" that is continuously differentiable; find the smallest 
number c(n) that satisfies the condition 

(15.10) 

and that is independent of f, where 22n is the space of trigonometric 
polynomials of degree at most n. In this section it is proved that c (n) has 
the value 7r/2(n + 1), which is 'Jackson's first theorem'. We note that, if it 
is necessary to approximate f by a trigonometric polynomial to given 
accuracy, and if the norm llt'lloo is known, then the theorem gives an upper 
bound on the least value of n that may be used. Usually, however, this 
upper bound is so high that it is of no practical value. Two reasons for 
studying Jackson's first theorem are that it shows a way of relating errors 
in function approximation to derivatives, and it is the basis of the work of 
the next chapter. 

In order to relate f to f', when f is in <e~~, we make use of the formula 

1 f'" 1 f'" f(x) = 21T' _JUJ) de+ 2 1T' _'" et ( e + x +'TT') de, (15.11) 

which may be verified by integration by parts. We require also the fact 
that, if g is any function in r52'", and if q is any element of 22ni then the 
function 

l/J(x)= J_: q(e)g(e+x)de, -oo<x <oo, (15.12) 

is also in 22n. This statement holds because periodicity gives the equation 

l/f(x)= t: q(e-x)g(e)de, 

and because q(e-x) may be expressed in the form 

q(e-x)=tao(e)+ I a;(e)cos(jx)+b;(e)sin(jx). 
i=l 

(15.13) 

(15.14) 



An application of L 1 approximation 180 

In the proof of Jackson's theorem, which is given below, we let g be the 
function 

g(x) = f'(x + 7T), -oo<x <oo. (15.15) 

Theorem 15.1 (Jackson I) 
For all functions fin <g~t_;, and for all non-negative integers n, the 

inequality 

(15.16) 

is satisfied, where !iln is the linear space of trigonometric polynomials of 
degree at most n. 

Proof. We express fin the form (15.11). Because the first integral in this 
expression is independent of x, and because the space !iln includes 
constant functions, we just have to consider trigonometric approxima­
tions to the function 

1 J"' 27T _,,, 8/'(8+x +7T) d8, -oo<x <oo. (15.17) 

Therefore, by using the remark that expression (15.12) is a trigonometric 
polynomial, we obtain the bound 

min II/ -qlloo ~ min max I_!_ f"' [8 -q(8)]f'(8 + x + 7T) d81 
qEEln qe!?ln x 211" -'IT 

1 f"' ~~~~ 27T _,,, l8-q(8}1d(}11/'lloo, (15.18) 

where the last line is elementary. Because the work of Section 15.1 gives 
the equation 

f"' 2 

min l8-q(8)1 d(}= ( 7T l)' 
qeEl" _,,, n + (15.19) 

it follows that Theorem 15.1 is true. D 
The factor 7T/2(n + 1) that occurs in inequality (15.16) cannot be 

decreased. In order to prove this statement, we consider a function f in 
cg~1,~ that takes the values 

j = 0, ±1, ±2, .... (l5.20) 

For any e > 0, it is possible to choose f so that it also satisfies the condition 

llf'iloo ~ 2(n + 1)(1+e)/7T. (15.21) 

We let q* be a best approximation from !iln to f. If the distance llf-q*lloo is 
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less than one, then equation (15.20) implies that the sign of q*(j7T/[n + 1]) 
is the same as the sign of ( -1 /. Hence q * has a zero in each of the intervals 
{[(j-1)1T/(n + 1), j1T/(n + 1)]; j = 1, 2, ... , 2n + 2}, which is not possible 
because q* is in Pln. It follows that the inequality 

min llf -qlloo ~ 1 
qE21n 

~ 2(n + l~(l + e) llf'lloo (15.22) 

is satisfied. Therefore, because e can be arbitrarily small, Jackson's first 
theorem gives the least value of c (n ), that is independent off, and that is 
such that inequality (15 .10) holds for all continuously differentiable 
functions in Cfi 2 7T. 

15.3 Discrete L1 approximation 
In data-fitting calculations, where the element of Sil that mini­

mizes expression (14.3) is required, there is a characterization theorem 
that is similar to Theorem 14.1. It is stated in a form that allows different 
weights to be given to the function values {f(x,); t = 1, 2, ... , m}. 

Theorem 15.2 
Let the function values {f(x,); t = 1, 2, ... , m}, and fixed positive 

weights {w,; t = 1, 2, ... , m} be given. Let Sil be a linear space of 
functions that are defined on the point set {x,; t = 1, 2, ... , m}. Let p* be 
any element of Sil, let :!l contain the points of {x,; t = 1, 2, ... , m} that 
satisfy the condition 

p*(x1) = f(x,), (15.23) 

and let s * be the sign function 

{ 
1, f(x,)>p*(x,) 

s*(x,) = 0, f(x,) = p:(x,) 

-1, f(x,)<p (x,), 

t = 1, 2, ... , m. 

Then p* is a function in Sil that minimizes the expression 
m 

L w,lf(x,)- p(x,)I, p E Sil, 
1~1 

if and only if the inequality 

l,~1 w,s*(x,)p(x,)I ~ x,~.2' w1 ip(x1)i 

holds for all p in d. 

(15.24) 

(15.25) 

(15.26) 
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Proof. The method of proof is similar to the proof of Theorem 14.1. If 
condition (15.26) is not satisfied, we consider replacing the approxima­
tion p* by (p* + 8p ), where lei is so small that, if x, is not in:!!, the sign of 
{f(x,)- p*(x1)- 8p(x,)} is the same as the sign of s*(x,). It follows that the 
replacement changes the value of expression (15.25) by the amount 

m 

-8 L w,s*(x,)p(x,) + 8 L w,lp(x,)1. (15.27) 
t= 1 XrE2£ 

Therefore, if the left-hand side of expression (15.26) is larger than the 
right-hand side, one may choose the sign of 0 so that (p* +Op) is a better 
approximation than p*. 

Conversely, if condition (15.26) is obtained for all p in .sl/., then, by 
replacing the integrals in expression (14.15) by weighted sums, it follows 
that p* is a best discrete Li approximation to the data. 0 

The following theorem shows that there is a function p * in .sl/. that 
minimizes expression (15.25), and that is such that the set:!! of Theorem 
15.2 contains at least (n + 1) points, where (n + 1) is the dimension of .sl/.. 
Therefore many algorithms for calculating best discrete Li approxima­
tions seek a set:!! that allows an optimal function p* to be obtained by 
interpolation. 

Theorem 15.3 
Let the function values {f (x,); t = 1, 2, ... , m} and fixed positive 

weights {w,; t = 1, 2, ... , m} be given. Let .sl/. be a linear subspace of ?Am, 
where the components of each vector pin .sl/. have the values {p(x,); t = 
1, 2, ... , m}. Then there exists an element p* in .sl/., that minimizes 
expression (15.25), and that has the property that the zero vector is the 
only element pin .sl/. that satisfies the conditions {p(x,) = O; x, E :!!}, where 
the set :!l is defined in Theorem 15.2. 

Proof. Let p* be a best weighted Li approximation from .sl/. to the data, 
but suppose that there exists a non-zero element q in .sl/. that satisfies the 
condition 

X 1 E :!!. (15.28) 

We consider the function 
m 

1/1(0) = L w,lf(x,)- p*(x,)- Oq(x,)I, -oo<O<oo, (15.29) 
t~i 

where 0 is a real variable. It is a continuous, piecewise linear function of O, 

that tends to infinity when IOI becomes large, and that takes its least value 
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when fJ is zero, because p* is a best approximation. Moreover, equation 
(15.28) implies that two different line segments of I/I do not join at (J = 0. 
Therefore I/I is constant in a neighbourhood of (J = 0. If (J is increased 
from zero, then 1/1(0) remains constant until a value of (J is reached that 
satisfies the conditions 

f(x,)- p*(x,)- Oq(x,) = 0 } 

q(x,);t'O 
(15.30) 

for some value oft. Let this value of fJ be 0. Because 1/1(0) is equal to 1/1(0), 
the function (p* + Oq) is another best weighted Li approximation from .sl/. 
to the data. Equation (15.28) implies that the residuals {f(x,)­
(p* + Oq)(x,); x, E ~}are zero. Further, another zero residual is obtained 
from the first line of expression (15 .30). Hence our construction increases 
the number of zeros of a best approximation. Because the construction 
can be applied recursively, it follows that the theorem is true. D 

This theorem shows that the calculation of a best discrete Li approxi­
mation can be regarded as a search for suitable interpolation points in the 
set of data points {x,; t = 1, 2, ... , m}. A systematic method of searching 
is needed, and also it is necessary to test whether a trial set of inter­
polation points gives a best approximation. The condition (15.26) is not 
suitable in practice, because it has to be satisfied for every element of d. 
All of these problems can be solved quite routinely, because the complete 
calculation is a linear programming problem. 

15.4 Linear programming methods 
In order to show that the best discrete Li approximation cal­

culation is a linear programming problem, we let {<Pi; i = 0, 1, ... , n} be a 
basis of the space .sl/. of approximations, and we write the expression 
(15.25), whose least value is required, in the form 

Ji w,jf(x,)-J
0 
Ai</>h,)j, (15.31) 

where the parameters {Ai; i = 0, 1, ... , n} are some of the variables of the 
linear programming calculation. We also introduce two new variables for 
each data point, which we call {u,; t = 1, 2, ... , m} and {v,; t = 1, 2, 
... , m}. They have to satisfy both the non-negativity conditions 

u,~o}. 
v,~O 

and the bounds 

t= 1, 2, ... , m, 

n 

-v,~f(x,)- L Ai</>i(x,)~u" 
i~O 

(15.32) 

t = 1, 2, ... , m. (15.33) 
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Therefore, if, for any values of the coefficients {A;; i = 0, 1, ... , n }, the 
variables u1 and v1 are chosen to minimize the sum (u 1 + v1), then the 
equation 

(15.34) 

is satisfied. It follows that we require the least value of the expression 
m 

L w,(u,+v,), 
t=l 

(15.35) 

subject to the constraints (15.32) and (15.33) on the values of the 
variables {A;;i=0,1, ... ,n}, {u,;t=l,2, ... ,m} and {v,;t=l,2, 
... , m}, which is a linear programming calculation. 

Because the use of a general linear programming procedure is less 
efficient than one that is adapted to the calculation of the last paragraph, it 
is helpful to think of the linear programming method geometrically. The 
constraints define a convex polyhedron of feasible points in the space of 
the variables, and there is a solution to the calculation at a vertex of the 
polyhedron. The characteristic properties of a vertex are that it is feasible, 
and it is on the boundary of as many linearly independent constraints as 
there are variables, namely (2m + n + 1). Because each of the variables 
{u,; t = 1, 2, ... , m} and {v1 ; t = 1, 2, ... , m} has to occur in at least one 
of the independent constraints, the equations 

u1 = max [ 0, fn(x,)-J0 A; <f>;(x,)] I 
t = 1, 2, ... , m, (15.36) 

v1 = max [ 0, ;~o A;<f>Jx,)-f(x,) J 
' 

are satisfied at every vertex. The remaining (n + 1) constraints that hold as 
equations have the form 

n 

f(x,) = L A;<f>;(x,), t E f!/, (15.37) 
i=O 

where :Y is a subset of the integers {l, 2, ... , m}. Because :Y contains 
(n + 1) elements, and because the constraints that define a vertex are 
linearly independent, we have another explanation of Theorem 15.3. 

At the beginning of an iteration of the simplex method for solving a 
linear programming calculation, the variables are set to the coordinates of 
a vertex of the polyhedron. If it is not possible to reduce the function 
(15.35) by moving along one of the edges of the polyhedron that meet at 
the vertex, then the current values of the variables {A;; i = 0, 1, ... , n} are 
the ones that minimize the function (15.31). Thus there is a test for 
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optimality which is more useful than condition (15.26), because it 
depends on a finite number of inequalities. 

An edge of the polyhedron is defined to be in the intersection of the 
boundaries of (2m + n) linearly independent constraints. One way of 
generating an edge from a vertex is to give up one of the conditions 
(15.36), but these edges are irrelevant because they always lead to 
increases in the objective function (15.35). Therefore we have to consider 
only edges that satisfy expression (15.36), and that are defined by n 
independent equations from the system (15.37). We let :!TE be the set of 
indices of the independent equations. Hence :!TE is a subset of fT. Except 
for a constant scaling factor, there is a unique non-trivial solution 
{A;; i = 0, 1, ... , n} to the conditions 

n 

I A;<f>;(x,) = o, ( E fTE. (15.38) 
i=O 

If {A;= A;; i = 0, 1, ... , n} is the solution of the system (15.37), then, at a 
general point on the edge, the equations {A; =A;+ a A;; i = 0, 1, ... , n} 
are obtained, where a is a real parameter. Moreover, the objective 
function (15.35) has the value 

(15.39) 

Suppose that, at the vertex where equations (15.36) and (15.37) hold, it 
is found that the objective function is reduced if a move is made along the 
edge that is defined by equations (15.36) and (15.38). The far end of the 
edge in the (2m + n + 1)-dimensional space of the variables is reached 
when one of the terms {f(x,)-I A;<f>;(x,); t = 1, 2, ... , m} in expression 
(15.36) changes sign. At this point the term that changes sign is zero. 
Hence another interpolation condition of the form (15.37) is satisfied, 
which implies that the point is another vertex of the polyhedron. A 
standard linear programming procedure would have to begin a new 
iteration at this vertex. However, because our purpose is to make the 
function (15.31) as small as possible, it is sensible to continue to change a 

until the function (15.39) reaches its least value. Hence we are searching 
along a locus that is composed of straight line segments in the space of the 
variables. Because the optimal point on the locus is also a vertex of the 
polyhedron of feasible points, all other features of the standard simplex 
method can be retained. The technique of choosing a to minimize 
expression (15.39) on every iteration can provide large gains in efficiency, 
especially when the linear programming calculation is obtained by dis­
cretizing the continuous problem that is studied in Chapter 14. 
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One reason for discretizing a continuous problem is that it may not be 
possible to minimize expression (14.1) by the method that is described at 
the end of Section 14.3, because the error function of the best approxi­
mation may have too many zeros. A standard technique in this case is to 
apply a linear programming procedure to minimize the sum (15.31) 
instead, where the weights {w1 ; t = 1, 2, ... , m} and the data points 
{x1 ; t = 1, 2, ... , m} are chosen so that expression (15.31) is an adequate 
approximation to the integral (14.1). It is not appropriate to use a high 
order integration formula, because the integrand has first derivative 
discontinuities, and because the discretization forces (n + 1) zeros of the 
final error function {f (x) - p (x); a ~ x ~ b} to be in the point set {x1 ; t = 
1, 2, ... , m}. Therefore usually m has to be large. 

An extension of this linear programming method provides a useful 
algorithm that can be applied directly to the minimization of the 
continuous Li distance function (14.1). It comes from the remark that, in 
the linear programming procedure, expression (15.39) can be replaced by 
the integral 

f jt<x)-it <t-axi)cl>i{x)I dx, (15.40) 

in order to determine the value of a that is most appropriate to the 
continuous calculation. Each iteration begins with a trial approximation, 
p say, to f, that has the property that the set 

~ = {x: f (x) = p (x); a ~ x ~ b} (15.41) 

contains at least n points. A subset ~E is chosen that is composed of 
exactly n points of~. and p is defined to be a non-zero function in .sti that 
satisfies the equations {p(x) = O; x E ~E}. The iteration replaces p by 
(p + ap), where a has the value that minimizes the norm II/ - p - aplli. 
which is equal to expression (15.40). Then another iteration is begun. 
Most of the details are taken from the linear programming method that 
has been described already, but an important difference is the need to 
evaluate integrals. It is therefore worth noting that, because the cal­
culation of a is itself an Li approximation problem, the required value 
depends only on integrals of p and on the sign properties of the error 
function (f-p-ap). Exercise 15.6 gives an example of the use of this 
algorithm. 

15 Exercises 
15 .1 Let f be the function in %... that takes the values {f (x) = x; 
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-!7T,,-;;x,,-;;hr} and {f(x)=7T-x; !7T~x~h}. Prove that the 
equation 

f, 2,,. 

min l/(x)-q(x)ldx=7T2/18 
qe!!!.1 o 

is satisfied. 
15.2 Deduce directly from expressions (15.18) and (15.19) that the 

term !1T/(n + 1) that occurs in inequality (15.16) is optimal. 
15.3 Let d be any linear space of functions that are defined on the 

point set {x,; t = 1, 2, ... , m}, where the dimension of dis less 
than m. Prove that there exist function values {f(x, ); t = 1, 2, 
... , m} and positive weights {w,; t = 1, 2, ... , m} such that 
more than one element of d minimizes expression (15.25). 
Construct an example of non-uniqueness of best discrete Li 
approximations in the case when d is the space rJ'2. 

15.4 The polynomial {p(x) = l6x -x2; 1,,-,; x ,,-;; 8} is one of several 
functions in {l/'3 that minimizes the expression 

8 

L wd/(x;)-p(x;)I, 
i=i 

where the data have the values wi = w8 = 1, w3 = w6 = w1 = 2, 
W2=W4=W5=3, /(1)=15, /(2)=31, /(3)=39, /(4)~46, 
/(5) = 58, /(6) = 60, /(7) = 62, and /(8) = 64. Find another 
function in rJ'3 that minimizes this expression. 

15.5 The best Li approximation in {l/'1 is required to the data /(O) = 
-35, /(1)=-56, /(2)=0, /(3)=-16, /(4)=-3, /(5)=4, 
/(6) = 10, /(7) = 53 and /(8) = 69, where all the weights are 
equal to one. Calculate it by the method that is described in 
Section 15.4, where on the first iteration the only point of the set 
{x,; t E .:TE} is x = 0. 

15.6 Let the algorithm that is described in the last paragraph of 
Section 15.4 be applied to calculate the best Li approximation 
from rJ'i to the function {f(x) = x2; -1 ~ x ,,-;; l}. Investigate the 
rate at which the zeros of the error function (f - p) converge to 
the points±! that are given by Theorem 14.5. You should find 
that, if an iteration adjusts a zero to (! + s ), where s is small, then, 
when the zero is adjusted again two iterations later, the 
difference between its new value and ! is of order s 4. 

15.7 Theorem 15.3 does not have an analogue in the continuous case. 
Prove this remark by finding a finite-dimensional linear subspace 
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.sll of <e[a, b ], and a function fin <e[a, b ], such that every best Li 
approximation from .sll to f has fewer than (n + 1) zeros, where 
(n + 1) is the dimension of .sll. 

15.8 Let the function values {f(x;) = f(i); i = 0, 1, 2, 3, 4} be given, 
and let p* be a polynomial in r!P2 that minimizes the expression 

4 

L: /JU)- p(i)/, p E r!P2. 
i=O 

Prove that p*(O) and p*(4) are equal to f(O) and/(4) respectively. 
15.9 Let .910•1 be the set of functions in <e[-1, 4] that have the form 

{a/(1+{3x);-l~x~4}, where a and f3 are real parameters. 
Calculate the function p* that minimizes the weighted sum 

/9- p(-1)/ + M/8-p(O)/ + /4- p(4)/, p E do,i. 

where the weight M is so large that the condition p*(O) = 8 is 
obtained. The purpose of this exercise is to show that Theorem 
15.3 does not extend to rational approximation on a discrete 
point set. 

15.10 Investigate the convergence properties of the algorithm that is 
described in the last paragraph of Section 15.4, in the case when 
the choice of :ZE is governed by the rule that no point shall remain 
in :ZE for more than n iterations. You may assume that all 
functions are continuously differentiable, that .sll satisfies the 
Haar condition, and that every error function that is calculated 
has exactly (n + 1) zeros. 
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The order of convergence of polynomial 
approximations 

16.1 Approximations to non-differentiable functions 
In the first three sections of this chapter we consider the error of 

the best minimax approximation from !!ln -to a function f in C€2 .,,. 

Specifically we study the dependence on n of the number 

min llf-qllro = En(f), (16.1) 
qEEln 

say. Section 16.4 extends the work to best minimax approximations from 
'!Jn to functions in <e[-1, 1]. Most of the theory depends on the 
bound 

En (f),,;;; 2(n: l) llf'llro, (16.2) 

which is given in Theorem 15 .1. The purpose of this section is to show 
that, by elementary analysis, one can deduce from inequality (16.2) some 
bounds on En (f), that hold when f is non-differentiable. 

The technique that is used depends on a differentiable function that is 
close to f. We let 8 be a small positive number, and we let <P be the 
function 

1 f x+ll 

</J(x) = 28 x-ll f(O) d(}, -co<x <co, (16.3) 

which is in <e~1l for any f in C€2 .,,. The derivative of <P has the value 

<f/(x) = 218 [f(x + 8)- f(x - 8)], -co<x <co, (16.4) 

and <P tends to f if 8 tends to zero. The proof of the following theorem 
depends on both of these properties. 
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Theorem 16.1 (Jackson II) 
Let f be a function in lf62,, that satisfies the Lipschitz condition 

(16.5) 

for all real numbers x 1 and x0 , where M is a constant. Then expression 
(16.1) is bounded by the inequality 

En (f) ~ 7rM/2(n + 1). 

Proof. For every function <P in lf62,,, the inequality 

En (f) ~ llf- q*lloo 
~ llf - <P lloo + 114> - q *I loo 
= llf-<Plloo +En (<P) 

(16.6) 

(16.7) 

is satisfied, where q* is the best approximation from !lln to </J. We let <P be 
the function (16.3). Therefore condition (16.5) gives the bound 

1 If x+8 I llf-<Plloo = max -2 f(x)-f(O) d(} 
x 8 x-ti 

Mfx+s 
~max- lx-OldO 

x 28 x-ti 

=tM8. (16.8) 

Moreover expressions (16.4) and (16.5) imply the inequality 

(16.9) 

Therefore, if we replace f by <P in condition (16.2), it follows from 
inequalities (16.7) and (16.8) that the bound 

En (f) ~ tM8 + 7rM/2(n + 1) (16.10) 

is satisfied. Because 8 can be arbitrarily small, the required result (16.6) is 
implied by expression (16.10). D 

Expression (16.2) also implies a bound on En (f), when/ is a continuous 
function that does not satisfy a Lipschitz condition. 

Theorem 16.2 (Jackson III) 
For every function fin lf62,,, the inequality 

En(f) ~~w(n: 1) (16.11) 

is obtained, where w is the modulus of continuity of f. 
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Proof. We again substitute the function (16.3) in expression (16.7). 
Instead of inequality (16.8), however, we have the bound 

1 If x+8 I flf-<t>floo = max -2 f(x )-f(8) d() 
x 8 x-8 

1 Ix+8 
:;;: max -2 w(lx - 81) d() 

x 8 x-8 

:;;;w(8). 

Moreover, because equation (16.4) implies the condition 

ll<t> 'I loo:;;: w (28) /28 

:;;;w(8)/8, 

(16.12) 

(16.13) 

where the last line is an elementary property of the modulus of continuity, 
expression (16.2) gives the bound 

7T' 

En(<f>):;;;2(n+1)8 w(8). (16.14) 

It follows from condition (16.7) that the inequality 

En(f):;;: [ 1+ 2(n: l)8 ]w(8) (16.15) 

is satisfied. Therefore, to complete the proof of the theorem, it is sufficient 
to let 8 have the value Tr/(n + 1). D 

We note that inequality (16.11) gives a proof of Theorem 13.1, for it 
shows that En (f) tends to zero as n tends to infinity. Further, extending 
inequality ( 16.11) to approximation by algebraic polynomials, which 
is done in Theorem 16.5, gives another proof of the Weierstrass 
Theorem 6.1. 

In fact inequality (16.11) remains true if the constant~ is replaced by 
the value one. The following example shows that the parameters c1 and c2 

in the bound 

f E <€2,,,., 

cannot both be less than one. 
Let C2 be from et 1), let e have the value 

e = (1-c2)7r/(n + 1), 

(16.16) 

(16.17) 

and let f be a function in <€2"' that satisfies the following conditions. 
For each integer j, f does not change sign on the interval [jTr/ (n + 1)-!e, 
jTr/(n+l)+!e], and f is zero on the interval [jTr/(n+l)+!e, (j+l) 
Tr/(n + 1)-!e ]. The equations 

llfffoo = 1 (16.18) 
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and 

f(j-rr/[n + 1]) = ( - l)i, j=O, ±1, ±2, ... , (16.19) 

hold. A suitable function is shown in Figure 16.1. Expressions (16.18) 
and (16.19) imply that the zero function is a best approximation from 22n 
to f, because otherwise a best approximation would change sign (2n + 2) 
times in [O, 27T]. Hence En(/) is equal to one. Moreover, Figure 16.1 
shows that w ( 7T/[n + 1] - e) is also equal to one. Therefore substituting 
the value (16.17) gives the equation 

En(/)= w(C27T/[n + 1]). (16.20) 

Thus, if c2 < 1 in inequality (16.16), then c1 is not less than one. 

16.2 The Dini-Lipschitz theorem 
The Dini-Lipschitz theorem identifies a quite general class of 

functions fin 1:€2 .,., such that SJ converges uniformly to fas n tends to 
infinity, where Sn is the Fourier series operator that is defined in Section 
13.2. Because the method of proof depends on Theorem 3.1, we require 
an upper bound on llSnll. Therefore we recall from Section 13.2 that the 
norm has the value 

llSnll = _!_ f,.,. lsin~(n ~d)8JI dO. 
7T o sm (28) 

(16.21) 

The integrand is bounded above by (2n + 1) and by 7T/ 0, where the first 
bound is a consequence of equation (12.51), and where the second bound 
follows from the elementary inequality 

sin(!o);:.o/7T, 0,,;;0,,;;7T. (16.22) 

Therefore the relation 

llSnll,,;;- (2n+l)d0+- ~do lJµ lf,,. 
7To 7TµO 

= (2n + 1)µ/7T +In 7T - In µ 

Figure 16.1. A function that satisfies equation (16.20). 

I 

0 k 

7C 
---e 
n+I 

7C 
---e 
n+I 

(16.23) 
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is satisfied for allµ, in (O, 7T). In particular, the valueµ,= 1T/(2n + 1) gives 
the bound 

llSn II<:;: 1 +In (2n + 1), (16.24) 

which is sufficient to prove the following theorem. 

Theorem 16.3 (Dini-Lipschitz) 
If f is any function in <&2.,. whose modulus of continuity satisfies 

the condition 
lim lw(8) In BI= 0, (16.25) 
11-+0 

then the sequence of Fourier series approximations {S,,f; n = 0, 1, 2, ... } 
converges uniformly to f. 

Proof. By applying Theorem 3.1, then Theorem 16.2, and then expres­
sion (16.24), we deduce the bound 

llf-Snflloo <:;: [1 + llSnllJEn(f) 

<:;: ~[1 + llSnllJw(__!!__) 
n+l 

<:;:~[2+ In (2n + l)]w(n: 1). (16.26) 

Because the elementary inequality 

In (2n + 1) <In (2 7T) + j 1n ( n : 1) I (16.27) 

and condition (16.25) imply that the right-hand side of expression (16.26) 
tends to zero as n tends to infinity, it follows that the theorem is true. D 

One reason why the theorem is useful is that it is often easy to show that 
a continuous function satisfies condition (16.25). However, condition 
(16.25) is not necessary for the uniform convergence of the Fourier series. 
It is not possible to strengthen the theorem by improving the bound 
(16.24), because !!Sn!! is bounded below by a multiple of Inn. Specifically, 
equation (16.21) and elementary arithmetic give the inequality 

2 n Ji.,./(n+!l 'sin [(n + 1)8]1 
llSnll>- L 2 de 

1T i=l (j-l)7r/(n+"!l 8 
2 n +!Ji7r/(n+!) 

>- L ~ !sin [(n +t)8JI d8 
1T i=l J1r (i-l)7r/(n+}J 

n 1 
=(4/7T2) I-:-

i=l J 

> (4/ 7T2) In (n + 1), (16.28) 

which is important to the work of the next chapter. 
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16.3 Some bounds that depend on higher derivatives 
It is interesting that Theorems 16.1 and 16.2 apply to Lipschitz 

continuous and to continuous functions, because they are derived from an 
inequality, namely expression (16.2), that is valid when f is continu­
ously differentiable. In this section we move in the other direction, for, 
given that f can be differentiated more than once, we deduce a bound on 
En (f) that is stronger than expression (16.2). Our main result is analogous 
to Theorem 3.2, but it is a little more difficult to prove, because, if r is a 
trigonometric polynomial, then the indefinite integral of r is also a 
trigonometric polynomial only if the constant term of r is zero. 

Theorem 16.4 (Jackson IV) 
If the function f is in the space ~~~. then the error of the best 

approximation from !!ln to f satisfies the condition 
k 

En(/)~(2n: 2) llf'k)lloo· {16.29) 

Proof. First we establish the bound 

En (f) ~ 2n: 2 llf' - rlloo, (16.30) 

where r is any function in !!ln. and then the proof is completed by induction 
on k. We obtain inequality (16.30) by extending the proof of Theorem 
15.1. If/' is replaced by {f' -r) in the second integral of equation (15.11), 
the right-hand side of this equation is changed by the amount 

1 f"' - 27T _}1r(8+x+7T)d8=cf>(x), (16.31) 

say. We may express r( (J + x + 7T) in terms of cos {j8), sin {j8), cos (jx) and 
sin {jx), for j = 0, 1, ... , n, and we may integrate over (J analytically, 
which shows that the function {cf>(x), -oo < x < oo} is in !!ln. It follows from 
equation (15.11), and from the fact that the first term on the right-hand 
side of this equation is a constant, that En (f) is equal to the maximum 
error of the best approximation from !!ln to the function 

1 J"' 27T _.,,. 9[f'(8+x+7T)-r(8+x+7r)]d8, -oo<x <oo, 

(16.32) 

where r is any element of !!ln. Hence inequality (15.18) remains valid if f' 
is replaced by (/'- r). Therefore the required condition (16.30) is a 
consequence of expression (15.19). 
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To begin the inductive part of the proof, we suppose that inequality 
(16.29) is satisfied when k is replaced by (k -1). It follows from 
expression (16.30) and from the inductive hypothesis that the bound 

En (f) ~ 2 'TT" 2 min llf' - rlloo 
n + rE!!ln 

=2n:2En(f') 

k 

~(-'TT"-) llf(k)lloo 
2n+2 

(16.33) 

is obtained, which is the general step of the inductive argument. Because 
Theorem 15 .1 states that inequality (16.29) holds when k = 1, the proof is 
complete. D 

One fundamental difference between Theorems 3.2 and 16.4 is that 
Theorem 16.4 does not require the condition k ~ n. It is therefore 
interesting to consider the consequences of inequality (16.29) when k is 
larger than n. For example, if f is an infinitely differentiable function 
whose derivatives are bounded, if we let n = 1, and if we take the limit of 
inequality (16.29) ask tends to infinity, then it follows that E 1(/) is zero. 
Thus the function f is in the space 22 i. which can also be proved from the 
fact that the derivatives of the Fourier series expansion off are equal to 
the derivatives of f. The more usual application of Theorem 16.4, 
however, is when a bound on llf<kllloo is known, and a trigonometric 
polynomial approximation to f is required, whose maximum error does 
not exceed a given tolerance. Inequality (16.29) provides a value of n 
such that a trigonometric polynomial from 22n is suitable. 

16.4 Extensions to algebraic polynomials 
In this section we deduce from Theorems 16.1 and 16.2 some 

useful bounds on the least maximum error 

d~ (g) = min llg-plloo, (16.34) 
pe(!Pn 

where g is a function in <e[ -1, 1]. It is necessary to relate approximation 
by algebraic polynomials to best approximation by trigonometric poly­
nomials. The following technique is used, which is similar to one that 
occurs in the proof of Theorem 13 .1. 

Given g in <e[ - 1, 1 ], we let f be the function in <e2 ,,. that is defined by 
the equation 

f(x) = g(cos x), -oo<x <oo. (16.35) 



The order of convergence of polynomial approximations 196 

We let q* be an approximation to f from 22n that satisfies the condition 

En (f) = llf - q *I loo. (16.36) 

Because f is an even function, it follows that q *is also even, but the theory 
that has been given does not include a proof of this statement. Instead we 
note that, if {q*(x); -oo < x < oo} is not even, then {q*( - x); -oo < x < 
oo} and hence {l[q*(x) +q*( -x)]; -oo < x < oo} are also best approxima­
tions from 22n to f. Therefore, in the hypothetical case when there is some 
freedom in q*, we can choose q* to be an even function, which gives an 
expansion of the form 

n 

q*(x) = L ci(cos x )i, 
j=O 

-oo<x <oo, (16.37) 

where each ci is a real coefficient. Therefore the algebraic polynomial 
n 

p*(t) = I cA -1::s;t::s;1, (16.38) 
j=O 

satisfies the equation 

q*(x)=p*(cosx), -oo<x<oo. (16.39) 

It follows from equations (16.34), (16.35), (16.36) and (16.39) that the 
inequality 

d: (g) =s; llg-p*lloo 
= max lf(x)-q*(x)I 

-oo<x<oo 

=En(f) (16.40) 

is obtained. In fact this inequality is satisfied as an equation for all g in 
~[ -1, 1]. It is important to the proof of the following theorem. 

Theorem 16.5 (Jackson V) 
For all functions gin~[ -1, 1], the least maximum error (16.34) 

satisfies the bound 

(16.41) 

where wg is the modulus of continuity of g. Further, if the Lipschitz 
condition 

(16.42) 

holds for all t0 and t 1 in [ -1, 1], then d~ (g) is bounded by the inequality 

d: (g) ::s; 7rMg/2(n + 1). (16.43) 
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Proof. The bound (16.41) is a corollary of Theorem 16.2 and condition 
(16.40), provided that the inequality 

(16.44) 

is obtained, where wr is the modulus of continuity of the function (16.35). 
In order to establish this inequality we require the elementary relation 

icos fJ1 -cos fJol ~lei - fJol. (16.45) 

Thus the bound 

wg(_.!!_1) = max lg(fJ1)- g(Oo)I 
n + 1111-llol""?T/(n+l) 

;:, max lg( cos fJ1)- g(cos fJo)I 
lll1-llol""'1T/(n+l) 

max lf(fJ1)- f(fJo)I 
lll1-llol""'1T/(n+l) 

(16.46) 

is satisfied, where f is the function (16.35). Therefore the first part of the 
theorem is true. 

In order to prove the second part, we note that inequality (16.42) and 
the method of proof of inequality (16.44) imply the relation 

\f(x1)- f(xo)I ~ w1Clx1 - xol) 

~ Wg(lx1 -xol) 

~Mglx1 -xol. (16.47) 

Therefore condition (16.43) is a consequence of the bound (16.40) and 
Theorem 16.1. D 

One important corollary of the theorem is the extension of Theorem 
15 .1 to algebraic polynomials. Because the Lipschitz condition 

lg(t1)- g(to)I ~ l\g'\\oolt1 - tol (16.48) 

is satisfied if g is in cg<0 [ -1, 1], expression (16.43) implies the bound 

(16.49) 

Therefore inequality (3.19) is valid. Specifically, if the range [a, b] is 
[ -1, 1], we may let c have the value t7T. It follows from Theorem 3.2 that 
the condition 

d! (g) ~ (n -k);(t7r)k \\g(k)l\oo, n;:, k, 
n. 

(16.50) 

is obtained by all functions g in the space cg(k)[ -1, 1]. 
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We consider whether a bound that is stronger than inequality (16.50) 
can be found by applying the method of proof of Theorem 16.5 to the 
bound (16.29). First we let k = 2. Expressions (16.40) and (16.29) imply 
the relation 

2 

d~ (g) ~ Cn: i) llf"lloo, (16.51) 

where f is still the function (16.35). Hence, in order to deduce a condition 
of the form (16.50), it is necessary to bound 11/"lloo by a multiple of llg"lloo. 
Here the method breaks down, however. For example, if g is the function 
{g(x) = x; -1~x~1}, then llg"lloo is zero but llf"lloo is one. Therefore the 
close relation between minimax approximation by trigonometric and 
algebraic polynomials, which is shown in Theorem 16.5, does not extend 
to bounds that depend on higher derivatives. 

16 Exercises 
16.1 Find values of n such that En (f) is less than 10-4 for each of the 

following three functions f: (i) the function defined in Exercise 
15 .1, (ii) the function defined in Exercise 13.2, and (iii) a function 
in r52"' that is infinitely differentiable and that satisfies the 
condition 11/kllloo ~ lOk, for all positive integers k. 

16.2 Let c2(n) be a number such that the condition En (<P) ~ 

c2(n )ll<P"lloo is satisfied, where <P is any function in r5~2l. By letting 
<P be the function (16.3), prove that, if f is any function in r5~1l, 
then En(/) is bounded by the inequality 

1 

En(/)~ [2c2(n )J2llf'lloo. 

16.3 Give an example to show that the value of c2 (n) in the inequality 

En (<fJ) ~ C2(n )ll<P"lloo, <PE r5~2l, 
is at least rr 2/[8(n+1)2]. 

16.4 Let f be a function in ri< 0 [0, 1], and let BJ be the Bernstein 
approximation (6.23). Deduce from the equation 

(f- BJ)(x) = kt k !(nn~ k)! xk(l -xr-k[f(x)-f(;) J 
that, when n = 2, the inequality 

llf - B2flloo ~fr llf'lloo 

is satisfied. Compare the bound (16.50) in the case when k = 1 
and n = 2, after allowing for the change to the range of the 
variable. 
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16.5 By following the method of proof of Theorem 3.2, obtain from 
condition (16.49) a bound on d~(g) that is stronger than 
inequality (16.50), and that is valid when n = k -1. Deduce from 
Theorems 4.2 and 7 .3 that the least number c (n) that satisfies the 
inequality 

d~ (g) ~ C (n )ilg(n+l)lloo, g E <g(n+l)[ -1, l], 

has the value c(n) = l/2n(n + 1)!. 
16.6 By showing that the function {p(x) =sin (nx)/n; -oo<x <oo} is 

the element of !!2n whose minimax norm is least subject to the 
condition p'(O)= 1, prove that the inequality llP(kllloo~nkJJplJoo 
holds for all trigonometric polynomials p in !!2n. 

16.7 Let f be a function in <€2 " that has the form {f(x) = lxl~} in a 
neighbourhood of the origin. Deduce from Exercise 16.6 that 
En(f) is bounded below by a multiple of (n 2Jl/IJoo)-113 . Compare 
the bound that is given by Theorem 16.2. 

16.8 Theorem 16.4 shows thatthe constant c2(n) of Exercise 16.2 may 
be given the value [7r/(2n +2)]2. Deduce from the proofs of 
Theorems 15.1and16.4 that smaller values of c2(n) exist, giving 
attention to the conditions on f' that make En (f') close to 
[1T/(2n +2)]JJf"JJoo. 

16.9 Prove that the inequality 

(/) [ 1 (2n +2)2c2(n)] (_!!__) 
En ~ + 2 z w 1 1T n + 
is satisfied, for all functions f in <€ 2 ,,, where c2(n) is the constant 
of Exercise 16.2. A suitable method is to replace <Pin the proof of 
Theorem 16.2 by the function 

</J(x)= J_8
/(x+8)(8-j8j)d8/82 , -oo<x<oo. 

Hence Exercise 16.8 implies that the constant tin the statement 
of Theorem 16.2 is not optimal. 

16.10 By considering a case when the best minimax approximation in 
r!/'2 to a function gin<€[ -1, 1] is the zero function, show that, if c 
is a constant that satisfies the condition 

g E <€ 0 1( -1, 1), 

then c is not less than~- Further, by considering a case when the 
best approximation is a straight line, show that the lower bound 
on c can be increased to ( 6 - 4.J 2). 
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The uniform boundedness theorem 

17 .1 Preliminary results 
If an approximation to a function fin ~[a, b] is required to high 

accuracy, then it is usual to calculate a sequence of approximations 
{Xnf; n = 0, 1, 2, ... }, until the accuracy is achieved. Therefore it may be 
helpful to know whether the sequence converges uniformly to f. The 
uniform boundedness theorem gives one of the most useful methods for 
answering this question. A simple version of it is proved in Section 17 .2, 
which implies that, if the operators {Xn; n = 0, 1, 2, ... } are linear, then 
uniform convergence is obtained for all functions fin ~[a, b ], only if the 
sequence of norms {llXnll; n = 0, 1, 2, ... } is bounded. Because expres­
sions (13.29) and (16.28) give the inequality 

llRnlloo > (4/ 7T2) In (n + 1), (17.1) 

it follows, for example, that there exists f in ~[-1, 1] such that the 
sequence of approximations {Rnf; n = 0, 1, 2, ... } fails to converge to f. 
Moreover, because the work of Section 17.2 applies also to the approxi­
mation of functions in ~2 .,,., the bound (16.28) implies that there exist 
continuous periodic functions whose Fourier series approximations do 
not converge uniformly. 

Therefore Section 17 .3 addresses the question whether there is a 
sequence of operators {Xn; n = 0, 1, 2, ... } for calculating approxima­
tions to functions in ~2 ,,,, that is more suitable than the Fourier series 
sequence {Sn; n = 0, 1, 2, ... }. We find the remarkable result that, if Xn is 
linear, if Xnf is in !!ln for all f, and if the projection condition 

Xnf=f, f E f!ln. (17 .2) 

is satisfied, then the norm llXnlloo cannot be less than llSnlloo. Hence, in 
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order to obtain uniform convergence, it is necessary to give up the 
projection condition, or to give up the linearity of the operator. A similar 
conclusion is reached for approximation by algebraic polynomials in 
Section 17.4. The main theory of the chapter requires the definitions and 
elementary results that are mentioned below. 

In order to prove the uniform boundedness theorem we make use of 
'Cauchy sequences' and 'complete' normed linear spaces. We note, 
therefore, that the sequence{/;; i = 0, 1, 2, ... } is a Cauchy sequence if, 
for any e > 0, there exists an integer N such that the difference \\f; - Ii\\ is 
less than e for all i;;;;. N and j;;;;. N. Further, a normed linear space is 
complete if every Cauchy sequence is convergent. In particular, the space 
Cf?[a, b] is complete when the norm is the oo-norm, which allows Theorem 
17.2 to be applied to Cf?[a, b]. 

We also make use of 'fundamental sets'. The set {f;; i = 0, 1, 2, ... } in a 
normed linear space 9lJ is called fundamental if, for any fin 9lJ and any 
e > 0, there exist an integer k and coefficients {a;; i = 0, 1, ... , k} such 
that the element 

k 

</> = I aJ; (17.3) 
i=O 

satisfies the condition 

(17.4) 

For example, the set of polynomials {f; (x) = x;; a ~ x ~ b; i = 0, 1, 2, ... } 
is fundamental in Cf?[a, b ]. 

One application of fundamental sets is to show that two bounded linear 
operators, Li and L 2 say, from 9lJ to 9lJ are equal. Clearly, if {f;; i = 

0, 1, 2, ... } is a fundamental set, then the operators are equal only if the 
equations 

i = 0, 1, 2, ... ' (17.5) 

are satisfied. The following argument gives the useful result that the 
conditions (17 .5) are sufficient for the operators to be the same. 

Suppose that the equations (17 .5) hold, but that Li and Lz are 
different. Then there exists fin 9lJ such that Lif is not equal to Lzf. We let 

e be the positive number 

e = \\Lif-Lzf\\j[\\Li\\+ \\L2\\], (17.6) 

and we let expression (17 .3) be an element of 9lJ that satisfies the bound 
(17.4 ). The properties of norms, the linearity of the operators, and 
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condition (17 .5) imply the relation 
llL1/-Lz/ll = llL1(/-</> )-Lz(/-</>)11 

~ [llL1ll + llL2llJllf-c!>ll 
< e [!IL 1 II+ llL2llJ, 
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(17.7) 
but this relation contradicts the definition (17 .6). Therefore the equations 
(17 .5) are suitable for showing that two operators are equal. 

17 .2 Tests for uniform convergence 
The two theorems of this section are useful for testing whether a 

sequence of linear operators {Xn; n = 0, 1, 2, ... } from !?lJ to fYJ has the 
property that {Xnf; n = 0, 1, 2, ... } converges to f for all fin @. 

Theorem 17.1 
Let {f;; i = 0, 1, 2, ... } be a fundamental set in a normed linear 

space !?JJ, and let {Xn; n = 0, 1, 2, ... } be a sequence of bounded linear 
operators from !?lJ to !?JJ. The equations 

lim llf;-Xn/dl = 0, i = 0, 1, 2, ... , (17.8) 
n~oo 

are necessary and sufficient conditions for the sequence {Xnf; n = 

0, 1, 2, ... } to converge to f for all fin@. 

Proof. Clearly the equations are necessary. To prove that they are 
sufficient, we let f be a general element of !?JJ. The definition of a 
fundamental set implies that, for any e > 0, there exists a function of the 
form (17 .3) that satisfies the condition 

11/-</>ll ~ !e/(M + 1), (17.9) 
where M is a fixed upper bound on the norms {llXnll; n = 0, 1, 2, ... }. 
Further, equation (17 .8) implies that there is an integer N, such that the 
coefficients of expression (17 .3) satisfy the bound 

II/; -Xn/ill ~!e /J
0 

lail, i = 0, 1, ... , k, (17.10) 

for all n ~ N. It follows from the properties of norms, and from the 
linearity of the operators, that the inequality 

II/ - Xn/ll ~ ll(f - </>) - Xn (/ - </>)II+ II</> - Xn</> II 
k 

~ (M + l)llf-</>ll +II L a;(/; - Xnf;)ll 
i=O 

k 

~(M+l)llf-</>ll+ L la;lllf;-Xnfdl 
i=O 

~e, n~N, (17.11) 

is satisfied, which completes the proof of the theorem. D 
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Because many algorithms for calculating spline approximations are 
bounded linear operators, Theorem 1 7 .1 is useful to the work of the last 
seven chapters. The next theorem shows that, if the norms {llXnl\; n = 
0, 1, 2, ... } are unbounded, then there is an unequivocal answer to the 
convergence question of this section. 

Theorem 17.2 (uniform boundedness) 
Let £¥J be a complete normed linear space, and let {Xn; n = 

0, 1, 2, ... } be a sequence of linear operators from PlJ to £¥J. If the 
sequence of norms {\IXnll; n = 0, 1, 2, ... } is unbounded, then there exists 
an element, f* say, in £¥J, such that the sequence {Xnf*; n = 0, 1, 2, ... } 
diverges. 

Proof. Because it is sufficient to show that a subsequence of {Xnf*; n = 
0, 1, 2, ... } diverges, we may work with a subset of the sequence of 
operators. We may choose operators whose norms diverge at an arbi­
trarily fast rate. Therefore we assume, without loss of generality, that the 
conditions 

\\Xnll;;. (20n )4 n, n =0, 1, 2, ... , (17.12) 

are satisfied. The method of proof is to use these conditions to construct a 
Cauchy sequence {fk; k = 0, 1, 2, ... }, whose limit f* is such that the 
numbers {llXnf*ll; n = 0, 1, 2, ... } diverge. 

The terms of the Cauchy sequence depend on elements {cf>n; n = 
0, 1, 2, ... } of PlJ that satisfy the conditions 

n = 0, 1, 2, .... (17.13) 

The definition of llXnll implies that these elements exist. We let fo = </>0, 
and, fork;;. l, fk has the form 

{either fk-1 
fk = or fk-1 + (~)(!)k</>k, (17.14) 

where the choice depends on llXdk-111 and will be made precise later. In 
all cases expression ( 17 .14) implies that for j > k the bound 

(17.15) 

is obtained. Therefore {/k; k = 0, 1, 2, ... } is a Cauchy sequence, and its 
limit f* satisfies the condition 

k = 0, 1, 2, ... ' (17.16) 
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which gives the inequality 

llXnf* II ;;.. llXnfn 11- llXn (f* - f n }II 

;;.. llXnfnll-dr+1llXnll. 

It follows that the relation 

llXdkll;;.. k + Ct)k+1llXkll, k = 0, 1, 2, ... ' 
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(17.17) 

(17.18) 

would imply the divergence of the sequence {Xnf*; n = 0, 1, 2, ... }. We 
complete the proof of the theorem by showing that the choice (17.14) 
allows condition (17 .18) to be satisfied. 

The value of fo is such that condition (17.18) holds when k = 0, but this 
case is unimportant. For k;;.. 1 we let fk = fk-1 if this choice satisfies 
inequality (17 .18). Otherwise, when the bound 

\IXdk-11!< k + (!)k+1i1Xkll (17.19) 

is obtained, fk is defined by the second line of expression ( 17 .14 ). Hence 
the triangle inequality for norms, expressions (17 .13) and (17 .19), and 
the bound (17 .12) give the relation 

llXdkll;;.. llCi)(!)kXk<Pkll-llXdk-111 
> 0.6(!)kl1Xkll-[k + (!)k+1llXki1] 

= [k + C!)k+lllXkllJ + [O.l(!)ki!Xkll-2k] 

;;.. k + C!)k+1llXkll, (17.20) 

which establishes expression (17 .18). Therefore, for reasons given 
already, the sequence {Xnf*; n = 0, 1, 2, ... } diverges, where f* is an 
element of the complete linear space r!/J. D 

Because the spaces <e[a, b] and <(5'2 "' are complete, and because the 
bound ( 17 .1) applies to both II Rn lloo and II Sn lloo, the theorem proves two of 
the statements that are made in the first paragraph of this chapter, namely 
that there exists fin <e[-1, 1] such that {Rnf; n = 0, 1, 2, ... } diverges, 
and there exists fin <e2 "' such that {Snf; n = 0, 1, 2, ... } diverges. These 
remarks, however, should not deter one from using the operators Rn and 
Sm because the rate of divergence 

llRnll = l!Snll- ln n (17.21) 

is slow, and in any case divergence cannot occur when f is differentiable. 
From a practical point of view it is more important to keep in mind that 
it is unusual to calculate polynomial approximations of high degree. 

17 .3 Application to trigonometric polynomials 
In this section we prove the result, mentioned in Section 17 .1, 

that, if L is a bounded linear operator from <(5'2"' to 22m and if the 
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projection condition 

Lf=f, f E 22"' (17.22) 

is satisfied, then llLlloo is bounded below by IJSnlloo· The method of proof 
depends on the displacement operator D>. from <f52 ,,,. to <f52 ,,,. that is defined 
by the equation 

(D>.f)(x) = f (x +A), -oo <x <oo, (17 .23) 

where A is any real parameter, and where f is any function in <f52 ,,,.. It also 
depends on the operator 

1 f 2-rr 
G = 27T Jo D->.LD>. dA. (17.24) 

Before beginning the proof of the main result, the meaning of this integral 
is explained. 

For any fin <f52 ,,,., we let fA be the function 

(17.25) 

which is also in <f52 ,,,.. For any fixed value of the variable x, we regard f>- (x) 
as a function of A. Equation (17 .24) means that Gf is the function 

1 J2-rr 
(Gf)(x) = 27T 0 fA(x) dA, -oo<x <oo, (17.26) 

which is a valid definition, because the following discussion shows that 
f>- (x) is a continuous function of A. 

It is straightforward to prove that DAf depends continuously on A. 
Specifically, because the definition (17.23) implies the equation 

(D,,J- DAf)(x) = f(x + µ, )- f(x +A), 

we have the bound 

-00 < x < oo, (17.27) 

llD,J-DA[JJoo :o;;; wf(Iµ, -A I), (17 .28) 

where w1 is the modulus of continuity of f. Thus the inequality 

llLDµf- LDAflloo :o;;; llLJJ wf(Iµ, -A I) (17 .29) 

is satisfied, which shows that the function LD>.f also depends continu­
ously on A. 

To continue the discussion we require the result that the family of 
functions {LDAf; 0 :o;;; A :;;;;; 27T} is uniformly continuous. This result holds 
because the dependence on A is continuous, because the range of A is 
compact, because each function in the family is continuous in the variable 
x, and because, due to periodicity, it is sufficient to establish uniform 
continuity when x is restricted to the compact interval 0:;;;;; x:;;;;; 47T. We let 
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w* be the modulus of continuity of the family. Therefore, if we replace f 
by LDvf in expression (17 .28), we find that the bound 

llD,.LDvf-DALDvfll :s;; w*(Iµ -,\I) (17 .30) 

is obtained for all values of the parameters µ, A and 11. Moreover 
expression (17 .29), and the fact that the norm of a displacement operator 
is one, give the condition 

(17.31) 

We deduce from the last two inequalities and from the definition (17 .25) 
that the relation 

II/,. -/All:s;;ll/,. -D-,.LDAfll+llD-,.LDd-fAll 

:s;; llLll w1(Iµ -,\ i) +w*(Iµ -,\I) (17.32) 

holds, which completes the demonstration that /A is a continuous function 
of A. 

We note also that the function Gf is in ~2.,,., because it is an average of 
functions that are in ~2.,,.. We are now ready to prove the relation between 

llLlloo and llSnlloo· 

Theorem 17.3 
If L is any bounded linear operator from ~2 .,,. to !!lm that satisfies 

the projection condition (17 .22), then llLlloo is bounded below by llSnlloo· 

Proof. The key to the proof is that, for every operator L that satisfies the 
conditions of the theorem, the equation 

1 I 2.,,. 

2'77' 
0 

D-ALD>.. d,\ =Sn (17.33) 

is obtained. In order to establish this equation, we recall from Section 
17 .1 that it is sufficient to prove that the conditions 

i = 0, 1, 2, ... ' (17.34) 

hold, where we are using the notation (17 .24 ), and where {/;; i = 
0, 1, 2, ... } is any fundamental set in ~2.,,.. Theorem 13.1 shows that, in 
the notation of equations (13.22)-(13.24), the functions {cos {j.}; j = 
0, 1, 2, ... } and {sin {j.}; j = 1, 2, 3, ... } together form a fundamental set. 
Therefore we prove that equation (17.34) is satisfied for each of these 
functions. We recall from Section 13.2 that the operator Sn gives the 
equations 

(17.35) 
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Sn cos {j.} = O} 
Sn sin {j.} = 0 , 

j>n, 
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(17.36) 

which we compare with the equations that are obtained by applying G to 
the functions in the fundamental set. 

When/; is in 22n, then D>.f; is also in 22n. Hence the projection condition 
(17 .22) and the definition (17 .23) of the displacement operator imply the 
identity 

D->.LD>.f; =D->.D>./; = /;, f; E22n. (17.37) 

It follows that Gf; is equal to expression (17 .35). 
Next we consider G cos {j.} when j > n. We require the equation 

D"' cos {j.} = cos (jA) cos {j. }- sin (jA) sin {j.}, (17.38) 

and we require the fact that L cos {j.} and L sin {j.} can be expressed in the 
form 

L ~'{i.}= '~"[a;, cos {k.}+ b;"m {k.}] I 
L sm {J.} = L [aik cos {k.} + f3ik sm {k.}] 

k=O . 

(17.39) 

Hence we can write LD>. cos {j.} in terms of the basis functions of 22n. An 
obvious continuation of this procedure gives D->.LD>. cos {j.} in terms of 
the same basis functions, and we obtain G cos {j.} by integrating this 
expression over A. Every term of this integral includes a factor of the form 

2.,.. I [cos (kA) or sin (kA)] x [cos (jA) or sin (jA)] dA. (17.40) 

Because k is in the interval [O, n ], and because j is greater than n, each of 
these factors is zero. It follows that G cos {j.} is equal to Sn cos {j.}. A 
similar argument gives the equation 

G sin {j.} =Sn sin {j.}, j>n, (17.41) 

which completes the proof that the operators G and Sn are the same. 
The required lower bound on llLll is a consequence of equation (17.33), 

the properties of norms, and the fact that \\D>. II is one. By extending the 
triangle inequality for norms to integrals, it follows from equation (17 .33) 
that the inequality 

1 r 2 ... 

\\Snl\,,,; 27T Jo \\D->.LD"'\ldA (17.42) 
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is satisfied. The integrand is bounded above by the relation 

!ID-ALDA II :!S; llD-A 11 llLll llDA II = l\L\\. (17.43) 

Therefore \ISnll is a lower bound on llLll. 0 
This theorem gives an excellent reason for taking the point of view that 

Sn is the best of the linear projection operators from t:e2 7r to !!ln. 

17 .4 Application to algebraic polynomials 
An interesting question is to seek the linear operator L from 

t:e[a, b] to PP n that satisfies the projection condition 

Lf = f, f E PP"' (17.44) 

and whose norm \\L\\oo is as small as possible. Equation (17.44) implies the 
bound 

\\L\\oo ;;. 1, (17.45) 

which can hold as an equation when n = 1. Specifically, it is shown in 
Section 3 .1 that, if Lf is the function in PP 1 that is defined by the 
interpolation conditions 

(Lf)(a) = f(a)} 
(Lf)(b) = f(b) , 

(17.46) 

then \\L\\oo is equal to one. It follows that \IRn\\ is not a lower bound on \\L\\. 
The least value of \\L\\ for general n is unknown, but the next theorem 
gives a useful condition that depends on \\Rn\\. 

Theorem 17.4 
If Lis any bounded linear operator from t:e[-1, 1] to PP"' that 

satisfies the projection condition (17.44), then the inequality 

\\L\\ ;;.i\\Ro+ Rn\\ (17.47) 
holds. 

Proof. Because the proof has much in common with the proof of 
Theorem 17 .3, some of the details are omitted. Instead of the displace­
ment operator DA, it is helpful to employ an average of two displace­
ments. Therefore the operator HA is defined by the equation 

(H>./)(cos 8) = i{f(cos [8 +A])+ /(cos [8-A ])}, 0 :!S; 8 :!S; TT. 

(17.48) 

It should be clear that HA[ is in t:e[-1, 1] for every fin t:e[-1, l], and that, 
if f is in PP"' then HAf is also in PPn. We take for granted that the operator 

1 f. 27r 
G=- HALHA dA 

1T 0 
(17.49) 
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is well defined. The key equation in the present proof is the identity 

G=R0 +R"' (17.50) 

and, to establish it, we make use of the fundamental set {T;; j = 0, 
1, 2, ... }, where T; is still the Chebyshev polynomial 

T;(cos 0) =cos (jO), 0 ~ 0 ~TT. (17.51) 

Therefore we recall from Section 12.4 that R 11 gives the functions 

RT·={ T;, 
n I 0, j> n. 

j~n, 
(17 .52) 

Moreover, it is important to note that the definition (17.48) implies the 
relation 

(17.53) 

for each scalar A. Hence GT; and (Ro+ Rn) T; are the same if j ~ n, which 
depends on the projection condition (17.44). The term Ro allows for the 
fact that the integral of the function {cos2 (jA ); 0 ~A ~·27r} when j = 0 is 
twice the value that occurs when j is a positive integer. When j > n, we 
may express LH>.. T; in the form 

n 

LH>..T; =cos (jA) L: a;kTk, 
k=O 

(17.54) 

where the coefficients {a;k; k = 0, 1, ... , n} are independent of A. There­
fore the equation 

n 

H>..LH>..T; = L: a;k cos (jA) cos (kA)Tk 
k=O 

(17.55) 

is satisfied. Because the integral over A of each term of the sum is zero, we 
find the identity 

GT;=O 

= (Ro+Rn)T;. j>n, (17.56) 

which completes the proof of expression (17.50). 
Because llH>..11 is one, equations (17.49) and (17 .50) give the bound 

1 J21T 
llRo+Rnll~- llH>..LH>..11 dA 

1T 0 

1 f 2,. 
~ - llH>.. ll2 llLll dA 

1T 0 

= 2llLll, (17.57) 

which is the required result. 0 
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By combining this theorem with inequality (17 .1), we find that l!Llloo is 
bounded below by the inequality 

llLl!oo> (2/7T2) ln (n + 1)-t (17.58) 

It follows from Theorem 17.2 that the sequence {Xnf; n = 0, 1, 2, ... } 
does not converge uniformly to f for all fin <e[-1, l], if each Xn is any 
linear operator from <e[-1, 1] to (Jln that leaves polynomials of degree n 
unchanged. However, we recall from Section 6.3 that the Bernstein 
operators (6.23) give uniform convergence. Perhaps it would be useful to 
investigate algorithms for calculating polynomial approximations that 
have bounded norms, that are linear, and that are more accurate than the 
Bernstein method when f can be differentiated more than once. 

17 Exercises 
17 .1 Prove that the space <e[a, b] is complete with respect to the 

co-norm. 
17 .2 Let {g;; i = 2, 3, 4, .... } be an infinite sequence of numbers in the 

interval [a, b ], such that every point of [a, b] is a limit point of the 
sequence. Prove that the functions {4>0 (x) = 1; a,,;;: x,,;;: b }, 
{4>1(x)=x; a:o;;x:o;;b} and {4>;(x)=lx-g;j; a:o;;x:o;;b; i=2,3, 
4, ... } are a fundamental set in <e[a, b ]. 

17 .3 Let f1J be the space <e~1;, of periodic functions with continuous 
first derivatives. The Fourier series operators {Sn; n = 0, 1, 
2, ... } map f1J into f1J and the sequence of norms {i!Snlloo; n = 0, 1, 
2, ... } diverges. Nevertheless, Theorem 15.1 shows that the 
sequence of functions {Snf; n = 0, 1, 2, ... } converges uniformly 
to f for all f in ffJ. Explain why there is not a conflict with the 
uniform boundedness theorem 17.2. 

17.4 Calculate the right-hand side of inequality (17.4 7) in the case 
when n = 1. You should find, of course, that it is not greater than 
one. 

17 .5 Prove that the operator G of equation (17.49) is well defined. 
17 .6 For every positive integer n, let {gni; i = 0, 1, ... , 2n} be a set of 

distinct points of [a, b ], arranged in ascending order, and such 
that gno =a and gn 2n =b. For any fin <e[a, b ], the function Xnf is 
defined to be the piecewise quadratic polynomial that is a single 
quadratic on each of the intervals {[gni• gni+2]; i = 0, 2, ... , 
2n -2}, and that interpolates the function values {f(gn;); i = 0, 
1, ... , 2n }. Find necessary and sufficient conditions on the points 
[Un;;i=O,l, ... ,2n};n=l,2,3, ... ] for the sequence {Xnf; 
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n = 1, 2, 3, ... } to converge uniformly to f for all f in 
C€[a, b ]. 

17.7 Prove that the powers {cf>k(x)=xk;-1,,;;x~l;k=0,2,3, 
4, ... }, excluding the linear function {c/> 1(x)=x;-1,,;;x,,;;l}, 
are a fundamental set in C€[- l, l], but that the Chebyshev 
polynomials {Tk; k = 0, 2, 3, 4, ... }, excluding the linear term, 
are not a fundamental set in C€[-1, 1]. 

17.8 Let {Ln; n = 0, 1, 2, ... } be a sequence of linear operators from 
ce[-1, 1] to ce[-1, 1] such that, for every fin ce[-1, l], the 
sequence of functions {Lnf; n = 0, 1, 2, ... } converges uniformly 
to f. Let Xn be the operator 

1 J27T 
Xn = - HALnHA d,\ - Ro, 

'TT 0 

where HA and R 0 occur in the proof of Theorem 17.4. Prove that, 
for every fin C€[-l, l], the sequence {Xnf; n = 0, 1, 2, ... } con­
verges uniformly to f. Note that Ln need not be a projection. 

17 .9 Construct a linear operator L from C€[ -1, 1] to P/>2 , satisfying 
the projection condition (17.44 ), whose norm llLlloo is as small as 
you can make it. By letting L have the form !(LA + Lµ.), where, for 
any f in C€[-1, 1], LA[ is the quadratic polynomial that inter­
polates the function values {/(-,\ ),f(O),f(A )}, it is possible for 
llLlloo to be less than i. 

17 .10 Let S[n, N] be the operator from C€2 7T to 22n that corresponds to 
the discrete Fourier series method of Section 13.3. Let L be any 
linear operator from C€2 7T to 22n that satisfies the projection 
condition (17 .22) and that has the property that, for any fin %7T, 
the function Lf depends only on the function values 
{f(2TTj/ N); j = 0, 1, ... , N -1}. Prove that, if n < !N, then llLlloo 
is bounded below by llS[n, NJlloo· 
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Interpolation by piecewise polynomials 

18.1 Local interpolation methods 
We have noted several disadvantages of polynomial approxima­

tions. In Chapter 3, for example, it is pointed out that they are not well 
suited to the approximation of the function shown in Figure 1.1, because, 
if {p(x); -oo<x <oo} is a polynomial whose degree is non-zero, then 
lp(x)I becomes unbounded as lxl tends to infinity. It is noted also that it 
can be highly inefficient to use an analytic function to represent a function 
that is not analytic. Therefore it happens often that, in order to obtain 
sufficient accuracy by a polynomial approximation, it is necessary to let 
the degree of the polynomial be high. In this case there may not be 
sufficient data to determine all the coefficients properly, the effort of 
calculating the polynomial is increased, and the tendencies towards 
unboundedness are exacerbated. Really polynomials are quite inap­
propriate for general use as approximating functions. Because piecewise 
polynomials are much more successful in practice, they are studied in the 
next four chapters. 

We use the notation {s (x); a .;;; x .;;; b} for a piecewise polynomial. In 
this chapter s is defined by the interpolation equations 

s(x;) = f(x;), j= 1, 2, ... , m, (18.1) 

where the function values {f(x;); j = 1, 2, ... , m} are given, and where 
the data points satisfy the conditions 

a=x1<xz< ... <xm=b. (18.2) 

This section is concerned with interpolation methods that have the 
property that, for any fixed x, the function value s(x) depends on only a 
few of the data, whose abscissae are close to x. 
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The most frequently used method of this type, namely piecewise linear 
interpolation, has been mentioned already in Section 3.4. In each of the 
intervals {xi .s x.:; xi+l; j = 1, 2, ... , m -1}, s(x) is defined by the formula 

(18.3) 

which is equivalent to equation (3.29). The main advantages of the 
method are that {s (x); a .:; x .:; b} adapts itself easily to the form of {f (x); 
a.:; x.:; b }, and that the error \lf- s\\oo can be controlled directly by the 
spacing between data points. However, in order to achieve a prescribed 
accuracy, piecewise linear interpolation usually requires far more data 
than some higher order methods. 

We consider two higher order methods that are quite useful. Both of 
them define s to be a cubic polynomial, si say, on each of the intervals 
{xi .s x .s xi+l; j = 1, 2, ... , m -1}. Therefore there are two degrees of 
freedom in si after equation (18.1) is satisfied. In the first method si is 
defined by interpolating two more function values. If 2 .s j .s m - 2, these 
values are /(xi- 1) and f(xi+2), but, if j = 1 or m -1, they are /{x3 ) and f(x 4 ) 

or /(Xm-3) and f(Xm- 2) respectively. In the other method the derivatives 
{s'(xi); j = 1, 2, ... , m} are given or are calculated at the beginning of the 
interpolation procedure. For example, if 3.:; j.:; m - 2, we may let s'(xi) 

be the derivative at xi of the quartic polynomial that interpolates the five 
function values {f(xk); k = j-2, j-1, j, j + 1, j + 2}. The derivatives s'(xi) 

and s'(xi+1) fix the two degrees of freedom in si for each j. Hence si(x) is 
the cubic polynomial 

Sj(X) = f(xj) + s'(xj)(x - Xj) + C2(x - Xj)2 + C3(X - Xj)3 ' (18.4) 

where the coefficients have the values 

3[/(xi+1)- f(xi)] 2s'(xi) + s'(xi+1) 
C2 = 2 

(Xj+l - Xj) Xj+l - Xj 
(18.5) 

and 

2[/(x,)- /(x,+1)] s'(x;) + s'(xi+1) 
C3 = 3 + 2 (18.6) 

(x,+1-x,) (x1+1-x,) 

It should be clear that each of the three interpolation methods that have 
been mentioned gives a function {s (x); a .s x .s b} that is continuous, but 
only the last method makes the first derivative {s'(x ); a.:; x.:; b} continu­
ous also. 

In order to compare the accuracy of the first two methods, in the case 
when f has a continuous fourth derivative, we refer to the expression for 
the error of polynomial interpolation that is stated in Theorem 4.2. If s 
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is the cubic polynomial that interpolates the data {f(xi-1), f(xi), f(xi+1), 
f(xi+ 2)}, and if x is in the interval [xi-1' xi+2], then the theorem gives the 
bound 

(18. 7) 

This inequality suggests that doubling the number of data can improve 
the accuracy by a factor of sixteen, but the corresponding result for the 
interpolation formula (18.3) is that there is only a fourfold increase in 
accuracy. Therefore piecewise linear interpolation is normally less 
efficient. In the third method the values of the derivatives {s'(xi); j = 

1, 2, ... , m} can usually be chosen so that this method gives the best 
accuracy, which is demonstrated in Exercise 18.1. However, if f is not in 
~<4l[a, b ], then piecewise linear interpolation may be preferable, especi­
ally if the spacing between data points is irregular. 

Because all of these interpolation methods depend linearly on the data, 
each one can be expressed in the form 

m 

s(x)= L lk(x)f(xk), a~x~b, (18.8) 
k=I 

where lk is a 'cardinal function' that depends on the positions of the 
data points, but that is independent of the given function values. As in 
equation ( 4.4 ), the cardinal functions satisfy the equations 

(18.9) 

in order that the interpolation conditions (18.1) hold. If the interpolation 
method is 'local', then h (x) is non-zero only if x is close to xk. A 
convenient way of obtaining lk is to apply the interpolation procedure 
to the data {f(xj) = 8ki; j = 1, 2, ... , m }. The results of this calculation for 
the three interpolation methods of this section are shown in Figure 18.1, 
where k is remote from the ends of the interval [1, m], and where the 
derivatives {s'(xj); j = 1, 2, ... , m} for the last method are obtained in the 
way that is suggested before equation (18.4). It is clear that only the last 
method makes {s'(x); a~x~b} continuous for general data {f(xi); 
j=l,2, ... ,m}. 

The figure suggests that there are many ways of choosing cardinal 
functions so that equation (18.8) gives a tolerable approximation to {f(x ); 
a ~ x ~ b}. The ideal properties for a cardinal function are that it is 
non-zero over only a small part of the range [a, b ], it is smooth, the form 
of sis convenient for computer calculations, lllklloo is not much larger than 
one, and, if f can be differentiated many times, then the error Ill- slloo of 
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the approximation (18.8) is small. A good way of achieving the last 
condition is to ensure that the error is zero when f is a polynomial of 
suitable order, but the last two conditions can conflict when the spacing 
between data points is highly irregular. These comments assume that 
equation (18.9) is satisfied, but we find in Chapter 20 that it can be 
advantageous to work with an approximation of the form (18.8) that does 
not interpolate the data {f(xi); j = 1, 2, ... , m}. 

18.2 Cubic spline interpolation 
Cubic spline functions are now used widely in computer cal­

culations for the approximation of continuous functions of one variable. 
We recall from Chapter 3 that a cubic spline {s (x); a ,,;;; x ,,;;; b} is composed 
of cubic polynomial pieces, that are joined so that the second derivative 
{s"(x); a ,,;;; x,,;;; b} is continuous. In Sections 18.2 and 18.3 we consider 
interpolation by cubic splines to the data {f(xi); j = 1, 2, ... , m}, when 
the cubic polynomial pieces meet at the data points. We continue to 
assume that condition (18.2) is satisfied. Because it is convenient to 
calculate the value of the spline from expression (18.4) when x is in the 
interval [xb xi+1], we study methods for obtaining the derivative values 
{s'(x;); j = 1, 2, ... , m} from the data. One important difference between 

Figure 18.1. Cardinal functions for three local interpolation 
methods. 
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cubic spline interpolation and the methods that are described in the last 
section is that, if s is a cubic spline, then each of the pieces of s usually 
depends on all the data. 

The condition that s" is continuous at the data points {xk; k = 2, 
3, ... , m -1} gives equations that have to be satisfied by the deriva­
tives {s'(xi); j = 1, 2, ... , m}. In order to derive these equations, we note 
that expression (18.4) implies the value 

s"(xi+1) = 2c2 + 6c3(Xi+l - xi) 

6[f(xJ- f(xi+l)] 2s'(xi) + 4s'(xi+1) 
= 2 + ' 

(xi+l - xJ (xi+l - xJ 
(18.10) 

which, if j ~ m - 2, has to agree with the second derivative at Xj+l of the 
cubic polynomial that is equal to s on the interval [xi+i. xi+2J. An 
expression for this polynomial can be obtained by replacing j by (j + 1) in 
equations (18.4), (18.5) and (18.6). Hence the relation 

s'(xk-1) + 2s'(xk) 2s'(xk) + s'(xk+1) 
-------+-------

(xk -Xk-1) (xk+1-xk) 

3[f(xk)- f(xk-1)] 3[f(xk+1)- f(xk)] 
= 2 + 2 

(xk -xk-1) (xk+1-xk) 
(18.11) 

is the condition for second derivative continuity at xk. Because we give 
special attention to the case when the spacing between data points is 
constant 

Xj+l - Xj = h, j=l,2, ... ,m-1, (18.12) 

we note that in this case expression (18.11) simplies to the form 

s'(xk-1) + 4s'(xk) + s'(xk+1) = 3[f(xk+1)- f(Xk-1)]/ h. (18.13) 

One method, that is sometimes recommended, for fixing the two 
degrees of freedom that remain in the derivatives {s'(xi); j = 1, 2, ... , m }, 
after equation (18.11) is satisfied for k=2, 3, ... ,m-1, is to use a 
separate preliminary procedure to calculate or to estimate s'(x 1) and 
s'(xm). In this case the second derivative continuity conditions give a 
tridiagonal system of linear equations in the unknowns {s'(xi); j = 
2, 3, ... , m -1}, which can be solved easily because it is diagonally 
dominant. Several other methods for fixing the two degrees of freedom 
are mentioned in the next section. 

In the remainder of this section we consider cubic spline interpolation, 
when there are an infinite number of uniformly spaced data points 

xi=jh, j=O, ±1, ±2,.... (18.14) 

This case is studied because it is easy to analyse, and because the cardinal 
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functions of the interpolation procedure help one to understand some of 
the main properties of spline approximation. We may express s in the 
form 

00 

s(x) = I l;(x)f(x;), -oo<x<oo, (18.15) 
j=-00 

where each l; is a cardinal spline function that satisfies the equations 

k = 0, ± 1, ± 2, .... (18.16) 

Because the range of the variable x is infinite, there is the possibility 
that l; is unbounded, which would be unacceptable, because then the 
approximation (18.15) would be highly sensitive to the function value 
f (x; ). Fortunately it happens that the two degrees of freedom that occur in 
cubic spline interpolation, when the number of data points is finite, can be 
used in just one way to make {l;(x ); -oo < x < oo} bounded when the data 
points have the values (18.14). The derivatives {lj (xk); k = 0, ±1, ±2, ... } 
of the bounded cardinal spline are found in the following way. 

The second derivative continuity conditions that correspond to equa­
tion (18.13) have the form 

fj (Xk-i) + 4fj (xd + fj (Xk+l) 

=3[8;k+1-8;k-1]/h, k=0,±1,±2, .... (18.17) 

It is important to note that the right-hand side is zero if k ~ j + 2. It 
follows from the theory of recurrence relations that the conditions 

k~j+l, (18.18) 

hold, where a and (3 are constants, and where ( - 2 ± .J3) are the roots of 
the quadratic equation 

1+40+02 =0. (18.19) 

In order that {l;(x); - oo < x < oo} is bounded, the value of (3 must be zero. 
Similarly, because the right-hand side of expression (18.17) is zero for 
k ~ j - 2, the conditions 

lj(xk)=y(-2+.J3);-k' k~j-1, (18.20) 

must hold also, where y is another constant. The numbers a, y and lj(x;) 
are determined uniquely by giving k the values j-1, j and j + 1 in 
equation (18.17). Hence the bounded cardinal spline l; has the derivatives 

k<j 
k =j 

k>j. 

(18.21) 
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This cardinal function is shown in Figure 18.2. It is an oscillatory 
function that decays exponentially by the factor (../3-2) per data point as 
x moves away from xi. It follows from equation (18.15) that, if x is not a 
data point, then s(x) depends on all the function values {f(xi); j = 0, ±1, 
±2, ... }, but the contribution from f(xi) to s(x) is usually negligible 
when Ix - xiii h is large. 

It is easy to calculate the oo-norm of the interpolation algorithm (18.15) 
when expression (18.21) gives the derivatives of the cardinal functions. 
Because each interval between data points is similar, the norm has the 
value 

max max I I li(x)f(xi)' 
O..;x..;h llfll~..;1 j~-oo 

00 

= max L lli(x)I 
O~x:s;;h j=-oo 

00 

= max L ( - l)i[l_i(x) + li+l (x )] 
O~x~h j=O 

= max p(x), (18.22) 
o~x:s;;h 

say, where the third line of this equation depends on the sign properties 
of the cardinal function that are shown in Figure 18.2. The function {p(x); 
0 ~ x ~ h} is a cubic polynomial that is defined by the equations 

p(O) = p(h) = 1 (18.23) 

and 
00 

p'(O) = -p'(h) = I lli (xk)I 
k~-oo 

=3(../3-1)/h. (18.24) 

Hence the oo-norm has the value p(!h) = (1+3../3)/4 = 1.55, which is 
remarkably small. Therefore cubic spline interpolation to equally spaced 

Figure 18.2. A cubic spline cardinal function. 
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data on the whole real line is a reliable procedure. It is analysed further in 
Section 22.4. 

18.3 End conditions for cubic spline interpolation 
It has been noted that, if {s (x); a .s; x .s; b} is a cubic spline that has 

knots at the points {xi; j = 2, 3, ... , m -1}, and that satisfies the inter­
polation conditions (18.1), then there are two degrees of freedom ins. A 
change in the method that fixes this freedom alters s by a spline, <r say, 
that is zero at all the interpolation points. Therefore, if the data points are 
equally spaced, then equation (18.13) implies the conditions 

k = 2, 3, ... , m -1. 
(18.25) 

It follows that, ifs is any particular cubic spline that interpolates the data, 
then the general interpolating spline has the derivative values 

s'(xj) = s'(xj) +a (-2 + v'3)i-l + {3( -2 +v'3r-i, 

j = 1, 2, ... , m, (18.26) 

where a and f3 are constants. This section considers procedures that 
define the values of a and {3. 

Expression (18.26) shows that the influence of a is strongest at the 
left-hand end of the range [a, b ], while the influence of f3 is strongest at 
the right-hand end. Therefore, in order that s depends stably on the 
procedure that fixes a and {3, it is necessary to impose a condition on s at 
each end of the range. Normally this remark is also true in the general 
case when the distribution of data points is irregular. Therefore, obtain­
ing the values of s'(a) and s'(b) from a preliminary calculation, which is 
suggested in the last section, is a suitable method for determining the free 
parameters of s. 

A different procedure that is used sometimes is to set s"(a) = s"(b) = 0, 
which makes s a 'natural spline'. Natural splines have some interesting 
theoretical properties that are studied in Chapter 23, but in practice they 
are often poor approximating functions, because they waste the accuracy 
that can be achieved when f is in cg<4 l[a, b ]. When f"(a) and f"(b) are both 
non-zero, the error II! - slloo of a natural spline approximation is bounded 
below by a multiple of max [(x2 - xi) 2, (xm - Xm- 1) 2], instead of being of 
fourth order in the spacing between the data points. It is better to 
choose two suitable properties that would be obtained by a good spline 
approximation when f is a polynomial of degree at least three, and to 
force s to have these properties. 
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For example, if f is a cubic polynomial, then s is equal to f only if s"' is 
continuous throughout [a, b]. Therefore the property that s can equal a 
general cubic polynomial is preserved if a and {3, in equation (18.26), are 
defined by requiring any two of the third derivative discontinuities 

di=s"'(xi+)-s"'(x;-), j=2,3, ... ,m-l, (18.27) 

to be zero. Equations (18.4) and (18.6) show that d; has the value 

d· = 12[f(x;)- f(x;+ 1)] + 6[s'(x;) + s'(x~+i)] 
1 (X;+l - X;) (X;+1 - X;) 

12[f(x;-1)- f(x;)] 6[s'(x;-d + s'(x; )] 

(x;-X;-1? (x;-X;-d 2 
(18.28) 

A good method for determining s is to set d 2 = dm-i = 0, in addition to 
satisfying condition (18.11) fork= 2, 3, ... , m -1. Hence the required 
derivatives {s'(x;); j = 1, 2, ... , m} are defined by a square system of 
linear equations, that is easy to solve, because it is almost tridiagonal and 
almost diagonally dominant. Another technique for fixing the values of 
the parameters a and (3 is to set d 2 = d 3 and dm-2 = dm-l ·It has the strong 
advantage that it minimizes the error II! - s!loo when the spacing between 
data points is uniform and f is any quartic polynomial. 

Two important and related questions, which we consider in the case 
when the data points have the constant spacing (18.12), are the effect 
that the data {f (x;); j = 1, 2, ... , m} have on the parameters a and /3, and 
the effect that a and /3 have on the spline {s(x ); a:;;; x:;;; b }. In order that 
the values of a and /3 are unambiguous, it is necessary to choose a 
particular functions in equation (18.26). Because of the nice properties 
that are obtained by the interpolating spline (18.15) when the cardinal 
functions have the form shown in Figure 18.2, we defines in the following 
way. We continue the uniform spacing of data points along the whole real 
line, and we assign fixed values to f(xi) at the new data points. For 
instance, these function values may be set to zero, if it is not important to 
preserve continuity in the extension of f. We let s be the part of the 
function (18.15) that is relevant to the range [a, b]. 

The two conditions on {s(x); a :;;; x :;;; b} that fix the parameters a and {3 

give these parameters non-zero values only if the required conditions ons 
are not obtained by s. The equation 

00 

s(x) = I l;(x)f(x;), a :;;; x:;;; b, (18.29) 
j=-00 

shows directly the contribution from f(x;) to s(x), and we note the 
presence of the scaling factor l;(x ). Therefore, in the usual case when a 
and /3 depend on the form of s near the ends of the range [a, b ], it follows 
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.from Figure 18.2 and equation (18.21), that the contribution fromf(xi) to 
a or {3 includes the factor (2 - J3)i or (2 -J3r-i. Hence the values of a 
and {3 depend mainly on the data that are near the ends of the interval 
[a, b]. Moreover, equation (18.26) shows that the effect of the end 
conditions on s(x) decays exponentially if x is moved towards the centre 
of the range [a, b ]. 

These remarks suggest that, when x is well inside the interval [a, b ], 
then it is usually adequate to regard s(x) as the value of a cubic spline 
that interpolates f on the infinite range - oo < x < oo. Thus one can obtain 
useful error estimates, and one can study the behaviour of the error as h 
tends to zero, in a way that avoids the complications that come from the 
choice of end conditions. 

18.4 Interpolating splines of other degrees 
In most of this section we consider interpolation by quadratic 

splines. It is possible to satisfy the conditions (18.1) by letting s be a 
quadratic polynomial on each of the intervals {[xb xi+1]; j = 1, 2, ... , 
m -1}, where the joins of the quadratic pieces are such that the first 
derivative {s'(x ); a~ x ~ b} is continuous. This procedure, however, has 
some severe disadvantages. In particular, the following example shows 
that there are difficulties in adapting the distribution of data points to the 
form of f. 

We let f be the continuous function 

f(x) = {0• 
X, 

-l~x~O 

o~x ~ 1. 
(18.30) 

We suppose that the number of data points m is given, and that we are 
free to choose the positions of the data points, subject to the conditions 

-1 =x1 <xz< ... <xm = 1, (18.31) 

and subject to the restriction that one of the data points, Xn say, is at zero. 
Ifs is to be a quadratic spline that satisfies the conditions of the previous 
paragraph, we find that, because Xn is zero, it is not possible to make the 
error llf- slloo very small by clustering the data points near the first 
derivative discontinuity off, even though f is equal to a single segment of 
a quadratic spline on each side of the discontinuity. In order to reach this 
conclusion we note that, because s is a quadratic function on each of the 
intervals {[xb xi+ 1]; j = 1, 2, ... , m -1}, the equations 

Ms'(xj) + s'(xi+1)] = [s(xi+1)-s(xi)]/(xi+1 -xi), 

j = 1, 2, ... , m -1, (18.32) 
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are satisfied. Thus expressions (18.1) and (18.30) give the conditions 

{o j<n 
i[s'(xi) + s'(xi+1)] = 1' (18.33) 

, j~n. 

which imply the identities 

s'(xi+2) = s'(xi), j-¥-n-1. (18.34) 

In particular, the derivatives {s'(xn), s'(xn±2), s'(xn±4 ), •• • } are all equal. It 
follows that s cannot adapt itself efficiently to the slopes of both of the 
straight line sections of f. The difficulty is due to the fact that the cardinal 
functions of quadratic spline interpolation do not usually become small 
when x is remote from the data point at which the cardinal function is 
equal to one. For example, Figure 18.3 shows a symmetric cardinal 
function, where the distribution of data points is uniform. 

However, there is a way of making quadratic spline interpolation a 
flexible procedure. It is to position the knots of s midway between the 
data points. We study this technique in the case when the range of x is the 
whole real line, and when the data points have the equally spaced values 
{xi = jh; j = 0, ± 1, ± 2, ... }. As in Section 3.4, the notation 

~i = ~(Xj + Xj+1), j = 0, ± 1, ± 2, ... , (18.35) 

is used for the knots of the spline. Because s(xi) is equal to f(xi), and 
because xi is the mid-point of the interval [~i-i. ~i], the quadratic function 
{si(x) = s(x); ~i-l ~ x ~ ~J is the expression 

si(x) = f(xi) + (x - xi)[s(~i)- s(~i-1)]/ h 

+ 2(x - xJ2[s(gi )- 2/(x;) + s(g;-1)]/ h 2. (18.36) 

Therefore, in order to define {s(x); -oo<x <oo}, it is convenient to 
calculate the function values {s(~i); j = 0, ± 1, ± 2, ... }. The first deriva-

Figure 18.3. A quadratic cardinal function whose knots are at the 
data points. 
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tive continuity condition sj (gi) = s/+1 (gi) and equation (18.36) imply that 
the recurrence relations 

s(gk-1) + 6s(gk) + s(gk+1) = 4[/(xk) + f(xk+1)], 

k = 0, ± 1, ± 2, ... ' (18.37) 

are obtained. Therefore the cardinal function lb that satisfies equation 
(18.16) at the interpolation points, also satisfies the conditions 

lj(gk-1) + 6lj(gk) + lj(gk+1) = 4[8jk + 8jk+d, 

k = 0, ± 1, ±2, .... (18.38) 

As in Section 18.2 there is only one bounded solution to this system, 
which is that the cardinal function takes the values 

k~j-1 
(18.39) 

k-;::. j, 

at the knots. Hence Ii has the form that is shown in Figure 18.4. The 
localization properties are even better than those of the cardinal function 
of Figure 18.2, because the exponential decay factor 12~2- 31 is less than 
1~3-21. Therefore quadratic spline interpolation is a very useful pro­
cedure, if the knots are placed between the data points. 

When there are a finite number of data points {xi; j = 1, 2, ... , m}, and 
when s is an interpolating quadratic spline, then the knot positions 

j = 2, 3, ... , m -2, (18.40) 

are usually suitable. Because there are no knots in the intervals [xi. x2] 

and [xm-i. Xm], the number of parameters of the spline is equal to the 
number of data. The Schoenberg-Whitney theorem, which is proved in 
Section 19.5, shows that the interpolation conditions (18.1) determine 
the parameters uniquely. Hence the knots (18.40) take up the degrees of 
freedom in the quadratic spline that correspond to the end conditions that 

Figure 18.4. A quadratic cardinal function whose knots are midway 
between the data points. 
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are discussed in Section 18.3. This approximation method is usually 
successful in practice. 

Interpolation by splines of degree greater than three is rare. One of the 
main reasons is that increasing the degree of a spline normally makes the 
localization properties less good, because the tails of the cardinal 
functions decay at a slower exponential rate. Another reason is that there 
are many computer programs available for interpolation by cubic splines. 
However, splines of greater degree can be very useful when high accuracy 
is required. The work of the next chapter is sufficiently general to provide 
a suitable method of calculation. 

18 Exercises 
18.1 Let the data points of the interpolation procedures of Section 

18.1 have the equally spaced values {x; = jh; j = 1, 2, ... , m}. 
Calculate the values of the cardinal functions of Figure 18.1 at 
the points that are midway between the interpolation points. 
Hence, for each of the three interpolation procedures, identify 
the coefficients {ck;; j = 1, 2, ... , m} of the equation 

s(xk +!h) = I ckJ(x;), 
;~1 

where s is the interpolating function, and where k is remote from 
the ends of the interval [l, m]. Thus compare the accuracy of the 
three interpolation methods when f is a quartic polynomial. 

18.2 Show that both of the piecewise cubic interpolation procedures 
of Section 18.1 have the property that, depending on the dis­
tribution of the data points {x;; j = 1, 2, ... , m }, the oo-norm of 
the interpolation operator can be arbitrarily large. 

18.3 Let the data points {x;; j = 1, 2, ... , m} be equally spaced, let f 
be a quartic polynomial, and let s be the cubic spline, whose 
knots are at the data points, that satisfies the interpolation 
equations (18.1) and the end conditions d2 = d3 and dm- 2 = dm-i. 
where d; is the third derivative discontinuity (18.27). Prove that 
the equations {s'(x;) = f'(x;); j = 1, 2, ... , m} are obtained, and 
that the third derivative discontinuities of s have the constant 
values 

j = 2, 3, ... , m -1, 

where h is the spacing between data points. 
18.4 Lets be a cubic spline that satisfies the interpolation conditions 

(18.1), where the knots of s are at the data points, and where the 
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data points are equally spaced. If the function values f(![x1 + 
x2]) = f(X1!) and f(![xz + X3)) = f(Xz!) are known, then two useful 
methods for fixing one of the degrees of freedom in s are as 
follows. In one method s'(x2) is made equal to the first derivative 
at x2 of the polynomial in r!P 4 that interpolates the function values 
{f(xi); j = 1, 11, 2, 21, 3}, and in the other method the equation 

f(Xz!) - s (Xz!) = f (x 1!) - s (x 1!) 

is satisfied. Prove that these methods are equivalent. 
18.5 For any fin <(6'(-oo, oo), let Xf be the quadratic spline that has 

knots at the points {gi = (j +t)h; j = 0, ± 1, ± 2, ... }, and that 
interpolates the function values {f(jh); j = 0, ± 1, ± 2, ... }, 
where h is a positive constant. Prove that the oo-norm of X has 
the value llXlloo = J2. 

18.6 For any fin <(6'(-oo, oo), lets be a cubic spline that is defined by 
equation (18.15), where the data points have the values (18.14), 
and where each function {/i(x); -oo<x <oo} satisfies the 
cardinality conditions (18.16). Show that, ifs is allowed to have 
knots not only at the data points {jh; j = 0, ± 1, ± 2, ... } but also 
at the mid-points {(j + t)h; j = 0, ± 1, ± 2, ... }, then it is possible 
for each li to be non-zero only on the interval (xi - 3h, xi + 3h ), 
and for s to be equal to f when f is any cubic polynomial. 

18.7 Let {s(x ); 0 ~ x < oo} be a non-zero cubic spline function that has 
knots at the points {xi = µi; j = 0, 1, 2, ... }, and that is zero at 
every knot, where µ is a constant that is not less than one. Prove 
that it is possible for the derivatives {js'(xi)J; j = 0, 1, 2, ... } to be 
bounded for any value of µ, but that it is possible for s to be 
bounded only ifµ~ tC3 + ,j 5). 

18.8 For any bounded function fin <(6'(-oo, oo), lets be the spline 
function (18.15), where each cardinal function has the form that 
is shown in Figure 18.2, and where the spacing between data 
points, h, that is given in equation (18.14), is a parameter. Prove 
that, as h tends to zero, s converges uniformly to f. 

18.9 Let f be a cubic polynomial, and lets be the quadratic spline with 
knots at the points (18.40) that interpolates the function values 
{f(xj); j = 1, 2, ... , m}, where the spacing between the data 
points {xi; j = 1, 2, ... , m} is constant. Sketch the form of the 
error function {f(x)-s(x); x1 ~x ~xm}. Propose an algorithm 
for quadratic spline interpolation that does not cause an increase 
in the error function near the ends of the range [x 1, Xm] when f is 
a cubic polynomial. 
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18.10 Given two sets of data points {xi; j = 1, 2, ... , m} and {yk; k = 
1, 2, ... , n} that satisfy conditions (18.2) and the inequalities 
a= Y1 < Y2 < ... < Yn = b, an algorithm is chosen for cubic spline 
interpolation on each set of points. Let the cardinal functions 
of the algorithms be {li(x); a ~x ~b; j = 1, 2, ... m} and{Ady); 
a~ y ~ b; k = 1, 2, ... , n }. For any function {f(x, y ); a~ x ~ b; 
a ~ y ~ b} of two variables, the approximation 

m n 

s(x,y)= I I li(x)Ak(y)f(xbyk), a ~x~b, 
i=l k=l 

is called a 'bicubic spline' approximation to f. Investigate its 
properties, giving particular attention to the accuracy of the 
method when f is differentiable, and to procedures for calculat­
ing the value of s (x, y) for any x and y directly from the data 
{f(xb Yk); j = 1, 2, ... m; k = 1, 2, ... , n}. 
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B-splines 

19.1 The parameters of a spline function 
Most of the results of this chapter and of Chapter 20 apply to 

general spline functions, that are not necessarily defined by interpolation 
conditions. As in Section 3.4, we let Y'(k, g0 , gi, ... , gn) be the linear 
space of splines of degree k, whose knots are {g;; i = 1, 2, ... , n -1}. The 
range of the variable is still the interval [a, b ], and it is assumed that the 
conditions 

a = go< gt < 6 < ... < gn = b (19.1) 

are satisfied. Sometimes the name of the space is shortened to Y'. 
Equation (3.31) states that each function in this space can be expressed in 
the form 

k . 1 n-1 k 

s(x) = j~O CjX 1 + k! j~I dj(X -gj)+, a ~x ~b, (19.2) 

where {ci; j = 0, 1, ... , k} and {di; j = 1, 2, ... , n -1} are real 
parameters. Therefore the dimension of the space is (k + n ). The main 
purpose of this chapter is to describe a general method for defining an 
element of ff' that is highly convenient for computer calculations. 

First an example is given to show that it can be quite unsuitable to 
specify a spline by the values of the coefficients {ci; j = 0, 1, ... , k} and 
{di;j=l,2, ... ,n-1}. We lets be the piecewise cubic polynomial, 
whose knots are the integers ui = j; j = 0, 1, ... ' n}, that is defined by 
the equations 

s(gj) = 0 } 
s'(gi)=(J3-2)i' 

j=0,1, ... ,n. (19.3) 

It is a cubic spline because it is a multiple of the tail of the cardinal 
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function that is given in Figure 18.2. Therefore, there is an expression for 
s of the form (19.2), which is the function 

n-1 

s(x)=x-·hx 2 +(.J3-l)x 3 +2.J3 L (.J3-2)i(x-j)!, 
i=l 

o~x ~n. (19.4) 

If we calculate s(l0.5), for example, from this equation, then the third 
term contributes the number (.J3-1)(10.5)3 =847, but, because s(x) 
decreases exponentially as x is increased by whole integers, the actual 
value of s(l0.5) is (.J3-2) 10s(0.5)=3.02x 10-7 • Hence nine decimal 
digits are lost in cancellation if expression (19 .4) is evaluated. Excellent 
accuracy can be obtained, however, from the data (19.3). Therefore it is 
better to work with the function and derivative values {s(gi); j = 0, 
1, ... , n} and {s'(gi); j=O, 1, ... , n}, instead of with the coefficients 
{ci; j = 0, 1, ... , k} and {di; j = 1, 2, ... , n -1}. 

There are disadvantages, however, in defining s by function and 
derivative values when k = 3. In particular, the second derivative 
continuity conditions are artificial, and, if n is large, then the number of 
parameters that specify an element of Y is almost twice the dimension of 
::/. Therefore, except in a few special cases such as interpolation to fat the 
knots of s, there are more unknowns than necessary in the calculation of a 
particular cubic spline from data, which can increase greatly the length of 
the calculation. Further, for larger values of k, it would be necessary to 
take account of higher derivatives, for instance {s"(gi); j = 0, 1, ... , n}, 
which would make the disadvantages worse. 

In order that the number of parameters of s is the same as the dimen­
sion of::/, we may choose any fixed basis of Y, {<Pi;j = 1, 2, ... , k + n}say, 
and we express s in the form 

k+n 

s(x)= L Ai<Pi(x), 
i=l 

a ~x~b. (19.5) 

The coefficients {Ai; j = 1, 2, ... , k + n} are the parameters that charac­
terize s. The example (19.4) shows that the basis functions {<Pi(x) = 
(x -gi):, a ~x ~b;j= 1, 2, ... , n -1} and {<Pi(x) =xi-n, a ~x ~b;j = 
n, n + 1, ... , n + k} can give severe difficulties in practice, but many other 
choices of basis can be made. We find that a basis of 'B-splines' is 
particularly suitable, not only because it prevents severe loss of accuracy 
due to cancellation, but also because it reduces the amount of calculation, 
and it helps the convergence analysis of Chapter 20. 
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19.2 The form of B-splines 
One way of introducing B-splines is to address the question of 

choosing the basis functions {<Pi; j = 1, 2, ... , k + n} in expression (19.5), 
so that each function {<f>i(x ); a:;;;; x:;;;; b} is identically zero over a large part 
of the range a :;;;; x :;;;; b. Therefore we consider the problem of finding an 
element of 5/(k, g0 , gi, ... , gn) that is zero on the intervals [g0 , gP] and 
[gq, gn], but that is non-zero on (gp, gq1, where 0 < p < q < n. Ifs is such a 
function it can be expressed in the form 

a~x:;;;;b, (19.6) 

where the parameters di have to satisfy the condition 

gq:;;;;X :;;;b. (19.7) 

It follows that the equations 
q . 

I ddj=O, i = 0, 1, ... 'k, (19.8) 
i~p 

must hold. These equations have a non-zero solution if q;;;.: p + k + 1, 
because then the number of coefficients {di} is greater than the number of 
equations. The identity (4.11) shows that, if q = p + k + 1, then the 
coefficients 

j=p,p+l, ... ,p+k+l, (19.9) 

are suitable. We note that the sign of expression (19.9) is such that dp is 
positive. The spline function 

p+k+l [p+k+l 1 J 
Bp(x)= .~ .I] (f-O (x-gJ:, 

J-P 1-p I I 

i "'i 

-oo<x <oo, 

(19.10) 

is called a 'B-spline'. The subscript p on Bp(x) denotes that Bp(x) is 
non-zero only if x is in the interval (gp, gp+k+1). 

Figure 19 .1 shows B-splines of degrees one, two and three when the 
spacing between knots is constant. We note that the value of each spline is 
positive, except where it is constrained to be zero. The following theorem 
proves that this property is obtained by all B-splines, and it gives a useful 
condition on the number of zeros of some other spline functions. 
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Theorem 19.1 
Let s be a function in the space ff'(k, go, gi, ... , gn), that is 

identically zero on the intervals [t"o, gP] and [gq, t"n]. and that has r zeros in 
the open interval (gp, gq), where p and q are integers that satisfy the 
condition 0 < p < q < n, and where r is finite. Then the number of zeros is 
bounded by the inequality 

r:;;;q-(p+k+1). (19.11) 

Proof. When s is composed of straight line segments, then it has at most 
one zero in each of the intervals {[gi> gi+1]; j = p, p + 1, ... , q -1}. 
Because s(gp) and s(gq) are both zero, it follows that the total number of 
zeros in the open interval (gp, ~q) is at most (q - p -2). Therefore the 
theorem is true when k = 1. 

In order to treat larger values of k, we require an upper bound on the 
number of sign changes of a linear spline, u say, that is in the space 
ff'(l, gP, gp+i. ... , gq), and that is zero at gP and gw Because no sign 
changes can occur in the intervals [gp, gp+ 1] and [gq-t. gq], and because 
each of the other intervals {[gi> gi+d; j = p + 1, p + 2, ... , q -2} contri­
butes at most one sign change, the total number of sign changes is also 
bounded above by (q - p - 2). An important difference between this 
result and the one given in the previous paragraph is that some of the 
linear sections of u are allowed to be identically zero. 

Figure 19.1. B-splines of degrees one, two and three. 
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To complete the proof of the theorem for k ~ 2, we let <r be the 
function {s<k-ll(x);gp~x~gq}, and we do some counting. Since, by 
definition, the function s has r zeros in (gp, gq), and since s(gp) and s(gq) 
are both zero, the first derivative {s'(x ); gP ~ x ~ gq} changes sign at least 
(r + 1) times. If k ~ 3, we consider next the second derivative {s"(x ); gP ~ 
x ~ gq}. Because s'(gp) and s'(gq) are both zero, the number of sign 
changes of the second derivative is at least one more than the number of 
sign changes of the first derivative. Hence s" changes sign at least (r + 2) 
times. If k ~ 4, we continue this argument inductively. It follows that, for 
all k ~ 2, the function { <r (x) = s <k-1\x); gP ~ x ~ gq} changes sign at least 
(r + k -1) times. Combining this statement with the result of the previous 
paragraph gives the inequality 

(r + k -1) ~ (q -p -2). (19.12) 

Therefore the theorem is true. D 
The theorem implies that q cannot be less than (p + k + 1). Moreover, 

the proof of the theorem shows that, ifs is the B-spline (19.10), then, not 
only is r equal to zero, but also all the inequalities that lead to condition 
(19.12) are satisfied as equations. Hence, for j = 0, 1, ... , k-l, the 
derivative {B~l (x); gP ~ x ~ gp+k+1} changes sign exactly j times. There­
fore Schoenberg made the highly descriptive remark that 'B-splines are 
bell-shaped'. 

19.3 B-splines as basis functions 
The fact that the B-spline (19.10) is non-zero only in the interval 

[gP, gp+k+1] can be very useful in practical computer calculations. There­
fore we seek a basis of the space Y(k, g0 , gi, ... , gn) that is composed of 
B-splines. We include the functions {Bp; p = 0, 1, ... , n - k -1} in the 
basis, because they are linearly independent and they are all in ff. The 
dimension of the space that is spanned by these functions, however, is 
(n - k), while the dimension of ff is (n + k). Therefore another 2k basis 
functions are required. A convenient way of choosing them so that they 
are also B-splines is to introduce some extra knots outside the interval 
[a, b]. Specifically, we let {gi; j = -k, -k + 1, ... , -1} and {gi; j = n + 1, 
n + 2, ... , n + k} be any points on the real line that satisfy the condi­
tions 

g_k < g-k+1 < ... < g_1 <go= a} (1 9.13) 
b = gn < gn+l < gn+2 < · · · < gn+k . 

For example, we may set {gi=g0 +j(g1-g0);j=-1,-2, ... ,-k} and 
{gi = gn +(j-n)(gn -gn-1); j = n + 1, n +2, ... , n +k}. We now define BP 
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by equation (19.10) for p = -k, -k + 1, ... , n - l, but we make use of the 
function value Bv(x) only if x is in the interval [a, b]. Hence the total 
number of B-splines is equal to the dimension of ::!. The following 
theorem shows that every element of g can be expressed in the form 

n-1 

s(x) = I AiBi(x), 
j=-k 

Theorem 19.2 

a ~x ~b. (19.14) 

Let the points U"i; j = -k, -k + 1, ... , n + k} satisfy conditions 
(19.1) and (19.13), and let Bv be defined by equation (19.10) for 
p = -k, -k + 1, ... , n -1.Then the functions {Bv(x ), a~ x ~ b; p = -k, 
-k + 1, ... , n -1} are a basis of the space 9'(k, go, gi, ... , gn). 

Proof. The definition (19.10) implies that each of the functions 
{Bp(x), a ~x ~b; p = -k, -k +l, ... , n -1} is in 9'(k, g0 , gi, ... , gn), 
and we have noted already that the number of functions is equal to the 
dimension of 9'. It is therefore sufficient to show that the functions are 
linearly independent. We follow the normal method of proof, which is to 
show that, if the spline 

n-1 

s(x) = I Av Bv(x)· (19.15) 
p=-k 

is zero on a~ x ~ b, then all the coefficients {Av; p = -k, -k + 1, ... , 
n -1} are zero. 

Let g-k-l be any real number that is less than g-k· We consider the 
spline {s(x);g_k_ 1 ~x~g1 }, where s(x) has the value (19.15). The 
definition (19.10) implies {s(x) = O; g-k-l ~ x ~ g_d. Therefore, if s(x) is 
also zero for g0 ~ x ~ gi, it follows from the remark, made immediately 
after the proof of Theorem 19.1, that sis identically zero on [g_k-i. g1]. 

Hence it is sufficient to show that the condition {s(x) = O; g_k ~ x ~ b} 
implies {Av = O; p = -k, -k + 1, ... , n -1}. 

Alternatively we may prove the equivalent result that, if any of the 
numbers {Av; p = -k, -k + 1, ... , n -1} are non-zero, then s is not iden­
tically zero on [g-k, b]. We let q be the smallest integer such that Aq is 
non-zero. It follows from the definitions (19.10) and (19.15) that the 
equation 

(19.16) 

is satisfied. Hence s(x) is non-zero for gq < x ~ gq+i. which completes the 
proof of the theorem. D 
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In order to demonstrate the way in which a B-spline basis can be used, 
we consider the problem of expressing the cardinal function of Figure 
18.2 in the form 

00 

-co<x <co. (19.17) 
p=-00 

Because the knots are the points {g; = ih; i = 0, ±1, ±2, ... }, the B-spline 
BP is the function 

1 3 3 3 
Bp(x) = 24h4[(x -t'p)+ -4(x -t'p+i)+ +6(x -t'p+2)+ 

-4(x -t'p+3)! + (x -t'p+4)!], -co<x<co. (19.18) 

In particular the equations 

Bp(t'p+ 1 ) = 1/ (24h)l 

Bp(t'p+2) = 1/(6h) 

Bp(t'p+3) = 1/ (24h) 

(19.19) 

are satisfied. Because BP is zero at all the other knots, it follows from 
equation (19.17) that li(t';) has the value 

li(t';) = [A;-1 +4A;-2 + A;-3]/24h. (19.20) 

Therefore the cardinality conditions {/i(t';) = 8;i; i = 0, ±1, ±2, ... } give 
the equations 

A;-1+4A;-2 + A;-3 = 24h8;h i=0,±1,±2, .... (19.21) 

This recurrence relation has just one bounded solution, namely the values 

p = 0, ±1, ±2, ... ' (19.22) 

which are the required coefficients of expression (19.17). Two advantages 
of using B-splines are that the method of calculating cardinal functions 
can be extended easily to splines of higher degree, and, for any x, the 
number of non-zero terms in the sum (19.17) or (19.14) is finite. 

It is interesting also to express the function (19 .4) in terms of B-splines. 
Therefore we introduce extra knots at the points {t'i = j; j = -3, 
-2, -1, n+l, n+2, n+3}. Because the shape of the spline (19.4) is 
the same as the tail of the cardinal function (19 .17), the required 
expression has the form 

n-1 

s(x)=a L (J3-2VBp(x), o~x ~n. (19.23) 
p~-3 

where a is a constant. Equation (19.18) and the property s'(O) = 1 give 
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the value a =i(7.J3-12). If s(l0.5) is calculated numerically from 
expression (19.23), then a small number is found, because of the factor 
( .J3 - 2Y and because the first non-zero term of the sum occurs when 
p = 7. Hence the B-spline basis avoids the very serious cancellation that 
occurs when equation (19.4) is used to evaluate s(l0.5). 

19.4 A recurrence relation for B-splines 
In many algorithms for approximation and data fitting it is 

necessary to calculate the values of B-splines for several values of the 
variable x. One possible method is to calculate directly the expression 

(19.24) 

which is the same as equation (19 .10), except that the superscript k on the 
left-hand side shows the degree of the B-spline explicitly. If one allows for 
the fact that the term in square brackets is independent of x, then this 
method is quite suitable, unless x is very close to gp+k+l· The difficulty in 
this case is that B; (x) should tend to zero as x tends to gp+k+i. but formula 
(19.24) relies on cancellation to give this property. It would be better to 
make use of the fact that B;(x) is a multiple of (x -gp+k+1)k when x is in 
the interval [gp+k, gp+k+1]. A procedure that is efficient in all cases is 
described in this section. It depends on the following recurrence relation. 

Theorem 19.3 
Let k be an integer that is greater than one, and let {gi; j = p, 

p + 1, ... , p + k + l} be a set of distinct real numbers, which we assume 
are in ascending order. Then the function (19.24) satisfies the equation 

B;(x) = (x -gp)B;-1 (x) + (gp+k+1 - x )B;~t(x), (l9_25) 
(gp+k+l - gp) 

for all real values of x. 

Proof. Let s(x) be the right-hand side of expression (19.25). The 
function {s (x); -oo < x < oo} is composed of polynomial pieces, each of 
degree at most k, that are joined at the knots {gi; j = p, p + 1, ... , 
p + k + l}. By the definition of a B-spline, this function is identically zero 
for x,;;;; gP and x;;:: gp+k+l· When x is in the interval [gp, gp+1], the 
definition (19 .24) implies the identity 

B;(x) = (x -gp) B;-1 (x), (19.26) 
(gp+k+l -gp) 
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and B ;:;:I (x) is zero. Therefore the equation {s (x) = B; (x); gP,,,; x ,,,; gp+1} 
is satisfied. In order to prove that the conditions {s(x) = s;(x); gi,,,; x ~ 
~i+1; j = p ~ 1, p + 2, ... , p + k} hold also, it is sufficient to show that the 
change ins at the knots {gi;j=p+l,p+2, ... ,p+k} agrees with the 
change that is given in equation (19.24). This result is obtained by 
straightforward algebra from the definitions of s;-l (x ), s;:;:i (x) and 
s(x). When j is in [p + 1, p + k], we find that the change ins at gi is the 
polynomial (x -gi)k-I /(gp+k+l -gP) multiplied by the factor 

p+k 1 p+k+l 1 
(x-gp) n (f-O+(gp+k+1-x). TI (i:.-i:.) 

1=p I j 1=p+l '!,1 f:,J 

i-j i-j 

p+k+l 1 
=[(x-gp)(gp+k+l-gi)+(gp+k+1-x)(gp-gi)] DP (gi-gi) 

i #:j 

p+k+l 1 
=(x-g1)(gp+k+1-gp) DP (gi-gi) (19.27) 

i~j 

Hence the change ins is the same as the change ins;, which completes 
the proof of the theorem. D 

Equation (19.25) is similar to the recurrence formula (5.14) for divided 
differences. Therefore a convenient method for calculating s;(x) for a 
fixed value of x is to compute the columns of the tableau 

B!(x) -- B;(x) --- B!(x) 

1/2/ 
Bp+i(x)-- Bp+ 1(x) 

/ 
B!+2 (x) B!+k-3(x) 

(19.28) 

. / 

. B2 ( \ 

1 

/ p+k-2 XJ 

Bp+k-1 (x) 

in sequence. If x is in the interval [g;, gi+1], then the numbers in the first 
column have the values 

B}(x)=O, j~i-1, j~i l 
B f-1 (x) = (gi+1 - x )/[(gi+1 - gi-1)(gi+1 -gi)] . 

BJ (x) = (x -g.)/[(gi+l -gi)(gi+2 -gi)] 

(19.29) 
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The remaining entries in the table (19.28) are obtained from equation 
(19.25), which gives B;(x) in the final column. This procedure is highly 
suitable for numerical computation, because, except for differences 
between values of the variables, there is no cancellation. Moreover, it is 
easy to extend the table to provide B;(x) for a range of values of p. 

There are other relations between B-splines and divided differences. 
One of them is so fundamental that it is used sometimes to introduce 
B-splines. It comes from a property of the function 

f(g) = (- l)k+1(x -g):, -oo < g < oo, (19.30) 

where x is any fixed number. We recall from Chapter 5 that the divided 
difference. f[gp, gp+i. ... , gp+k+i] is the coefficient of gk+I in the poly­
nomial of degree at most k + 1 that interpolates the function values 
{f(gJ; j = p, p + 1, ... , p + k + l}. Therefore, if we make the definition 

B;(x) = f[gp, gp+i. ... , gp+k+1], (19.31) 

it follows that B;(x) is zero when x :s;;gP and when x·;;.gp+k+I· Further, 
because the divided difference is a linear combination of the function 
values {f(gi);j=p,p+l, ... ,p+k+l}, the function {B;(x);-oo<x< 
oo} is a spline of degree k whose knots are the points {gi; j = p, p + 1, 
... , p + k + l}. Hence B; is a B-spline. An alternative and less inter­
esting method of reaching this conclusion is to deduce from equations 
(5.2), (19.30) and (19.31) that B;(x) has the value 

Bk p+k+1(-l)k+\x-gi): 
p(x) = .L p+k+1 , 

i=p IT (gj-g;) 
i=p 
i .. j 

which is equivalent to the definition (19.24). 

(19.32) 

There are some advantages in taking the point of view that B; (x) is the 
divided difference (19.31). In particular, a neat proof of Theorem 19.3 
can be obtained by letting g and h be the functions 

g(g)=(g-x), -oo<g<oo, } 

h(g)=(-l)k(x-g):-1. -oo<g<oo ' 
(19.33) 

and by calculating expression (19.31) from the product formula 
p+k+I 

B;(x) = L g[gP, gp+i. ... , gi] h[gi> gi+h ... , gp+k+1], (19.34) 
j=p 

which is given in Exercise 5.9. 

19.5 The Schoenberg-Whitney theorem 
A convenient method for calculating an approximation from the 

space Y'(k, g0 , gi, ... , gn) to the function {f (x); a :s;; x :s;; b} is to inter-
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polate some function values {f(x;); i = 1, 2, ... , n + k}. We let the inter­
polation points be in ascending order 

a ~X1 <x2 < ... <xn+k ~b, (19.35) 

but there is no need for any of them to be at knot positions. Because the 
number of function values is equal to the dimension of ff, it is important to 
ask whether there is just one element s in ff that satisfies the equations 

s(x;) = /(x;), i = 1, 2, ... , n + k. (19.36) 

We introduce extra knots outside the interval [a, b ], in order that every 
element of ff can be expressed as a linear combination of the B-splines 
{Bv; p = -k, -k + 1, ... , n -1}. Useful necessary and sufficient condi­
tions for s to be unique are given in the following theorem. 

Theorem 19.4 (Schoenberg-Whitney) 
Let the real numbers {gi; j = -k, -k + 1, ... , n + k} be in strictly 

ascending order, and, for p = -k, -k + 1, ... , n -1, let {Bv(x ); -oo < x < 
oo} be defined by equation (19.10). Let the interpolation points {x;; i = 

1, 2, ... , n + k} also be in strictly ascending order. Then, for any function 
values {f(x;); i = 1, 2, ... , n +k}, the equations 

n-1 

L Av Bv(x;) = /(x;), i = 1, 2, ... , n + k, (19.37) 
p=-k 

have a unique solution {Av; p = -k, -k + 1, ... , n -1}, if and only if all 
the numbers {Bi-k-1(xj); j = 1, 2, ... , n + k} are non-zero. 

Proof. Suppose that Bi-k-1(xi) is zero. Then either the inequality 
xi :s; gi-k-1 or the inequality xi;;;;,: gi is satisfied. In the first case Bv(x) is zero 
if the conditions p ;;;;,: j - k -1 and x :s; xi both hold. It follows that the first j 
of the equations (19.37) have the form 

j-k-2 

L Av Bv(x;) = /(x;), i=1,2, ... ,j. (19.38) 
p=-k 

Because these j equations depend on only (j-1) unknowns, they do not 
have a solutioh for a general right-hand side. Similarly, if xi;;;;,: gh then the 
last (n + k + 1 - j) equations have the form 

n-1 

L Av BP (x;) = f (x;), i = j, j + 1, ... , n + k, (19.39) 
p=j-k 

so again the number of unknowns is insufficient. Therefore the conditions 

j = 1, 2, ... , n + k, (19.40) 

are necessary for the system (19.37) to have a solution for any f. 
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The equations (19.37) do not have a unique solution if and only if there 
exist parameters {Av; p = -k, -k + 1, ... , n -1}, that are not all zero, 
such that the function 

11-l 

s(x)= I AvBv(x), 
p=-k 

-oo<x <oo, (19.41) 

satisfies the conditions 

s(x;) = 0, i = 1, 2, ... , n + k. (19.42) 

In this case Theorem 19.2 states that the function (19.41) is not identi­
cally zero. Therefore, to prove the second half of the theorem, it is 
sufficient to show that conditions (19.40), (19.41) and (19.42) do not 
allow s to be a non-zero spline function. 

We suppose that these conditions hold, but that s is non-zero. As x 
ranges over the real line, there are some intervals, including x,,,;: g_k and 
x ~ g,,+k> on which sis identically zero, but in other parts of the range the 
number of zeros of s is finite. Therefore there are knots, gv and gq, such 
that s is identically zero on [gp-1' gv] and [gq, gq+1], while, in the open 
interval (gv, gq), s has only a finite number of zeros, r say. It may be 
necessary to introduce two more artificial knots g-k-l and g,,+k+l satisfy­
ing the conditions g-k-l < g_k and g,,+k+l > g,,+k· In any case, the proof of 
Theorem 19.1 shows that inequality (19.11) is obtained. However, the 
B-splines {Bi; j = p, p + 1, ... , q-k -1} take non-zero values only if the 
variable x is in the interval (gv, gq). Therefore condition (19.40) implies 
that the points {xi+k+l; j = p, p + 1, ... , q - k -1} are all in this interval. It 
follows from equation (19.42) that the number of zeros of sin (gv, gq) is at 
least (q-p-k), which contradicts inequality (19.11). Therefore the 
theorem is true. D 

The calculation of the spline s in Y'(k, g0 , gi, ... , g,,) that satisfies the 
equations (19.36) shows the usefulness of many of the results of this 
chapter. The Schoenberg-Whitney theorem makes it easy to check 
whether the equations have a solution. We may use the ideas of Section 
19.3 to express s as a linear combination of B-splines. Therefore we have 
to calculate the parameters {Av; p = -k, -k + 1, ... , n -1} that are 
defined by the system (19.37). This system is easy to solve, because the 
properties of B-splines, given in Section 19.2, imply that, for each i, at 
most (k + 1) of the matrix elements {Bv(x;); p = -k, -k + 1, ... , n -1} 
are non-zero. The non-zero matrix elements can be obtained con­
veniently from the recurrence relation that is described in Section 19.4. 
Hence, after the knots of the spline and the points {xi; i = 1, 2, ... , n + k} 
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are chosen, it is straightforward to calculate spline approximations by 
interpolation. 

19 Exercises 
19.1 Let V be a polyhedron in :nk+t that has (k +2) vertices, for 

example a tetrahedron in :n 3. Let d be a fixed non-zero vector in 
:n k+t, and, for any real number 8, let U(8) be the linear manifold 
{x: xTd = 8, xE :nk+1}, which is a slice of :nk+t that is orthogonal 
to the direction d. Let s(8) be the volume (or area) of the 
intersection of U(8) and V. Prove that, if no linear manifold 
U(8) contains more than one vertex of the polyhedron, then the 
function {s(8); -oo < () < oo} is a B-spline of degree k. 

19.2 Let k = 3, n = 10 and {gi = j; j = -3, -2, ... , 13} in the state­
ment of Theorem 19.2. Express the function {f(x) = x 2 ; 0,,;;; x,,;;; 

10} as a linear combination of the B-splines {BP; p = -3, 
-2, ... , 9}. Check the calculation of the coefficients by 
evaluating your expression at x = I+!, where I is any integer in 
the range [O, 9]. 

19.3 Express the first derivative of the B-spline (19.10) in terms of two 
B-splines of degree (k -1). 

19.4 Let B; be the B-spline of degree k whose knots have the values 
{gi = j; j = p, p + 1, ... ; p + k + 1}. Use the recurrence relation 
(19.25) to determine the value of the B-spline at its knots for 
k = 1, 2, 3, ... , 7. A convenient check on your calculations is 
that the equation 

p+k 

L B;(gi) = 1/(k + 1) 
j~p+l 

should be satisfied, which is a consequence of Theorem 20.1. 
19.5 Let n be a positive integer, let a be a constant from the interval 

(O, 1), and let the points Ui} and {x;} have the values Ui = j; j = 
0, 1, ... , n}, {x; =a +i-1; i = 1, 2, ... , n} and Xn+t = n. Show 
that, for any function fin ~[O, n], there is a linear spline in the 
space 9'(1, g0 , gi, ... , gn) that interpolates the function values 
{f(x;); i = 1, 2, ... , n + l}. Sketch the cardinal functions of the 
interpolation procedure. It should be clear that the oo-norm of 
the interpolation operator is large if a is near one, but that it is of 
moderate size if a <i. 

19.6 Lets be an approximation from the space 9'(k, g0 , gi, ... , gn) to 
a function f in ~[a, b ], where the knots satisfy the conditions 
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( 19 .1). Prove that s is a best minimax approximation from 51 to f 
if and only if there exist integers p and q in [O, n] and points 
{(i; i = 0, 1, ... , q - p + k} such that the following conditions are 
obtained: 
gP,,;:;; (o < (1 <. · · < (q-p+k,,;:;; gq, 

lf((J- s((i)I = 11/-slloo, 0,,;:;; i,,;:;; q - p + k, and 

[f((i)-s((;)] = -[f((i_i)-s((i-1)], 1,;;; i,,;:;; q - p + k. 

19.7 Prove Theorem 19.3 by the method that is suggested in the last 
paragraph of Section 19.4. 

19.8 Let B; be the spline function (19.10), where the superscript 
shows the degree of the spline, and where we allow k to be any 
non-negative integer. Let x be any point in the interval 
(gp, gp+k+iJ, and let the integer q be defined by the condition 
gq < x,,;:;; gq+l· Prove that the indefinite integral of B; has the 
value 

J x k 1 q-p k-j 

Bp(O)dO=-k 1 L: (x-gp+i) Bp+i(x). 
l;p + j=O 

This formula allows the integral to be calculated without any 
cancellation from the bottom entries of the columns of the 
tableau (19.28). 

19.9 Let k and n be positive integers such that (k + n) is even, and let 
the knots {(i;i=O, 1, ... ,n} of the space 51(k,(0 ,(i, ... ,(n) 
satisfy inequality (19.1). Let f be a function in ce0 l[a, b] and Jet 
{xi; i = 1, 2, ... , }(k + n)} be a set of distinct points in [a, b ]. 
Obtain necessary and sufficient conditions on these points that 
imply that a unique spline in 51 is defined by the equations 
{s(xi) = f(xi), s'(xJ = f'(xi); i = 1, 2, ... , }(k + n)}. 

19.10 Let 51 be the space of quadratic splines that have the knots 
uj = jh; j = 0, ± 1, ±2, ... }, let f be a bounded function in 
C€(-oo, oo), and Jet the function 

00 

s(x)= L: ApBp(x), -oo<x <oo, 
p=-00 

be the best least squares approximation from 51 to f. Calculate 
the elements of the matrix of the normal equations. Hence 
deduce that there exist multipliers {µ. 1; l = 0, ±1, ±2, ... } such 
that Ap has the value 

oo J <p+l+3 

Ap= 1=~00 µ.1 "•+' Bp+1(x)f(x)dx, p=0,±1,±2, ... , 

and that the order of magnitude of lµ.il is (0.4306)111 h. 
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Convergence properties of spline 
approximations 

20.l Uniform convergence 
If one requires a spline approximation from Y'(k, to, ti. ... , tn) 

to a function fin re[ a, b ], then it is useful sometimes to have bounds on 
the least maximum error 

d*(Y', f) = min I\!- slloo· (20.1) 
SEY' 

They are studied in this chapter, including the case when f is differenti­
able. It is assumed that the numbers {g;; i = 0, 1, ... , n} satisfy the 
conditions 

a =to<t1 <6<. · .<tn = b, 

and we let h be the maximum interval between knots 

i=l,2, ... ,n 

The main purpose of this section is to derive the inequality 

d*W, f),:;; w Ct[k + lJh ), 

(20.2) 

(20.3) 

(20.4) 

where w is the modulus of continuity of f. It follows that any continuous 
function can be approximated to arbitrarily high accuracy by a spline 
function of degree k, provided that the spacing between knots is 
sufficiently small. 

In order to express spline functions as linear combinations of B­
splines, we introduce extra knots that satisfy condition (19 .13 ). Instead of 
using B;, however, it is more convenient to work with the function 

k p+k+I (X -f}~ 
Np(x)·=(tp+k+1-tp) .L p+k+I 1 a::;;x::;;b, (20.5) 

1=p I1 (t; - gj) 
i=p 
i#j 
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which is just B;(x) multiplied by the factor (gp+k+1 -gp). Therefore the 
splines {N;; p = -k, -k + 1, ... , n -1} are a basis of Y, and N; (x) is 
non-zero only if x is in the interval (gp, gp+k+1). It is important to notice 
also that Theorem 19.l and equation (20.5) imply the condition 

N; (x);;;. 0, a ~ x ~b. (20.6) 

Because the function {s (x) = 1; a ~ x ~ b} is in Y, it can be expressed in 
terms of the basis functions. The factor (gp+k+l -gk) is present in equation 
(20.5) in order that this expression has the following simple form. 

Theorem 20.1 
For all positive integers k, the functions {N;; p = -k, -k + 1, 

... , n -1} satisfy the identity 
n-1 

L N;(x) = 1, a~x~b. (20.7) 
p=-k 

Proof. Theorem 19.3 allows a proof by induction. By changing the 
notation from B; to N; in expression (19.25), we find that the equation 

N;(x)= (x-gp) N;-1(x)+ (gp+k+l-x) N;:;::(x) 
(gp+k -gp) (gp+k+l - gp+l) 

(20.8) 

holds for p = -k, - k + 1, ... , n - l. The two sides of this equation are 
summed over p, and we make use of the identities {N~k: 1 (x) = O; a~ x,,;;: 
b} and {N~- 1 (x) = 0; a ~ x ~ b }. Hence, for k ;;;. 2, we find the relation 

nil N; (x) = nil (x -gp) N;-1 (x) 
p=-k p=-k (gp+k -gp) 

+ I (gp+k -x) N;-1 (x) 
p=-k+l (gp+k -~p) 
n-1 

L N;-1 (x), a~x~b. (20.9) 
p=-k+l 

Therefore, if equation (20.7) holds for k = 1, then it is satisfied for all 
positive integers k. In the case k = 1 the function N; (x) is equal to B ! (x) 
multiplied by (gp+2 -gp). It follows from expression (19.29) that equation 
(20.7) is valid fork= 1, which completes the proof. D 

The following theorem shows that the properties of B-splines and 
equation (20.7) provide an elementary proof of the useful bound (20.4). 

Theorem 20.2 
For every function fin <e[a, b ], the least maximum error (20.1) 

satisfies condition (20.4). 
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Proof. It is sufficient to find an element s in Y' such that the inequality 

llf-slloo~w(![k+l]h) (20.10) 

is obtained. We lets be the spline function 
n-1 

s(x) = I /(xv) N;(x), a ~x ~b. (20.11) 
p=-k 

where xv is the number in the range [a, b] that is closest to !(gv + gv+k+1). 

Therefore xv is one of the three numbers a, b and !(gv + gv+k+1). Equa­
tions (20.7) and (20.11) imply the relation 

n-1 

f(x)-s(x)= I [f(x)-f(xv)JN;(x), (20.12) 
p=-k 

Because the term under the summation sign is non-zero only if x is in the 
interval (~P• ~v+k+ 1 ), the definitions of xv and h give the bound 

lf(x )- /(xv)l IN~ (x )I~ w (![~v+k+l -gv]) IN~ (x )I 

~w(![k+l]h)IN~(x)I, a~x~b. 
(20.13) 

It follows from expressions (20.12), (20.6) and (20. 7) that the inequality 
n-1 

l/(x)-s(x)l~w(![k+l]h) I IN~(x)I 
p=-k 

= w(![k + l]h), (20.14) 

is satisfied, which is the required result. D 
This proof demonstrates that B-splines are useful, not only for simpli­

fying the numerical calculation of spline approximations, but also for 
theoretical analysis. Their properties imply that the function value s(x), 

defined by equation (20.11), is independent of xv, unless Ix -xvi is less 
than ![k + l]h. Therefore we have a spline approximation whose local 
properties are similar to those that are given by the interpolation pro­
cedures of Section 18.1. The spline function (20.11), however, does not 
satisfy any obvious interpolation conditions. 

20.2 The order of convergence when f is differentiable 
It is proved in this section that, if f is a differentiable function, 

then there are upper bounds on the least maximum error (20.1) of the 
form 

(20.15) 

for certain positive integers q and j, where c is a number that is 
independent off and of the positions of the knots ui; i = 0, 1, ... 'n}, and 
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where h is still the maximum distance between adjacent knots. For 
example, if f is in cgo>[a, b ], then expression (20.4) and the definition of 
the modulus of continuity give the bound 

d*(Y, /) ·~;d(k + l)h \\fl\oo. (20.16) 

An advantage of this kind of bound is that it indicates the improvement in 
accuracy that can be obtained by increasing the number of knots. It is 
therefore advantageous if q is as large as possible in expression (20.15). 
The following argument shows, however, that, even if f can be differen­
tiated more than j times, then q is equal to j. 

Let f be~ function in ~<n[a, b] such that d*(Y, f) is positive. We make 
the change of variable {i = ax; a ,;;;; x,;;;; b }, where a is any positive 
constant. Let f be the function {f(i) = f(i/ a); aa,;;;; i,;;;; ab }, let fi be the 
space Y(k, ag0 , agi. . .. , ag")' and let s* be a best approximation to f 
from fi. We note that the function {s*(x)=s*(ax); a,;;;;x,;;;;b} is in Y. 
Therefore the inequality 

d*(Y, /),;;;; \lf-s*\\oo 
=\lf-s*l\oo 
= d*(fi, f) (20.17) 

is satisfied, where the oo-norm is applied to two different spaces. We may 
apply cortdition (20.15) to d*(fi, f), when c is independent off and of the 
numbers {g;; i = 0, 1, ... , n }. Because the maximum distance between 
adjacent knots in the space fi is ah, it follows from inequality (20.17) that 
the bound 

(20.18) 

is obtained. Therefore, because the definition of 1 implies that l\fill\oo is 
equal to a -illf<il\loo, the relation 

d*(Y, /),;;;; chqaq-i l\iill\oo (20.19) 

holds for all positive values of a. However, the left-hand side of this 
expression is a positive number that is independent of a, and, if q is not 
equal to j, the right-hand side can be made arbitrarily small by choosing 
an extreme value of a. Hence, even if the restriction is relaxed that q is to 
be an integer, q cannot be different from j in inequality (20.15). 

Therefore, we would like j to be as large as possible. Of course j may 
not exceed the number of times f can be differentiated, and also it cannot 
be larger than (k + 1), because inequality (20.15) has to hold in the special 
case when f is the polynomial {f(x)=xk+l; a,;;;;x,;;;;b}. Therefore the 
values of j that are given in the following theorem are optimal. Another 
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nice feature of the theorem is that the proof is elementary, although the 
spacing between knots is allowed to be irregular. 

Theorem 20.3 
Let k and l be positive integers. For every function fin cg<n[a, b ], 

and for every integer j in the range [l, min(l, k + 1)], the least maximum 
error (20. l) satisfies the condition 

d*(Y'.f),,:;: (k+l)! (1h)jll!(j)ll 
, . (k + 1 - j) ! 2 00• 

(20.20) 

Proof. The proof is by induction, and it is similar to the proof of 
Theorem 3.2. For the general step of the induction we let the values of 
both j and k be greater than or equal to two, and we assume that 
condition (20.20) is satisfied if j and k are replaced by (j-1) and (k -1). 
This assumption implies the inequality 

llf' - ulloo,,,:;: (k + ~ !_ j)! (1h )j-l llij)lloo, (20.21) 

where u is a best approximation to f' from the space f:f(k -1, 
g0 , gi, ... , gn). We lets be an indefinite integral of er, and we lets* be a 
best approximation to (f-s) from the space f:f(k, g0 , 6 .... , gn). There­
fore inequalities (20.16) and (20.21) give the bound 

max lf(x)-s(x)-s*(x)i,,:;:1(k+l)h llf'-ulloo 
a~x.s:;;b 

,,,:;: (k+l)! (1h)illf(i)ll. 
(k + 1 - j) ! 2 00 

(20.22) 

Because (s + s *) is in Y, it follows that inequality (20.20) is satisfied. It 
remains to establish suitable conditions to begin the inductive argument. 

When j = 1, we find that condition (20.20) is the same as inequality 
(20.16), which is valid for k ~ 1. It follows that the theorem is true if 
k ~ j ~ 1. However, in order that the inductive argument can be applied 
also to the important special case when j = k + 1, we have to show that 
inequality (20.20) is valid when k = 1 and j = 2. In this case we let s be 
the function in Y(l, g0 , g1, ... , gn) that is defined by the interpolation 
conditions {s(g;) = f(gi); i = 0, 1, ... , n}. Because each piece of [;f is a 
linear function, it follows from Theorem 4.2 that, if x is in the interval 
[gi, gi+1], where i is any integer from [O, n -1], then the equation 

f(x)-s(x) =1(x -g;)(x -gi+1)f"(g) (20.23) 
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holds, where g is a point in [g;, g;+ 1] that depends on x. Hence we deduce 
the inequality 

d*(fl, f).;;; llf-slloo.;;; kh 2 llf"lloo. (20.24) 

Because this condition is stronger than expression (20.20), the proof of 
the theorem is complete. D 

This theorem is useful because it indicates the order of magnitude of 
the error of a spline approximation when h is small. We recall, however, 
from Chapter 3, that bounds of the form (20.20) fail to show that it can be 
highly advantageous to adapt the distribution of knots to the form of f. 

20.3 Local spline interpolation 
If one is selecting a method to calculate an approximation from 

fl(k, g0 , gi, ... , gn) to a function fin <€[a, b ], one should ask if there are 
any sudden changes in the form of f, for example a derivative dis­
continuity. For many approximation algorithms, the effect of a dis­
continuity is to introduce a wave in the spline that decays in magnitude 
away from the discontinuity. However, if the spacing between knots is 
increased away from the discontinuity, then the rate of decay is usually 
diminished. In this kind of situation it can be helpful to select an 
approximation method that has the property that, if x is any point of [a, b] 
that is separated from the discontinuity by a certain number of knots, then 
the value of the spline at x is independent of the discontinuity. The 
following interpolation method is suitable. 

We choose (k + 1) different points in each of the intervals {[g;, g;+d; 

j = 0, (k + 1), 2(k + 1), ... , r(k + 1)}, where r is the greatest integer that 
satisfies the bound 

r(k+l).s;n-1, (20.25) 

and, if the bound holds as a strict inequality, we also choose [n -1-
r(k + 1)] different points in [gn-i. gn], where the last of the points is 
greater than gn-l· Thus the total number of points is equal to (n +k), 
which is the dimension of ft. Therefore, because the conditions of 
Theorem 19.4 are satisfied, we may defines to be the element of Y that 
interpolates f at the points. The main property of this procedure is that, 
on each of the intervals {[g;, g;+1]; j = 0, (k + 1), 2(k + 1), ... , r(k + l)}, 
the number of interpolation points is such that the polynomial segment 
{s (x); g;.;;; x .;;; g;+ 1} is defined completely by the values off in the interval. 
Therefore there are no degrees of freedom that allow the form of s in 
[a, g;) to be related to the form of sin (g;+i. b]. Hence, if a perturbation to 
s is generated by a discontinuity in /, then the effect of the perturbation 
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cannot pass through any of the intervals {[gi> gi+ 1]; j = 0, (k + 1), 
2(k + 1), ... , r(k + 1)}. Thus, if x is any point in [a, b ], then the 
value s (x) depends only on the form of f in the interval [max (~q-k, a), 
min (gq+k+i. b )], where the integer q is such that x is in the range [gq, gq+iJ. 

One reason for mentioning this interpolation procedure is that it can be 
used to derive bounds of the form (20.15), in a way that is more direct 
than the inductive proof of Theorem 20.3. The bounds are given in the 
following theorem. 

Theorem 20.4 
Given the space Y(k, g0 , gi, ... , gn), let (n + k) interpolation 

points be chosen in the way that has just been described, and let L be the 
operator from C€[a, b] to Y such that, for any fin C€[a, b ], the function Lf 
is the spline that is defined by the interpolation conditions. If f is in the 
space ce<n[a, b ], where j is any integer in the range [1, k + 1], then the 
inequality 

(20.26) 

is satisfied. 

Proof. It is sufficient to prove that llf- slloo is bounded above by the 
right-hand side of expression (20.26), where s is the spline Lf. We let (be 
any fixed point in [a, b ], and we let <P be the polynomial 

<P(x) = f(()+ (x ~() ['(()+ ... + (~j--';;~1 /i-ll((), 
a ~ x ~b. (20.27) 

Because </> is in Y, the spline L</> is the polynomial </>. Further, <f>(() is 
equal to f((). Hence the error at (of the approximations = Lf to f has the 
value 

f (()- s (() = <P (() - (Lf)(() 

= (L{</> - !})((). (20.28) 

It is important to notice that the function (<P -f) takes very small values 
when the variable is near(, and to recall that (L{</> - [})(()depends only 
on the form of (</> - f) in the interval 

[a,, b,] = [max (gq-k. a), min (gq+k+i. b )], (20.29) 

where the integer q is such that ( is in the range [gq, gq+i]. In order to 
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make use of these remarks, we note that the mean value theorem gives 
the bound 

\f(x )-c/J (x )\.:; ~ \x -(\i 11/ill\oo, a .:; x.:; b. (20.30) 
J. 

Therefore, if t/Jc is the function in <(6[a, b] that satisfies the equation 

t/lc(x)=c/J(x)-f(x), a,o:;xo:;b,, (20.31) 

and that is constant on each of the intervals [a, a,] and [b,, b ], then the 
inequality 

llt/lclloo.:; ~max [\(- a,\i, \b, -(\i] 11/illloo 
/. 

1 . . () .:; J! max [\gq+l - a,\1, \b, -gq n111 J lloo 

<:;~! (k + l)ihi l\/il\\oo 
J. 

(20.32) 

holds, where the last line depends on the definitions (20.3) and (20.29). 
Because expressions (20.31) and (20.32) imply the bound 

!CL{c/J - !})(()\=\(Lt/I,)(()\ 

<:; \\L\\oo \\t/J,\\oo 

o:;~\\L\\oo (k + l)ihi \\/(j)l\oo, 
/. 

(20.33) 

and because the right-hand side of this inequality is independent of (, it 
follows from equation (20.28) that the theorem is true. D 

This theorem is less useful than Theorem 20.3, because the inter­
polation procedure is such that there is no upper bound on \ILl\oo that is 
independent of the knot positions U;; j = 0, 1, ... , n}. Really the main 
value of the theorem is to show that it is possible to deduce bounds of the 
form (20.26) from equation (20.28), by letting c/J be the function (20.27), 
provided that the operator L has the property that, for any (in [a, b ], the 
function value (Lf)(() is independent off (x) if \x - (\ exceeds a constant 
multiple of h. This technique is used again in the next section. 

20.4 Cubic splines with constant knot spacing 
There are several methods for calculating spline approximations 

with good localization properties that do not make use of interpolation 
conditions. A procedure is developed in this section for the special case 
when k = 3 and the knots satisfy condition (20.2) and the equation 

g;=g0 +jh, j=-3, -2, ... ,n+3. (20.34) 
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It shows another technique for spline approximation that obtains high 
order accuracy when f is sufficiently differentiable. We assume that the 
function to be approximated is defined on the interval [a - 2h, b + 2h ]. 
Because the B -spline {N! (x); - oo < x < oo} is symmetric about the point 
x = gp+2, we let s0 ( = L 0 f, say) be the spline function 

n-1 

so(x) = L f(gp+2) N! (x ), a :o.;;;x :o.;;;b, (20.35) 
p=-3 ' 

which is similar to the one that is used to prove Theorem 20.2. In order to 
apply the idea that is used to prove Theorem 20.4, we seek the greatest 
value of j such that the equation 

</J = Lo</J, </J E (J/Ji - i. (20.36) 

is satisfied. 
Because expression (19.18) implies the equations N! (gp+1) = 

N! (gp+3) = k and N! (gp+2) = ~. the spline (20.35) takes the values 

so(g;) = kf(g;-1) + ~f(g;) + kf(g;+1), i = 0, 1, ... , n, (20.37) 

at the knots. Hence, if f is in the space 9J\, then s0 (g;) is equal to f(g;), but, 
if f is a quadratic function, then the error 

i = 0, 1, ... , n, (20.38) 

occurs. Similarly, the spline approximation 

n-1 

s1(x)=! L [f(gp+1)+f(gp+3)]N!(x), a :o.;.:; x :o.;.:; b, (20.39) 
p=-3 

has the value 

s1(g;) = b[f(g;-2) +4/(g;-1) + 2/(g;) + 4f(g;+1) + f(g;+2)], (20.40) 

which implies the error 

f(g;)- St (g;) = -~h 2f"(g;), i = 0, 1, ... , n, (20.41) 

when f is in [l/>2 . The spline approximation that is studied in this section is 
obtained by forming the linear combination of s0 and s 1 that eliminates 
the error terms (20.38) and (20.41). Hence it is the function 

n-1 

s(x)= L [-kf(gp+1)+~f(gp+2)-kf(gp+3)]N!(x), 
p=-3 

(20.42) 

Because equations (20.38) and (20.41) are valid when f is any cubic 
polynomial, the conditions 

i = 0, 1, ... , n, (20.43) 
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are obtained. Further, equations (19.18) and (20.42) imply that, for 
i = 0, 1, ... , n, the derivative s'(g;) has the value 

(20.44) 

which is equal to f'(g;) when f is in @>3 • Hence the spline approximation 
(20.42) is equal to f, when f is any cubic polynomial. 

Therefore, if f is in 95'<4 l[a, b ], we may apply the method of proof of 
Theorem 20.4 to obtain a bound on d*(Y, /) in terms of l[/4l.,. To begin 
this analysis the definition off is extended to the interval [a - 2h, b + 2h] 
in a way that does not increase ll/4llloo, and an operator L, from 
95' [a - 2h, b + 2h] to 9', is defined by the equation 

n-1 

Lf = L [ -tf(gp+1) +1/(gv+z}.-t/(gp+3)JN! 
p=-3 

n-1 

= L Ap(f)N!, (20.45) 
p=-3 

say. We let j = 4 in expression (20.27), and we note that equation (20.28) 
is satisfied. Therefore we require an upper bound on \(L{<f> - !}){()\ that 
is independent of (. 

Equation (20.45), the properties of B-splines and Theorem 20. l imply 
the condition 

\(L{</>-f}}(()\ = lpnf 3 Ap(</J-f}N~ ((}I 

= 'p=t3 Ap(</J-f)N! (()I 

= max \Av{<f> - f)\, 
q-3tS:;p~q 

(20.46) 

where q is still an integer such that (is in the range [gq, gq+d. There is no 
need to introduce a function that corresponds to the function I/Jc in the 
proof of Theorem 20.4, because expressions (20.45) and (20.30) give the 
bound 

(20.47) 

When p is in the interval [q - 3, q ], then ( is in the interval [~v• gv+4]. In 
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this case the greatest possible value of expression (20.47) occurs when 
lgp+2 - (I = 2h. It follows from equation (20.28) and condition (20.46) that 
the inequality 

(20.48) 

is satisfied, which is a slight improvement on the one that is obtained by 
setting k = 3 and j = 4 in Theorem 20.3. 

The factor li in condition (20.48) is much larger than necessary. Most 
of the loss of precision comes from the third line of expression (20.46), 
but some of the loss can be avoided by a different choice of </J. For 
example, we let <P be the cubic polynomial that interpolates the function 
values f(gq-1), f(gq), f(gq+1) andf(gq+2). In this case Theorem 4.2 gives the 
inequality 

a ~x ~b, (20.49) 

instead of expression (20.30). It follows that, instead of equation (20.28), 
the bound 

lfC()- s(()I ~ l<P (()- CLf)(()I + lfC()-</JC()I 

~ ICL{</J - f})(()I + l~sh 4 llf(4)JJ00 (20.50) 

is satisfied, where the last line depends on the fact that ( is in [gq, gq+iJ· 
The relation (20.46) is still valid, but there are substantial changes to 
expression (20.4 7) because the terms { (f - <P )(g;); q -1 ~ j ~ q + 2} are all 
zero. Hence, when p = q - 3, the definition of Ap and inequality (20.49) 
imply the bound 

IApC<P - nl = tlct-<P )(gq-2)1 

(20.51) 

This bound also holds when p = q. Similarly, if p is equal to q - 2 or q - 1, 
then Ap(</J - f) is zero. It follows from expressions (20.46) and (20.50) that 
the inequality 

lf(()-s(()l~37i4h 4 JJ/(4)JJ00, a~(~b, (20.52) 

is obtained, which is sharper than condition (20.48). 
By being more ingenious in the choice of </J, or by giving detailed 

attention to the third line of expression (20.46), it is possible to make a 
further reduction in the constant of inequality (20.52). However, by using 
a different procedure, the least possible value of this constant is found in 
Section 22.4. 
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20 Exercises 
20.1 Let k = 2, let f be a quadratic polynomial, and Jet s be the 

quadratic spline (20.11), where {gi = jh; j = -2, -1, ... , n +2} 
and {xp=t(gp+gp+3); p=-2, -1, ... ,n-l}. Show that for 
every point x in the interval [g0 , gn], the error [f(x)-s(x)] is 
equal to the constant -lh2f'(x ). 

20.2 Let k be a fixed positive integer, and let /3 be a constant such that 
the inequality 

holds for all functions fin <(6[a, b] and for all spaces of splines of 
degree k whose knots satisfy the conditions (20.2), where w is 
the modulus continuity off, and where h has the value (20.3). 
Prove that f3 is not less than one. Hence Theorem 20.2 gives the 
optimal value of /3 when k = 1. 

20.3 Prove that, if the bound 

d*(Y, f) ~chi llf'illloo, f E qgU>[a, b ], 

is satisfied for all spaces Y(k, g0 , gi, ... , gn) whose knots satisfy 
the condition 

i = 1, 2, ... n, 

where µ is a positive constant that is less than one, and where h 
is the maximum knot spacing (20.3), then the inequality 

holds when there are no restrictions on the positions of the knots 
of ff. 

20.4 Let f be a quartic polynomial, and let s be the cubic spline in the 
space Y(3, 0, 1, 2, 3, 4, 5) that satisfies the interpolation condi­
tions {s(xd = f(xi); i = 1, 2, 3, ... , 8}, where the interpolation 
points have the values {x; = (i -1)/3, i = 1, 2, 3, 4; xi = (i + 7)/3, 
i = 5, 6, 7, 8}. Show that the error [f(2!)-s(2!)] is equal to 
1g~sf'4>(x ), and that the third derivative discontinuities of s have 
the values ~ f'4>(x ), ~ / 4 >(x ), ~ f'4>(x) and ~ f'4>(x ). 

20.5 Obtain a bound on II/ - slloo that is stronger than condition (20.52) 
by substituting the conditions on {jAp(</> - /)I; q - 3 ~ p ~ q}, that 
are given immediately before inequality (20.52), into the second 
line of expression (20.46). 
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20.6 Let the knots {~i} have the values (20.34), and let sa be the cubic 
spline approximation 

n-1 

Sa(X) = L [f(~p+2)+af"(~p+2)JN! (x), a :s;;x:s;;b, 
p=-3 

to a function fin ~<4>[a - h, b + h]. Calculate the value of a such 
that sa is equal to f when f is a cubic polynomial. Hence find a 
bound on the error {If (x) - s (x )I; a ,,;;; x ,,;;; b} of the form (20.48). 

20. 7 Investigate whether the inequality of Exercise 20.2 is valid when 
k = 2 and /3 = 1. 

20.8 Improve the bound of Theorem 20.4 by replacing the function 
(20.27) by a polynomial of degree (j-1) that interpolates f at 
suitable points of the interval (20.29). 

20.9 Prove that the Chebyshev polynomial Tk maximizes the deriva­
tive {jjp'Jloo; p E gid subject to the condition JjpJJoo,,;;; 1, where the 
oo-norm applies to the interval [ -1, 1]. Hence deduce that the 
bound 

p E gik, 

is satisfied. This condition is required for the next exercise. 
20.10 Let f be a function in ~<il[a, b], and let s be a spline in 

Y'(k, ~0 , ~i. ... , ~n) that satisfies the condition 

Jlf-sJJoo:s;;chi JJ/(i)JJoo, 

where k;;. j-1 ;;o l, where c is a constant, and where h is the 
maximum interval between knots. Prove that JI!' - s'Jloo is boun­
ded ahove by a constant multiple of the expression hi JJlillJoo/11, 
where T/ is the smallest of the numbers{~; - ~;-1; i = 1, 2, ... , n }. 
Note that it is helpful to use Exercise 20.9 to bound the 
difference lf'(()-s'(C)I = l<P'(()-s'(C)I, where ( is any point of 
the interval [~;-i.~;], and where <P is the Taylor series approxi­
mation to fat (of degree (j-1). 



21 

Knot positions and the calculation of spline 
approximations 

21.1 The distribution of knots at a singularity 
A strong advantage of letting the knots of a spline approximation 

have the equally spaced values 

j = 0, 1, ... , n, (21.1) 

is that, for any x in [a, b ], one can find by one division and one integer part 
operation an index j such that the condition gi ~ x ~ gi+I is satisfied. It is 
often possible, however, to reduce greatly the total number of knots by 
giving up the condition that the spacing between knots is constant. In 
order to demonstrate this point, we consider the approximation of the 

I 

function {f(x) = x 2 ; 0 ~ x ~ 1} by the piecewise linear functions from the 
space 9'(1, g0 , gi, ... , gn) (where g0 = 0 and gn = 1) that is defined by the 
interpolation conditions 

i = 0, 1, ... , n. (21.2) 

We consider the number of knots that are needed to provide the accuracy 

llf--slloo ~ e, (21.3) 

where s is a small positive constant. 
In each of the intervals {[ gi> gi + 1]; j = 0, 1, ... , n - 1}, the error function 

satisfies the equation 

!() ( ) - l gj(gi+1-x)+g]+dx-gi) 
X -s X -X - gj~X~gj+I· 

gj+l -gj ' 
(21.4) 

Therefore the maximum error on [gi> gi+1] occurs at the point x = 
I I I 2 . 4(gj + g/+ i) . Here the modulus of the error function has the value 

l<g]+1-g]) 2 /(gj +g]+d· (21.5) 

If the knots are equally spaced, then this expression is greatest when j = 0. 
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Hence II! - slloo is equal to ln -~. It follows that, in order to achieve the 
bound (21.3), the integer n must not be less than 1/(4s)2. 

If there are no restrictions on the positions of the knots, however, then 
the values 

gi = (j/n)4, j = 0, 1, ... , n, (21.6) 

are particularly suitable. In this case expression (21.5) gives the identity 

1 4j2+4j+l 
~;""°!!t, Jf(x)-s(x)J = 4n22j2+ 2j+ 1 . (21.7) 

Because the right-hand side is bounded above by 1/2n2 , the accuracy 
1 

(21.3) is achieved if n is not less than (2s )-2, which is a large improvement 
on the previous bound. For example, if e = 10-4 , then n;;;,: 25 x 106 

when the knots are equally spaced, but the distribution (21.6) allows 
n = 71. The reduction in the number of knots that can be made by adapt­
ing the knot positions to the form off is usually even greater when s is 
a quadratic or a cubic spline. 

It is interesting to compare the number of knots that are needed to 
approximate the functions {f(x) = x ~; 0.;;; x .;;; 1} and {f (x) = 2x 2 ; 0.;;; x .;;; 

l} to accuracy e by a linear spline. When f is a quadratic polynomial it is 
best to use a constant knot spacing. Hence in both cases the fewest 
number of knots that is necessary to achieve the required accuracy is 
about (2s )-~, even though one function has a singularity and the other 
one is very smooth. It happens often that singularities in f do not increase 
greatly the total number of knots, provided that careful attention is given 
to the knot positions. 

One kind of singularity that can be fitted easily is a derivative dis­
continuity. We consider the case whenlql is discontinuous at i, where q is 
an integer in the interval [1, k], and where i is an interior point of the 
range [a, b ]. When q = k, then placing one of the knots {g;; i = 1, 2, ... , 
n -1} at i allows the discontinuity to be fitted exactly, because 
the function 

u(x) = (x -x):, a .;;; x.;;; b, (21.8) 

is in !/(k, g0 , gi, ... , g,.). When q is less than k, then it is suitable to let 
(k + l -q) of the knots {g;; i = 1, 2, ... , n -1} be close to i, because the 
following theorem shows that in this way the function (21.8) can be 
approximated arbitrarily closely by an element of !/. 

Theorem 21.1 
Let q be an integer in [1, k-1], and let u be the function (21.8), 

where i is any fixed point in (a, b).For any e > 0, there exists a splines in 
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5f(k, g0 , gi, ... , gn) that satisfies the inequality 

llu - slloo::;; t:, 
provided that the condition 

lx-gil=s;t:/[q (b-a)q-l] 

holds for at least (k + 1-q) of the knots {gi; j = 0, 1, ... , n }. 

(21.9) 

(21.10) 

Proof. We let the knots {gi; j = p, p + 1, ... , p + k - q} satisfy condition 
(21.1 O), and we let s be the function 

(-l)k-q(k-q)!q! p+k-q (x-gi): 
s(x) = " a :s; x :s; b, k' .~ p+k-q 

• i=p n (gj-gi) 
i=p 
;,. j 

(21.11) 

which is in 511. Equation (5.2) shows that, for any fixed x, s(x) is the divided 
difference g[gp, gp+t. ... , gp+k-q], where g is the function 

g(O)=(-l)k-q[(k-q)!q!/k!](x-o):, a=s;fJ=s;b. (21.12) 

It follows from Theorem 5.1 that s(x) has the value 

s(x) = [1/(k-q)!] g<k-ql(g) 

=(x-g)~, (21.13) 

where g is in the interval [gp, gp+k-q] and depends on x. The remainder of 
the proof depends only on equations (21.8) and (21.13), and the fact that 
g satisfies the condition 

lx-gl=s;t:/[q (b-at- 1]. (21.14) 

If q = 1, then equations (21.8) and (21.13) imply the inequality 

lu(x)-s(x)i :s; lx-gl. (21.15) 

When q > 1, the mean value theorem is applied to the function 
{(x - 8)~; a :s; 8 :s; b} to deduce the equation 

lu(x)-s(x)i =Ix -gl q (x -()~- 1 , (21.16) 

where ( is between .i and g. The term (x -()~- 1 is bounded above by 
(b-a)q- 1 • It follows from expressions (21.14), (21.15) and (21.16) that 
lu(x )- s(x )I does not exceed t:. Because this statement holds for all x in 
[a, b ], the theorem is proved. D 

In practice, instead of choosing the knots {gi; j = 0, 1, ... , n} in such a 
way that the function (21.8) can be approximated to high accuracy by an 
element of 5f(k, g0 , gi, ... , gn), it is more convenient to let the function 
(21.8) be in the set of approximating functions. Therefore we extend the 
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definition of 9'(k, g0, gi, ... , gn) in order to allow repeats in the set 
Ui; j = 0, 1, ... , n}. If the conditions 

(21.17) 

hold, and if at least one of the inequalities is satisfied as an equation, then 
the space 9'(k, g0, gi, ... , gn) is defined as follows. It is the space that is 
spanned by the functions {x;, a ~x ~ b; i = 0, 1, ... , k} and {(x -~i)~, 
a~ x ~ b; k + 1-q(j) ~ i ~ k; j = 1, 2, ... , n -1}, where q(j) is the mini­
mum of k and the number of times that the number ~i occurs in the set 
{~p; p = 1, 2, ... , n -1}. Most of the theory that is given in Chapters 19 
and 20 applies to the extended definition of 9'. 

21.2 Interpolation for general knots 
In order that the results of the previous section are useful, there is 

a need for an algorithm that calculates an approximation from 
9'(k, g0 , gi, ... , gn) to a function fin <e[a, b ], without unnecessary loss of 
accuracy when the distribution of knots is highly irregular. Interpolation 
methods are often suitable, provided that the interpolation points {x;; 
i = 1, 2, ... , n + k} are selected carefully. The conditions of Theorem 
19.4 must be satisfied, and then the equations 

s(x;) = f(x;), i=l,2, ... ,n+k, (21.18) 

define a unique element of 9' for each fin <e[a, b ]. Thus the interpolation 
algorithm is a linear projection operator from <e[a, b] to 9'. It follows 
from Theorem 3 .1 that, if the norm of the interpolation operator is small, 
then the error of the calculated approximation is never much larger than 
necessary. Therefore we seek interpolation points that make the norm 
small. 

If the splines are piecewise linear functions, then the norm of the 
interpolation procedure is one if the interpolation points are the knots. 
For k ;;;,: 2, it is usually suitable to include the values 

X; = (gi-k +gi-k+l + ... +g;-1)/k, i = k, k + 1, ... , n + 1. 
(21.19) 

The following theorem makes this statement definite in the case 
when k = 2. We find later, however, that, if the interpolation points are 
specified before the knots are chosen, then it may not be possible to 
achieve a small norm. 

Theorem 21.2 
For any I in ce[a, b ], lets = Lf be the quadratic spline in the space 

9'(2, ~0 , ~i. ... , ~n) that is defined by the interpolation conditions 
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(21.18), where the knots are in ascending order 

a = go< gl < 6 < ... < gn = b, 

and where the interpolation points have the values 

X1 =go 

X; = 1(gi-2 + g;-1), 

Xn+2 = gn 

i ~ 2, 3, ... , n + I } . 

Then the norm of the interpolation operator satisfies the bound 

\\L\\oo~2. 

(21.20) 

(21.21). 

(21.22) 

Proof. Let si be the quadratic function that is equal to s on the interval 
[gi> gi+tl Because xi+2 is the mid-point of this interval, the quadratic can 
be expressed in terms of the function values s(gi), f(xi+2) and s(gi+1). 
Hence the equations 

(gi+I - gi)sj (g;) = -3s(gi) + 4/(xi+2)- s(gi+1) } 

(gi+t - gi)sj (gi+1) = s(gj)-4f(xi+2) + 3s(g;+1) 
(21.23) 

are satisfied. Therefore the first derivative continuity conditions 
{s/(gi+1) = s/+1(gi+1);j=0, 1, ... , n -2} give the recurrence relations 

s(gi)hi+l + 3s(gi+1)[hi + hi+il + s(gi+2)hi 

= 4f(Xj+2)hi+ I + 4f(X;+3)hi> j = 0, 1, ... , n - 2, (21.24) 

where hi is the length of the interval [gi> gi+1]. Let M = \s(gq)\ be the 
largest of the numbers {\s(gi)\;j=O,l,. . .,n}. If l~q~n-1, then 
expression (21.24) implies the bound 

(21.25) 

which shows that Mis not greater than 21\/\\oo. Alternatively, if q is 0 or n, 
then the equation s(gq) = f(gq) holds. It follows that the inequalities 

j =0, 1, ... , n, (21.26) 

are obtained. Moreover, equations (21.18) and (21.21) give the condi­
tions 

j = 0, 1, ... , n -1. (21.27) 

The required bound on \\L\\oo will be derived from the last two inequalities 
and the fact that s is a quadratic function on each of the intervals 
{[gi> gi+1]; j = 0, 1, ... , n -1}. 

In order to simplify notation, we suppose that gi = 0 and gi+l = 1. Then 
the Lagrange interpolation formula and expressions (21.26) and (21.27) 
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imply that, if 0,,,;;; x ,,,;;; !, the condition 

ls(x )I= l2(x -t)(x -1) s(O) +4(x - x 2) s(t) + 2(x 2 -h) s(l)I 

,,,;;; 4llflloo [(x -t)(x -1) + (x - x2) + (h- x2)] 
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= 4llflloo [t-x 2],,,;;; 2llflloo (21.28) 

is satisfied. Similarly this condition holds when t,,,;;; x ,,,;;; 1. The same 
technique may be used to bound ls(x)I on each of the intervals 
{[gh gi+iJ; j = 0, 1, ... , n -1}. Hence llslloo is not greater than 2llflloo, which 
is the required result. D 

Unfortunately there is no constant bound on llLlloo when sis a quadratic 
spline, and when, instead of placing the interpolation points midway 
between the knots, the procedure of Section 18.4 is followed, which 
places the knots midway between the interpolation points. There is not 
even a constant upper bound on the norm of the interpolation operator if 
the knot positions are chosen to minimize the norm. This result is easy to 
prove if there are only three interpolation points, because then s is just a 
quadratic polynomial. It is more interesting, however, to consider a case 
when the maximum distance between adjacent interpolation points can be 
made arbitrarily small. We find that it is still possible for the distribution of 
interpolation points to prevent a bounded norm. The demonstration 
depends on an elementary property of quadratic splines, which is proved 
in the following theorem, in order to separate it from the main argument. 

Theorem 21.3 
Lets be any quadratic spline, and let (a, (3) be any interval of the 

real line that contains at most two knots. Then the inequality 

max ls(x)l;;.:ro({3-a)ls'(t[a+{3])1 (21.29) 
a.~x:s;.{3 

is satisfied. 

Proof. Ifs is a quadratic polynomial on the interval [u, v ], then straight­
forward algebra shows that the bound 

max ls(x)l;;.:k(v-u)max[ls'(u)l,ls'(v)IJ (21.30) 
u~x~v 

holds in general, and that the bound 

max ls(x)I ;;.:t(v-u) min [ls'(u)I, ls'(v)IJ 
u:s::;;x~v 

(21.31) 

is obtained in the particular case when the signs of the derivatives s'(u) 

and s'(v) are the same. If there is no knot in the interval (a, ![a+ {3]), then 
expression (21.30) implies that inequality (21.29) is satisfied, with the 
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factor to replaced by -h. Similarly this inequality holds when there is no 
knot in the interval (![a +/3], /3). Therefore it remains to consider the 
case when there are two knots in (a, {3), gi and gi+l say, such that 
~i <!(a+ /3) < ~i+l· Because the derivative {s'(x ); ~i ~ x ~ ~i+ 1 } is a linear 
function, we may assume without loss of generality that s'(gi+1) ~ 
s'(![a + /3]), and that s'(![a + /3]) is non-negative. It follows from expres­
sions (21.30) and (21.31) that the bounds 

max ls(x)l~l(13-gi+1)s'(![a+/3]) l 
e;+i:: ls(x )I ~!(gi+l -![a+ /3]) s'(![a + /3]) 
!(a+j3)~X=6~;+1 

(21.32) 

are obtained. Because the greater right-hand side is least when gi+l = 
0.4a + 0.6{3, the inequality 

1 max ls(x )I~ to(/3 - a) s'(~[a + /3]) (21.33) 
2(a+J3).;;x.;;J3 

holds, which completes the proof of the theorem. 0 
Inordertoshowthat,ifs =L(f)isthesplinein9'(2, g0 , gi, ... , gn)thatis 

defined by the interpolation conditions (21.18), then llLlloo may be large, 
even if the knot positions are chosen carefully, we consider the case when 
the spacings between the interpolation points are the distances 

{ h, i odd, 
X·+1-X· = 
' ' 8h, i even, 

i = 1, 2, ... , n + 1, (21.34) 

where h and 8 are positive constants, and where 8 is much smaller than 
one. It is sufficient to show that llslloo is large when the data have the values 
{f(x;) = (- l)i+l; i = 1, 2, ... , n + 2}. If q is any even integer in the range 
[2, n ], then the mean value theorem implies that there is a point T/q in the 
interval (xq, Xq+1) that satisfies the equation 

s'(T/q) = [s(Xq+1)-s(xq)]/(Xq+1 - Xq) 

= 2/(8h). (21.35) 

Because the intervals {( T/q -ih, T/q +!h); q = 2, 4, 6, ... } are disjoint, and 
because the number of internal knots of the spline is only (n -1), it 
follows that, when n is large, there are fewer than three knots in several of 
the intervals {(T/q -!h, T/q +!h); q = 2, 4, 6, ... }. We apply Theorem 21.3 
to any one of them, where (a, /3) = (TJq -!h, T/q +!h). Hence equation 
(21.35) gives the bound 

llslloo~ 1/(108). (21.36) 

This inequality holds for all choices of knots, and 8 can be arbitrarily 
small. Therefore some distributions of interpolation points make it 
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inevitable that the norm of the interpolation operator is large. Hence it is 
important sometimes to choose the positions of the knots before the 
positions of the interpolation points, and then Theorem 21.2 gives a 
convenient way of achieving a small norm. 

21.3 The approximation of functions to prescribed accuracy 
This section considers the problem of calculating automatically a 

cubic spline function s that satisfies the condition 

\If- slloo,;;; e, (21.37) 

where f is a given function in ~[a, b ], and where e is a given constant 
tolerance. One reason for this study is that, if a computer program 
requires the value f (x) for many thousand different values of x, and if each 
evaluation takes several seconds of computer time, then it is necessary to 
replace f by an approximation that can be calculated easily. We lets be a 
cubic spline approximation, because cubic splines give a good balance 
between smoothness and flexibility. 

First we consider a spline whose knots are equally spaced 

gi=g0 +jh, j=0,1, ... ,n, (21.38) 

and that satisfies the interpolation conditions 

j = 0, 1, ... , n. (21.39) 

We suppose that the technique that fixes the two end conditions, dis­
cussed in Section 18.3, is such that, if f is a quartic polynomial, then s'(a) 
and s'(b) are equal to f'(a) and f'(b) respectively. For example, Exercise 
18.3 shows that it is sufficient to satisfy the equations d 1 = d 2 and 
dn-z = dn-i. where di is the third derivative discontinuity 

di= s"'(gi+ )- s"'(~i-), j = 1, 2,. . ., n -1. (21.40) 

If the number of knots of s is to be chosen automatically, then it is 
necessary to predict whether the accuracy (21.37) is obtained. 

In order to derive an error estimate, we follow an approach that is often 
successful. It is to analyse the error of the spline approximation when/ is a 
polynomial of the lowest degree that gives a non-zero error. Therefore we 
assume that f is in PP 4 , and we note that Exercise 18.3 implies the values 

s(gi) = f(gi) } 
s'(gi) = f'(gi) ' 

j = 0, 1, ... , n, (21.41) 

and 

di = hl4)(g), j = 1, 2, ... , n -1, (21.42) 

where g is any point of [a, b ]. Because the function {f(x )- s (x); gq ,;;; x ,;;; 
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gq+ 1} is a quartic polynomial, where q is any integer in [O, n - l], it follows 
from expressions (21.41) and (21.42) that the equation 

f(x )- s(x) = ti(x - gq) 2(x -gq+1)2l 4l(g) 

(21.43) 

is satisfied. Because the greatest error occurs at the point x = !(gq + gq+1), 
it has the value 

(21.44) 

where di is any one of the third derivative discontinuities of s, and where f 
is a fourth degree polynomial. 

The next stage of the derivation of the error estimate is to let f be an 
infinitely differentiable function, and to consider the error of the spline 
approximation to the Taylor series expansion 

a ~x ~b, (21.45) 

where g is any fixed point of [a, b]. Because the interpolation method for 
calculating the spline approximation is a linear operator, the error (f - s) 
is the sum of the errors that occur when the separate terms of the Taylor 
series are approximated by splines. It is important to note that, because 
the cardinal function of Figure 18.2 decays exponentially, the error 
{f(g)-s(g); a~ g ~ b} is dominated by the form of {f(x); a ~x ~ b} in a 
neighbourhood of g. Therefore, for sufficiently small h, the error at g is 
mostly due to the fourth derivative term of expression (21.45). A similar 
argument shows that, if h is sufficiently small, and if gi is close to g, then 
the main contribution to the third derivative discontinuity (21.40) also 
comes from the fourth derivative term of the Taylor series. By combining 
these remarks with equation (21.44), we obtain the error estimate 

h3 
<.,,DJ!L, lf(x )-s(x )I= 384 max [ldql, ldq+1IJ. (21.46) 

It may be used for q = 1, 2, ... , n -2. When q = 0 the term ldql is deleted 
from the right-hand side, and when q = n -1 the term ldq+il is deleted, 
because s does not have third derivative discontinuities at g0 and gn· 

The approximation (21.46) is usually adequate in practice, even when/ 
has some mild singularities. It is easy to calculate the right-hand side of 
the approximation from the parameters of s. Because there are separate 
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error estimates for each of the intervals {[gq, gq+1]; q = 0, 1, ... , n -1}, a 
computer program can find automatically when it is advantageous to give 
up the condition that the spacing between knots is constant. 

The example of Section 21.1 shows that changes in knot spacing can 
give large gains in efficiency, but one loses the advantage that is 
mentioned in the opening sentence of this chapter, error control is more 
difficult when there are frequent changes of knot spacing, and also, if a 
sequence of trial approximations to f is calculated, then it is more difficult 
to control the positions of interpolation points so that full use is made of 
all calculated values of f(x ). A successful compromise is to keep each knot 
spacing for several consecutive intervals, and to allow only halving and 
doubling where the knot spacing changes. Therefore we consider the case 
when the knots have the values 

g;=g,+(j-r)h, 

g; = g, + 2(j- r)h, 

j=O,l, ... ,r } 
. 1 ' J = r, r+ , ... , n 

(21.47) 

where g, is remote from the ends of the range [a, b ]. In particular, we ask 
whether the error estimate (21.46) is suitable if q is close to r. 

Because of the importance of the fourth order term of the Taylor series 
(21.45), we again let f be a quartic polynomial, and we let e = f - s be the 
error function of the spline approximation that is defined by interpolation 
at the knots (21.4 7). In order to analyse this error function, we compare it 
with eh and e2 h, which are the error functions that would be obtained if the 
spacing between knots were the constants h and 2h respectively. The 
solid line of Figure 21.1 is the function e, and the dotted line is composed 
of the functions {eh (x ); g,_4 :s;: x :s;: g,} and {e2h (x ); g, :s;: x :s;: g,+3}. The 
differences {e (x )- eh (x); x :s;: g,} and {e (x )- e2h (x ); x ;3 g,} are similar to 
the tails of the cardinal function of Figure 18.2. 

Figure 21.1. The effect on the error of a change in step-length. 
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Therefore, assuming that the effects from the ends of the range [a, b] 
can be neglected, there exist parameters A and µ, such that the equation 

e(x)={ eh(x)+A a([g,-x]/h), 
e2h (x) + µ, a([x - g, ]/2h ), 

holds, where a is the function 

(21.48) 

a(x) = x -v'3x 2 + ( v'3 - l)x 3 + 2·J3 I ( v'3 - 2)i (x - i)!, 
j=l,2,. .. 

(21.49) 
that is studied in Section 19.1. Because e' and e" are continuous at x = g" 
the conditionsµ,= -2.A and 

tzh 2/ 4 l(g)- 2v'3A/ h 2 = th 2/ 4\g)-!v'3µ,/ h 2 (21.50) 

are satisfied, where / 4 l(g) is the constant fourth derivative of f. It follows 
that the parameters have the values 

A = - 142v'3 f (g) . h
4 

(4) l 
µ, = 6~3 /4l(g) 

(21.51) 

It is now straightforward to obtain from expression (21.48) the third 
derivative discontinuities of s, and the maximum value of lf-sl on each of 
the intervals {[gi> gi+1]; j = r-4, r-3, ... , r+2}. These numbers are 
given in Table 21.1. 

The table shows that the expression 

~."'~~L, lf(x)-s(x)I (gq+;;/q)
3 

max[ldql, ldq+il] (21.52) 

Table 21. 1. Errors and derivative discontinuities at a 
change in knot spacing 

j d; rnax lf(x )-s(x ll 
~j~X~~;+t 

r-4 1.0052h['4l(g) 0.0028h 4f C4l(g) 
r-3 0.9808h[<4l(g) 0.0021h 4f 4l(g) 
r-2 1.0718hf'4 )(g) 0.0047h 4['4\g) 
r-1 0.7321hf'4)(g) 0.0060h 4['4)(g) 
r 1.6585hf'4)(g) 0.057lh 4['4)(g) 
r+l 2.0670hf4l(g) 0.0376h 4['4)(g) 
r+2 1.9821h/'4)W o.o42sh4f<4lw 
r+3 2.0048h['4)(g) 
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overestimates the error when q = r - 3 and r + 1, and it underestimates 
the error when q = r-4, r-2, r-1, rand r+2, by 7%, 41%,28%, 25% 
and 2i% respectively. The discrepancies for q < r do not matter very 
much because they occur in errors that are much smaller then the errors 
when q ;;?; r. The 2i% discrepancy can usually be ignored, but a 
modification is needed when q = r. The table suggests that the approxi­
mation 

max lf(x)-s(x)j 
er~X~~r+l 

= (g,+;;4g,)3 max [1.65jd,j, jd,+1IJ (21.53) 

is suitable. Moreover, in order to avoid the possibility that the error 
estimate predicts incorrectly that the interval [g,_i. g,] is too long, 
it is advisable to delete the term ldq+il from expression (21.52) when 
q = r-1. 

These ideas give an automatic method of estimating the local error of 
an interpolating cubic spline approximation to a function f, provided that, 
where the knot spacing changes, it only halves or doubles, and provided 
that each new knot spacing is used for several consecutive intervals. The 
error estimate is usually adequate when f is a general function, even 
though the analysis is based on the assumption that f is a quartic 
polynomial. If it is applied to a trial cubic spline approximation, then the 
estimate indicates the parts of the range [a, b] where the accuracy is 
insufficient. By reducing the knot spacing only in these parts of the range, 
the spacing between knots can be adapted automatically to the form of f. 
Hence a general algorithm has been developed for solving the problem 
that is stated at the beginning of this section. The algorithm begins by 
calculating an interpolating cubic spline that has a few equally spaced 
knots in [a, b ]. This spline is the first of a sequence of trial approxima­
tions. If it is predicted that a trial approximation is not sufficiently 
accurate, then the knot spacing is halved where the error is too large, and 
a new trial spline is calculated. The procedure finishes when the error 
estimate indicates that the required accuracy is achieved. Two features 
that are worth including in the algorithm are to insert extra knots only in 
the parts of the range [a, b] where it is predicted that the error of the 
current trial approximation is within one-sixteenth of its maximum value, 
and to allow for an effect that is shown in Figure 21.1, namely that in the 
interval [g,, g,+ 1] the error given by the solid line is about 1.4 times larger 
than the error shown by the dashed line. This increase in error is due to 
the change in interval length at g,. Many trial approximations can be saved 
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sometimes by anticipating this effect when the algorithm chooses the 
intervals in which to place new knots. 

21 Exercises 
21.1 If a linear spline approximation s to a function f in 't?<2l[a, b] 

satisfies the condition II/- slloo,,;;; e, and if s interpolates f at the 
knots, then Theorem 4.2 shows that, in a neighbourhood of a 
point x of [a, b ], the knot spacing h is at most about f 8e/ f"(x )f l. 
This remark suggests the density of knots that is needed to 
approximate a given function to prescribed accuracy. Hence 
estimate the minimum number of knots that are necessary to 
achieve the condition II/ - s lloo,,;;; e when f is the function {f(x) = 
xµ.; 0,,;;; x,,;;; l} where the constant µ, is greater than two. Show 
that, if the knot spacing has to be constant, then the number of 
knots increases by a factor of about tµ.,. 

21.2 Apply the interpolation method of Theorem 21.2 to calculate a 
spline approximation from the space :/(2, 0, "'4, /4, ~. 1) to the 

3 

function {f(x) = x 2 ; 0,,;;; x,,;;; l}. You should find that the maxi-
mum error at a knot is equal to 0.000 254. 

21.3 Let!/, be the space of cubic splines on the infinite range (-oo, oo) 
that have knots at the points {6i = jh, 6i-1 = jh - e, 6i+l = 

jh + e; j = 0, ±1, ±2, ... }, where h is a positive constant, and 
where e is a positive parameter that is less than th. For any f in 
'ti' (-oo, oo ), let s, be the bounded spline in 5f, that interpolates 
f at the points {x; = 1-(g;-1 + g; + g;+1); i = 0, ± 1, ±2, ... }. Prove 
that, as e tends to zero, s, tends to the functions* that, on each 
of the intervals {[jh, jh + h]; j = 0, ±1, ±2, ... }, is the cubic 
polynomial that is defined by the interpolation conditions 
{s*(jh +1-lh) = f(jh +1-lh); l = 0, 1, 2, 3}. 

21.4 Lets be the cubic spline that interpolates the function {f(x) = 
fxf; -oo <x < oo} at the knots {gi = jh; j = 0, ±1, ±2, ... }. Show 
that the error estimate (21.46) underestimates the error in the 
interval [g0 , gi] by a factor of about 7.4. 

21.5 Let the knots of a cubic spline s on (-oo, oo) have the values 
{g; = jh; j ~ O} and {gi = jrih; j,,;;; O}, where T/ is a small positive 
constant. Prove that, if s is the bounded spline that satisfies the 
cardinality conditions {s(gi) = 8i0 ; j = 0, ±1, ±2, ... }, then there 
is no upper bound on llslloo that is independent of T/· 

21.6 Let f be a function in 't?<2l[a, b] such that the derivative 
{f"(x); a ,,;;; x ,,;;; b} has no zeros. For any small positive number e, 
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let s be a linear spline with fewest knots that gives the accuracy 
11/-slloo ~ e, subject to the condition that s interpolates f at its 
knots. Investigate the positions of the knots of s, {ei[e ]; j = 
0, 1, ... , n[e]} say, in the limit as e tends to zero. You should 
find that asymptotically gi[e] has the value cf>(j/n[e]), where 
{ c/> ( ()); a ~ () ~ b} is the monotonically increasing differentiable 
function that satisfies the equations et> (0) =a, et> (1) = b, and 

[et>'( 0)]2f"[c/> ( O)] =constant, 0 ~ 0 ~ 1. 

21.7 Use Exercise 21.6 to explain why the knots (21.6) are parti­
cularly suitable for the approximation of the function {f (x) = 
x ! ; 0 ~ x ~ 1} by a linear spline. Similarly, find good knot 
positions for the approximation of the function {f (x) = x µ; 
0 ~ x ~ l}, whereµ, is a constant in (0, 1), and bound the number 
of knots that are needed to achieve a given accuracy. 

21.8 Apply the method that gives the error estimate (21.46) to deduce 
that, ifs is a quadratic spline with equally spaced knots {gi = jh}, 
that interpolates a function f at the points that are midway 
between the knots, then the error estimate 

h2 
eq"'~!L, Jf(x)-s(x)J = nJ3 max [JdqJ, Jdq+ 1 J] 

is appropriate, where dq is the second derivative discontinuity of 
s at gq· 

21.9 Let Y(k, g0 , 6, ... , gn) be the space that is defined in the last 
paragraph of Section 21.1, where inequality (21.17) holds. Lets 
be any fixed function in Y(k, g0 , gi, ... , gn ), and Jet e be any pos­
itive constant. Prove that there exists a positive number 8 such that, 
if {71i; j = 0, 1, ... , n} is any set of numbers that satisfies the con­
ditions {J71i-giJ~8; j=O,l, ... ,n} and a=110<111<112< ... 
< 11n = b, then there is a function, <T say, in the space 
Y(k, 110, 77i. ... , 11n) such that lls -<Tlloo is Jess than e. 

21.10 Extend the definition of B-splines and the four theorems of 
Chapter 19 to the case when Y(k, g0 , gi, ... , gn) is the extended 
space of splines that is defined in the last paragraph of 
Section 21.1. 
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The Peano kernel theorem 

22.1 The error of a formula for the solution of differential 
equations 
The Peano kernel theorem gives a general and highly useful 

technique for expressing the errors of approximations in terms of deriva­
tives of the underlying function of the approximation. For example, let 
the coefficients {w,; t = 1, 2, ... , m} and the points {x,; t = 1, 2, ... , m} 
be such that the quadrature rule 

f f(x) dx ""'t w,f(x,) (22.1) 

is exact when f is in (i/'k, where the points {x,; t = 1, 2, ... , m} are all in 
[a, b ]. The theorem defines a function {K(e); a~()~ b }, that is indepen­
dent off, such that the equation r f(x) dx -J

1 
w,f(x,) = r K(e)/k+ll(e) de (22.2) 

holds for all functions fin 'f6'<k+t)[a, b ]. One useful consequence of this 
equation is that the error of the approximation (22.1) is bounded above 
by c\lf<k+ll\\oo, where c is the number 

b 

c = L \K(e)\ de. (22.3) 

Because c is independent of f, it provides a convenient measure of the 
accuracy of formula (22.1), that may be useful to a comparison of 
integration methods. 

In order to introduce the theorem, we consider the problem of 
expressing the error of the formula 

f(x, +2h) ""'f(x, + h) + h[!f'(x, + h)-t/'(x,)] (22.4) 
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in terms of the third derivative of f. This formula is a standard technique 
for the step-by-step solution of ordinary differential equations. We solve 
the problem by making use of the Taylor series. In Section 22.2 the 
method of solution is generalized, which gives the Peano kernel theorem. 
The remainder of the chapter describes some applications of the 
theorem. 

The simplest way of estimating the error 

L(f) = f(x, + 2h)- f(x, + h)- h[~f'(x, + h)-!f'(x,)], (22.5) 

when f is sufficiently differentiable, is to make the Taylor series approx­
imations 

f(x, + 2h) = f(x,) + 2hf'(x,) + 2h 2f"(x,) +~h 3f"'(x,) + ... } 
f(x, + h) = f(x,) + hf'(x,) + !h 2f"(x,) + ~h 3f"'(x,) +. . . , (22.6) 

f'(x, + h) = f'(x,) + hf"(x,) +ih2f"'(x,) + ... 

ignoring the higher order terms that are represented by' ... '. By substi­
tuting expression (22.6) in equation (22.5) we obtain the estimate 

(22.7) 

It is better, however, to use the Taylor series with explicit remainder, 
because then the exact value of L(f) is found. We express f(x, + h ), for 
example, in the form 

f(x, + h) = f(x,) + hf'(x,) +!h 2f"(x,) 

+ ! r,+h (x, + h - 0)2f"'(O) dO. 
x, 

(22.8) 

Hence equation (22.5) implies the identity 
xt+2h 

L(f) = i f (x, + 2h - 0)2["'(0) dO 
x, 

- ! f x,+h (x, + h - (})2f"'(O) d(} 
x, 

-~h r,+h (x, + h -O)f"'(O) dO 
x, 

f x,+2h 
= K(O)f"'(O) dO, 

x, 

(22.9) 

where K(O) has the value 

{
!h(O-x,), x,,,-;,(},,-;,x,+h 

K(O)= t z 
2(x, + 2h - 0) , x, + h ,,-;, (} ,,-;, x, + 2h. 

(22.10) 
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Because the function {K(O);x,,,;;;(J,,;;;x,+2h} does not change sign, the 
mean value theorem gives the equation 

f x,+2h 

L(f) = ["'(~) K(O) dO 
x, 

(22.11) 

where ~ is a point in the interval [x,, x, + 2h]. This result is stronger than 
the approximation (22.7). 

22.2 The Peano kernel theorem 
The notation L(f) is used in equation (22.5), because the right­

hand side is a linear functional of f. We let L be a general linear functional 
such that L(f) is zero when f is in Pl'k. If f is in ~(k+ll[a, b ], we write it in 
the form 

f(x)= .I (x~'a)i/il(a)+-1,fx (x-O)k/k+ll(O)dO, 
1=0 ] • k. a 

a,,;;;x,,;;;b. (22.12) 

When L is applied to this equation, the contribution from the sum on the 
right-hand side is zero. Hence Lf is expressed in terms of t<k+I). 

The Peano kernel theorem states a useful form of this construction. It 
depends on a function {K(8); a,,;;; 8,,;;; b} that is defined in the follow­
ing way. For any value of 8, which in fact need not be in [a, b ], we let Se 
be the function 

se(x)=(x-8):, a,,;;;x,,;;;b. (22.13) 

The number K(8) is obtained by applying the operator L to the function 
se/ k !, which gives the value 

a <S;8<S;b. (22.14) 

It is convenient to introduce a notation that allows expressions (22.13) 
and (22.14) to be combined. Therefore we write the equation 

1 k 
K(8) = k ! Lx{(x .- 8)+}, a ,,;;;8,,;;;b, (22.15) 

where the notation Lx{ . .. } indicates that the expression in the braces is to 
be regarded as a function of x on which L operates. 

Because it is sometimes useful to let k = 0 in equation (22.15), it may be 
necessary for L(f) to be defined when f is in the space 'V[a, b ], which is 
the space of real-valued functions on [a, b] that are of bounded variation. 
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This condition is assumed in the next theorem, and it is assumed also that 
L is bounded, which means that there is a constant llLlloo such that the 
inequality 

IL(f)I ~ llLlloo JJ/JJoo, 
holds, where llflloo is the norm 

llflloo = sup lf(x)I, 
a~x-s;b 

f E 'Y[a, b], (22.16) 

f E 'Y[a, b]. (22.17) 

These conditions on L, however, are too restrictive for general use, 
because they do not allow L to depend on derivatives. Therefore another 
version of the Peano kernel theorem is given later. 

Theorem 22.1 (Peano kernel) 
Let k be any non-negative integer, and let L be a bounded linear 

functional from 'Y[a, b] to .o/l 1, such that L(f) is zero when f is in r!Pk, and 
such that the function {K(B); a~B~b}, which is defined by equation 
(22.15), is of bounded variation. Then, if f is in ~tk+O[a, b ], the functional 
L(f) has the value 

b 

L(f) =I K(B)t<k+l)(B) dB. (22.18) 

Proof. By applying L to expression (22.12) we obtain the equation 

L(f)= :!Lx{( (x-B):/k+l)(B)dB}. (22.19) 

Therefore it is sufficient to show that the operator Lx can be exchanged 
with the integration sign. The bounded variation conditions in the 
statement of the theorem, and also the fact that the variation of the 
function {(x - B):; a~ B ~ b} is uniformly bounded for all x in [a, b ], are 
needed in order to approximate integrals by Reimann sums. Thus, for any 
E > 0, there exist points {B,; t = 1, 2, ... , m} in [a, b] such that the 
expression 

If (x -B):/k+l)(B) dB- (b :a) J
1 

(x -B,):/k+o(B,)I = 11(x), 

(22.20) 

say, is less than e for all x in [a, b ], and such that the inequality 

I r K(B)p+l)(B) dB- (b :a) t~l K(B,)p+ 0 (B,)I ~ e (22.21) 
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holds. Because the linearity of L and the definition (22.15) give the 
identity 

Lx{ Jl (x - B1):lk+O(fJ1)} = 1~1 Lx{(X - fJ1):}f(k+O(fJ1) 

= k! I K(B1)P+ 0 (e1), (22.22) 
1=1 

it follows from the accuracy of the Riemann sums that, if the equation 

b b 

Lx{L (x-e):t<k+ll(fJ)de}=k! t K(e)lk+O(fJ)dfJ (22.23) 

is not satisfied, then the difference between the two sides is bounded by 
the number 

ILx{11(x)}I + k !e :s;; CllLlloo + k !)e. (22.24) 

Since e can be arbitrarily small, equation (22.23) is valid. It follows from 
expression (22.19) that L(f) does have the value (22.18), which is the 
required result. D 

This theorem gives useful expressions for the errors of many inter­
polation and integration procedures. We have noted, however, that if L 
depends on some derivatives off, which is the case in example (22.5), and 
which is usual when one analyses the local truncation errors of linear 
multistep methods for solving ordinary differential equations, then L is 
net bounded, nor is it a mapping from r[a, b] to 9/l 1. A suitable extension 
to Theorem 22.1 can be obtained by expressing L(f) in terms of a 
derivative of f. For example, we can write equation (22.5) in the form 

f x 1+2h 

L(f) = f'(x) dx -h[~f'(x1 + h)-tf'(x1)] 

x,+h 

=M(f'), (22.25) 

say. It is important to notice that the linear operator Mis bounded, even 
though L is not. Therefore it is valid to replace L by M and f by f' in the 
statement of Theorem 22.1. Thus M(f') = L(f) can be expressed in terms 
off"', where f is any function in <t5'<3l[a, b]. 

This technique applies generally to operators L that have the form 

f E v<n[a, b ], (22.26) 

where v<n[a, b] is the linear space of functions whose jth derivatives are 
of bounded variation, and where M is a bounded linear operator from 
'V[a, b] to 9/l 1. The generalization is given in the following theorem. 
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Theorem 22.2 
Let L be the operator (22.26), where M satisfies the conditions 

that have just been stated, and let k be any integer that is greater than or 
equal to j. If L(f) is zero when f is in [J\, and if the function (22.15) is of 
bounded variation, then, for all functions f in <€(k+tl[a, b ], the linear 
functional L(f) has the value that is given in Theorem 22.1. 

Proof. Equations (22.15) and (22.26) give the relation 

1 k 
K(O) = k! Lx{(x-8)+} 

1 k-' 
= (k -j)! Mx{(x - 8)+ I}, a~(} :o:;. b. (22.27) 

Because, by hypothesis, this function is of bounded variation, and 
because of the conditions that are satisfied by M, we may replace L by M, f 
by lil and k by (k - j) in the statement of Theorem 22.1. Hence we obtain 
the value 

b 

M(/(j)) = { K(O)f(k+o(o) do, f E <€(k+O[a, b]. (22.28) 

It follows from equation (22.26) that the theorem is true. D 
The refinements of bounded variation and the differences between 

Theorems 22.1 and 22.2 are usually ignored in practice. The standard 
way of applying the Peano kernel theorem is to check first that L is a 
linear operator, that L(f) is zero if f is any polynomial of degree k, and 
that L does not depend on any derivatives of degree greater than k. If 
these conditions hold, then {K ( (}); a ~ (} :o:;. b} is calculated from equation 
(22.15). This function, which is called the 'kernel function', is substituted 
into equation (22.18). Thus L(/) is expressed in terms of the derivative 
{f(k+O(O); a :o:;. (} :o:;. b }. 

There is a neat way of verifying that the condition 

L(f)=O, I E PJ'k, (22.29) 

holds. It is the reason for the remark, made immediately before equation 
(22.13), that the value of (} need not be in the range [a, b]. We consider 
the definition 

-oo<O<oo. (22.30) 

If (}<a, then the function {(x - 8) ~; a :o:;. x :o:;. b} is in PJ'k, and, if (} > b, then 
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it is the zero function. Hence the equations 

K(O)=O, O<a} 

K(O)=O, fJ>b 

274 

(22.31) 

should be obtained. Because the space (!Pk is spanned by the polynomials 
{(x-fJ1)k; -oo<x <oo; t = 0, 1, ... , k}, where {81 ; t = 0, 1, ... , k} is any 
set of distinct real numbers that are less than a, the first line of expression 
(22.31) is both a necessary and a sufficient condition for L(f) to be zero 
when f is in r!Pk. 

When k = 2, and when Lis the function'al (22.5), the definition (22.30) 
is the equation 

K(O) = !Hxi+2h -o)!-(x, +h-O)! 
-h[3(x1 + h - 0)+ -(xi - 0)+]}, -oo < 0 < oo. (22.32) 

It is straightforward to verify that K ( 0) is zero when (J is less than x 1• If (J is 
increased through the value 0 = x,, then the term (x1 - O)+ in expression 
(22.32) is the only one that causes a discontinuity in K(O). This remark is 
useful, because it provides a convenient way of calculating the first line of 
equation (22.10). 

22.3 Application to divided differences and to polynomial 
interpolation 
Theorem 5.1 states that, if f is in <t?(k+O[a, b ], then the divided 

difference f[x 0 , xi, ... , Xk+i] is equal to /k+ll(~)/(k + 1)! for some 
number f Hence f[x 0 , xi, .. . , Xk+i] is zero when/ is in r!Pk.It follows from 
Theorem 22.1 that the following useful and interesting relation is 
obtained between divided differences and B-splines. 

Theorem 22.3 
If f is in <t?(k+O[a, b ], and if {x;; i = 0, 1, ... , k + l} is a set of 

distinct points in [a, b ], then the equation 

f[xo, Xi, ... 'Xk+d = ;, r B(O)/k+l)(O) d(J (22.33) 

is satisfied, where B is the B -spline 

B(O)= ~t~ {<o-x;)~/;6~ (xi-x;)}, a,,.,;; 0,,.,;; b. (22.34) 

i"' i 
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Proof. By equation (5.2) the divided difference is the expression 

k+l { /k+l } 
f[x 0,xi, ... ,Xk+1]=;~o f(x;) iIJ0 (x;-xi) 

j:F i 

=L(f), (22.35) 

say. Therefore, for any fixed and distinct points {x;; i = 0, 1, ... , k + 1}, 
L is a bounded linear operator from 'V[ a, b] to 9ll 1, and the function 
(22.15) is of bounded variation. It follows from Theorem 22.1 that 
equation (22.18) is satisfied, where K (8) has the value 

1 k+I { /k+l } 
K(8)=1 .L (x;-8)! n (x;-xj) ' 

k. 1=0 1=0 
a :s; fJ :s; b. (22.36) 

j,ej 

Equation (22.18) shows that the required relation (22.33) is valid if and 
only if the function (22.34) is equal to k!K. We substitute the identity 

(x; - fJ)! = (x; - fJ)k + ( - l)k+ 1(fJ - x;)! (22.37) 

into expression (22.36) for i = 0, 1, ... , k + 1, which gives the equation 

1 
K(fJ)=k![Lx{(x-fJ)k}+B(fJ)], a:s;fJ:s;b. (22.38) 

The term Lx{(x - fJ)k} is zero, because the function {(x - fJ)k; a ~ x :s; b} is 
in !/Pk. Therefore the theorem is true. 0 

This theorem is more general than Theorem 5 .1, because equation 
(22.33) does not depend on the unknown number f Further, Theorem 
5.1 can be deduced from Theorem 22.3 in the following way. We recall 
that B-splines are non-negative. Therefore, by applying the mean value 
theorem to equation (22.33), the relation 

f[xo, xi, ... , Xk+1] = :! [f B(fJ) do]t<k+l\~) (22.39) 

is obtained, where~ is in the interval [a, b ]. Because this relation holds in 
the particular case when f is the polynomial {f(x) = xk+t; a :s; x :s; b}, and 
because of the original definition of a divided difference, the integral of 
the B-spline has the value 

b L B(fJ) dfJ = 1/(k + 1). (22.40) 

Hence Theorem 5.1 is true. 
Theorem 22.3 is also useful to the main subject of Chapters 23 and 24, 

which is the problem of obtaining good approximations from the function 
values{f(x1); t = 1, 2, ... , m}when m is large. For example, we may have 
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to choose the weights {w,; t = 1, 2, ... , m} in formula (22.1), and it may 
be suitable to force the approximation to be exact only when f is a 
polynomial of degree k, where k is much smaller than m. In this case a 
suitable technique, for taking up the freedom in the weights, is to apply 
the Peano kernel theorem to express the error of the approximation in 
terms of the derivative {f<k+O(e); a o;;; e o;;; b }, and then to use the freedom 
to make the kernel function {K(8); a o;;;eo;;;b} small. It is convenient to 
write the approximation (22.1) in the form 

J b k+l m-k-1 
a f(x) dx = 1~1 urf(x,) + 1~1 vrf[x" X1+h ... , Xr+k+1], (22.41) 

because then the freedom in the weights allows arbitrary values of the 
parameters {v,; t = 1, 2, ... , m - k -1}. Theorem 22.3 shows the change 
to the kernel function that is caused by adjustments to the parameters 
{v,; t = 1, 2, ... , m -k-1}. 

This theorem also gives an expression for the error of polynomial 
interpolation. As in Theorem 5 .2, we let {pk (x); a o;;; x o;;; b} be the 
polynomial in [JJ>k that satisfies the interpolation conditions 

pdx;) = f(xi), i = 0, 1, ... , k, (22.42) 
and we let Xk+l be any point of [a, b] that is not in the set {xi; i = 0, 
1, ... , k}. Because Theorem 5.2 implies the equation 

f(Xk+l) =Pk (Xk+l) + {ho (Xk+l - Xj) }t[xo, Xi, ... 'Xk+1], (22.43) 

it follows from Theorem 22.3 that the difference {f(xk+1)- Pk (xk+1)} has 
the value 

f(Xk+1)-pdxk+1)= :!{ho (Xk+l-Xj)} r B(8)/(k+l)(8)d8 

= (k ~ 1)! tfio (Xk+l - Xj)} f(k+l)({), 

{ E [a, b ], (22.44) 

where the last line depends on the condition {B(8);;;. O; a o;;; e o;;; b }, on the 
mean value theorem, and on equation (22.40). Both lines of this expres­
sion are useful, and we see that the second one is the same as the 
statement of Theorem 4.2. 

It is important to note that often the linear functional Land the value of 
k are such that the kernel function {K (8); a o;;; e o;;; b} of equation (22.18) 
changes sign. For example, the possibility that L(f) is zero when f is in 
fflk+l does not impair the validity of Theorem 22.1. If this possibility 
occurs, and if we let f be the function {f(x)=xk+I; ao;;;xo;;;b}, then 
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equation (22.18) implies the identity 
b I K(O)dO=O. 

In general, therefore, one should not expect the equation 

L(f) = r K(O) do /k+ll(g) 

to be satisfied for some value of g in [a, b ]. 

22.4 Application to cubic spline interpolation 
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(22.45) 

(22.46) 

In order to show the usefulness of the Peano kernel theorem, it is 
applied in this section to bound the error of a cubic spline approximation 
that is defined by interpolation. We consider the procedure, described in 
Section 18.2, where the knots of the spline have the values 

Xj=jh, j=0,±1,±2, ... , (22.47) 

and where the interpolation conditions are the equations 

s(xi) = f(xi), j = 0, ± 1, ± 2, .... (22.48) 

We r~all that s can be expressed in the form 

s(x) = I li(x)f(xi), -oo<x <oo, (22.49) 
i=-00 

where the cardinal spline {li(x); -oo < x < oo} is symmetric about x = xb 
and has the properties that are shown in Figure 18.2. In particular, the 
fact that the tails of the cardinal function reduce by the factor ( ../ 3 - 2) per 
knot gives the conditions 

[j(X - h) = ( ·J3- 2)/j(X ), 

/j(X + h) = (../3-2)/j(X), 
X ~Xj-1} 
x ;;..xi+l · 

(22.50) 

Because the Peano kernel theorem concerns linear functionals, we 
study the error of the interpolation procedure for a particular value of the 
variable x. Therefore we let L be the functional 

L(f) = f(g)-s(g) 

(22.51) 
i=-00 

where g is a fixed real number, which, for convenience, is chosen in 
the interval [O, h ]. Although the range of the variable is infinite, it is 
assumed that the Peano kernel theorem can be applied. Hence, if f is in 
cg<4l( - oo, oo ), then the equation 

f(g)-s(g)= L: K(0)/4 l(O)d0 (22.52) 
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is satisfied, where K is the function 

1[ 3 00 3] K(8)= 31 (g-8)+-i=~00 /i(g)(xi-8)+, -00<8<00. 

(22.53) 

We derive some properties of this kernel function, in order to obtain 
bounds on the error (22.52). 

First it is proved that the form of {K ( 8); - oo < 8 < oo} is similar to the 
form of a cardinal function when \8\ is large. Because the behaviour of the 
cardinal functions that gives expression (22.50) also implies the equation 

/j(g)=(·h-2)/j-l(g), (33, (22.54) 

it follows from the definition (22.53) that, for 8;;,,, Xi, the relation 
00 

K(8+h)=-1 I li(g)(xi-8-h)! 
j=3 

00 

=-~(J3-2) I 1j-1(g)(xj-1-8)! 
j=3 

= (J3-2)K(8) (22.55) 
is obtained. A remarkable result can now be deduced from the fact that, if 
p is any cubic polynomial, then the identity 

12[p(xi+1)- p(xi)] = (6 + 2J3)h[p'(xi+1)-(J3 -2)p'(xi)] 

-(J3 + l)h 2 [p 11(Xj+1)-(J3 -2)p"(Xj)] 
(22.56) 

holds. We let j be any positive integer, and we let p be the polynomial 
{K(8); Xj,;;: 8 ,;;xj+1}. Because equation (22.55) implies that the right­
hand side of expression (22.56) is zero, the numbers K(xi) and K(xi+1) 
are equal. However, condition (22.55) has to hold when 8 = xi. Hence the 
equations 

K(xi) = 0, j = 1, 2, 3, ... , (22.57) 

Figure 22.1. A kernel function for cubic spline interpolation. 

0 2h 3h 
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are satisfied. By symmetry, or by applying the technique that depends on 
expression (22.37) in the proof of Theorem 22.3, we also deduce the 
conditions {K(xi) = O; j = 0, -1, -2, ... } and {K(O -h) = (.J3-2)K(O); 
fJ :;;;x0}. These properties are displayed in Figure 22.1, but the form of K 
in the interval [O, h] requires further analysis. 

Equation (22.53) and the figure imply that there exist parameters A, µ, 

and d such that K is the function 

{

Au(-0/h), (;l:;:;O 

_ µ,u(O/h)+~({-0)3 +~d(h-0)3 , O:;:;(;lo::;{ 
K(O)- 1 3 (22.58) 

µ,u(O/h)+6d(h-O), {o::;Oo::;h 

µ,u(O/h), o;::h, 

where {u(x); 0:;:; x < oo} is defined in equation (21.49). Because K, K' and 
K" are continuous at 0 = 0, it follows that the parameters have the values 

A=i2:(-.J3{h 2 +3{2h-(3-.J3){3] . (22.59) 
d=-{3/h3 l 
µ, = tz[ .J3{h 2 + 3{2 h - (3 + .J3){3] 

We note that, for all {in (0, h), A is negative andµ, is positive. Hence 
K ( O) has the correct sign in Figure 22 .1, except perhaps when 0 < 0 < h. 

In this interval K(fJ) is positive, but there seems to be no short way of 
proving this statement. One method begins with the remark that, because 
K (O) = 0, K'(O) > 0 and K'"(O +) < 0, there is at most one zero of Kin the 
interval (0, {].Direct calculation gives K ({) > 0. Hence K has no zeros in 
(O, H Similarly there are no zeros in [{, h), which completes the 
justification of the signs that are shown in Figure 22.1. 

It is now straightforward to calculate the integral 

(22.60) 

in order to bound the error (22.52) by a multiple of llf<4llloo· Because the 
function (21.49) satisfies the equation 

u(x+l)=(.J3-2)u(x), x;::O, (22.61) 

expression (22.58), Figure 22.1, and the definition of u give the value 

I({)= (IA I+ 1,.,, l)[f u(O/ h) dll] L~o l.J3 -2v] 

~ h 

+~fa ({-0)3do+~d fa (h-0)3 d0 

=(IA I+ 1,.,, l)b.J3h +-b({4 + dh 4 ). (22.62) 
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It follows from equations (22.52) and (22.59) that the bound 

lf(g)- s (g)I <S I(E) lll4 )lloo 
=f4(g4 -2g3h+gh 3 )1\l41loo, O<Sg~h, (22.63) 

is obtained. Therefore, because the right-hand side takes its maximum 
value when g = 1h, and because all intervals between data points are 
similar, the error of the spline approximation is bounded by the inequality 

llf-slloo <S ~~; llf(4 )lloo. (22.64) 

In order to check most of the work of this sec.tion, we let f be a quartic 
polynomial, and we deduce the error f(g)-s(g) from equations (22.52), 
(22.58) and (22.59). Because l 4\x) is constant the equation 

f(g)-s(g) = J(g) l 4l(x ), 0 <S g <S h, (22.65) 

is satisfied, where J(g) is the integral 

J(g) =(A+ µ,)[f u(O/ h) dO J [J
0 

(v'3-2);] 

< h 

+! { (g-0) 3 do+!d { (h-0) 3 dO 

=(A+ µ,)tzh +f4(g4 + dh 4 ) 

=f4g2(g-h)2. (22.66) 

The check on the calculation is that we have verified the first line of 
expression (21.43). 

Inequality (22.64) provides a substantial improvement on the bound 
(20.52), where 51' is the space of cubic splines whose knots are the points 

g; = g0 + jh, j = 0, 1, ... , n, (22.67) 

and where f is any function in ig<4 l[fo, gnJ. The analysis for the infinite 
range is applicable to this case, because we may extend f to the infinite 
range in any way that does not increase llf<4 llloo, and we may let s be the 
spline (22.49). The restriction of s to the interval [g0 , gn] is an element 
of 51'. Hence d*(Y, f) is bounded above by llf- slloo· It follows from 
inequality (22.64) that the constant in expression (20.52) can be reduced 
from 37i4 to 3~4. 

One unusual feature of the example of this section is that all the zeros of 
the kernel function (22.53) occur at points where a derivative of K is 
discontinuous. In general, if equation (22.18) holds, and if one requires 
the value of the constant (22.3) in the bound 

(22.68) 
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then it is necessary to find the values of 0 at which {K (O); a~ 0 ~ b} 
changes sign by solving a polynomial equation. Some examples are given 
in the exercises. 

22 Exercises 
22.1 Let p{!) = ![f(O) + /(1)], where f is a function in c:g<2l[O, 1]. Find 

the smallest constants c0 , c1 and c2 such that the error bounds 

ltC!)-p@I ~ ckllt<k>iic"', k = o, 1, 2, 

are valid. 
22.2 Let f be any function in c:g<4 l[O, 2]. Show that the error of 

Simpson's integration rule satisfies the equation 
2 L f(x) dx -1[!(0) +4/(1) + /(2)] = - -Jo/4l(g), 

where g is a point of the range [O, 2]. 
22.3 Calculate the values of the coefficients w0 , w1 and w3 such that 

the inequality 

l/(2)-[wo /(0) + W1 /(1) + W3 /(3)]J ~ µ,JJ!"ll2 

holds for all functions fin c:g<2l[O, 3], where the degree of freedom 
in the coefficients is used to minimize the constantµ,. You should 
obtain the bound 

1/(2) + ! /(0)-i /(1)- ~ /(3)1~.J(-is)11/"llz. 

22.4 Prove Theorem 22.3 by integrating the right-hand side of equa­
tion (22.33) by parts. 

22.5 Show by an example that the constant 3 ~4 in expression (22.64) 
cannot be reduced. There exists a suitable function f that is zero 
at all the knots. 

22.6 Let f be a function in c:g<4to, 1]. Calculate the third derivative of 
the cubic polynomial p that interpolates the data {/(O), f'(O), 
/(1), f'(l)}. Prove that the inequality 

lf"'(g)- p"'(g)J ~ (!-g + 2g3-g4 ) ll/4 )lloo 

is satisfied, where g is any point in [O, 1]. Find a function f with a 
piecewise continuous fourth derivative for which this inequality 
holds as an equation. 

22.7 Calculate the values of the parameters w1, w2, w3 and W4 that 
minimize the number µ, in the bound 

I r /(x) dx - wif(O)- wz/'(0)- w3f(l)- W4 /'(1)1 ~ µ,llt"lloo, 



The Peano kernel theorem 282 

where f is any function in <'{6'12>[0, 1]. Show that the least value ofµ, 
. 1 
IS 32. 

22.8 Prove that the right-hand side of the final inequality of Exercise 
22.3 can be replaced by the expression 

J (ts) [!lf"I@- 9(f[o, 1, 3 J)2J!, 
which is a useful improvement because the divided difference 
f[O, 1, 3] can be calculated from the function values/(O),f(l) and 

f (3 ). One method of proof comes from expressing!" in the form 

f"(O) = aB ( 0) + {/"( 0) - aB ( O)}, 0,;;; (},;;; 3, 

where B is the kernel function that occurs when Theorem 22.3 is 
used to express /[O, 1, 3] in terms off", and where the multiplier 
a is such that the term in the braces is orthogonal to f". Verify 
that the two sides of the new inequality are equal when f is the 
function {f(x)=x 3 -3(x-2)!; O,;;;x,;;;3} and explain why this 
happens. 

22.9 Investigate the validity of the assumption, made immediately 
before equation (22.52), that the Peano kernel theorem can be 
applied when the range of the variable x is infinite, given the 
condition that the derivatives off are bounded. 

22.10 For any bounded function fin <'{6' 13>( -oo, oo), lets be the quadra­
tic spline with knots at the points (18.35), that satisfies the 
interpolation conditions {s(xJ = f(xi) = f(jh); j = 0, ± 1, ± 2, 
... }, and that is studied in Section 18.4. Prove that the value of 
the spline at a knot is bounded by the inequality 

h3 
//(gi)-s(gi)/,;;; 24 llf"'lloo· 
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Natural and perfect splines 

23.1 A variational problem 
A very early result in the study of spline approximations is that a 

cubic spline is the solution of the following variational problem. Given 
the points {x;; i = 1, 2, ... , m} in the interval [a, b ], satisfying the condi­
tions 

a :;;;;xi <x2 < ... <xm :;;;;b, (23.1) 

and given the function values {f(x;); i = 1, 2, ... , m}, calculate the 
function {s(x ); a:;;;; x:;;;; b} that minimizes the integral 

b t [s"(x )]2 dx, (23.2) 

subject to the interpolation equations 

i = 1, 2, ... , m. (23.3) 

If one knows the solution to this problem in advance, then there is a short 
way of showing that one has the required function, which is given in the 
proof of Theorem 23.2. In this section, however, the solution is derived 
without foresight or intuition, because the method that is used has other 
applications. 

We assume that m > 2, because otherwise the integral (23.2) can be 
made zero, by letting s be any straight line that interpolates the data. 
When m > 2, then it is necessary to identify the restrictions that the 
conditions (23.3) impose on the second derivative {s"(x); a :;;;;x :;;;;b}. 
Because Theorem 22.3 shows that divided differences can be expressed in 
terms of derivatives, the equations 

p = 1, 2, ... , m -2, 
(23.4) 
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which follow from condition (23.3), are really constraints on s". 
Specifically, applying the theorem to expression (23.4) gives the con­
straints 

b I Bp(fJ)s"(fJ) dfJ = f[xp, Xp+i, Xp+ 2], p = 1, 2, ... , m -2, 

(23.5) 

where BP is the first degree B-spline 

(23.6) 

j-:Fi 

Therefore we seek the function {u (x); a .;;;; x.;;;; b} that minimizes the 
integral 

b 

I(u) =I [u(x)J2 dx, 

subject to the conditions 
b I Bp(fJ)u(fJ) dfJ = f[xp, Xp+1, Xp+ 2], 

If u is not of the form 
m-2 

u(x) = L AiBi(x), 
j~ 1 

(23.7) 

p=l,2, ... ,m-2. 

(23.8) 

(23.9) 

then there is a function, v say, that is orthogonal to the splines {Bi; j = 
1, 2, ... , m - 2}, but that is not orthogonal to u. Hence the equations 
(23.8) hold if u is replaced by (u + av ), where a is any real number, but a 
can be chosen so that I(u +av) is less than J(u). It follows that equation 
(23.9) is satisfied. 

In order to calculate the values of the parameters {Ai; j = 1, 2, ... , 
m -2} of expression (23.9), we note that the conditions (23.8) give a 
square system of linear equations in the parameters. If the matrix of the 
system is singular, then there exist numbers{µ.i;j= 1, 2, ... , m -2}, that 
are not all zero, such that the equations 

p = 1, 2, ... , m -2, (23.10) 

hold. These equations, however, imply the identity 

Jb [m-2 ]2 
a i~I µ.iB;(fJ) dfJ = 0, (23.11) 
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which contradicts Theorem 19.2. Therefore the parameters of the 
function (23.9) are defined by the constraints (23.8). 

The function {s (x); a ::;;;; x ::;;;; b} is obtained by integrating {u (x); a ::;;;; x ::;;;; 
b} twice, where the constants of integration are chosen so that s(x 1) and 
s(x2) are equal to f(x 1) and f(x 2 ) respectively. By applying the conditions 
(23 .4) in sequence, it follows that the equations {s (xp+2) = f (xp+2); p = 1, 
2, ... , m - 2} are obtained. Hence s is the function, interpolating the 
data {f(x;); i = 1, 2, ... , m}, that minimizes the integral (23.2). It is a 
cubic spline, because its second derivative is the continuous piecewise 
linear function (23.9). It is called a natural spline because it solves the 
variational problem of this section. The characteristic properties of 
natural cubic splines, which are implied by equation (23.9), are that their 
second derivatives are zero at x 1 and Xm, and that, if x 1 and Xm are interior 
points of [a, b ], then the cubic polynomial pieces degenerate to straight 
lines on each of the intervals [a, xi] and [xm, b]. 

The degree of a natural spline is always odd. A spline s of degree 
(2k + 1) on the interval [a, b] is called a natural spline if it satisfies the 
conditions 

s<i\x1) = s(il(xm) = 0, (23.12) 

where x1 and Xm are the extreme knots. Further, when a <x1 and when 
Xm < b, then s must be a polynomial of degree k on the intervals [a, x 1] 

and [xm, b] respectively. It is shown in the next section that natural splines 
give solutions to two variational problems. 

If the points {x;; i = 1, 2, ... , m} satisfy condition (23.1), then the 
notation 5fN(2k + 1, x 1, x2 , .•. , Xm) is used for the linear space of natural 
splines of degree (2k + 1) that have these points as knots; Sometimes we 
shorten the notation to 5/N. It is proved in Theorem 23.1 that, if 
m;;,: k + 1, then the dimension of 5/N is equal to m. 

23.2 Properties of natural splines 
Natural spline approximations to functions are calculated by 

interpolation at the knots. The following theorem states that, except 
when m::;;;; k, the interpolation problem has a unique solution. 

Theorem 23.1 
Let {x;; i = 1, 2, ... , m} be any set of real numbers that satisfy 

expression (23.1), and let k be any integer in the range [1, m -1]. Then, 
for any fin ce[a, b ], there is exactly one functions in the space 5fN(2k + 1, 
xi. x 2, ••• , Xm) that satisfies the interpolation conditions 

s(x;) = f(x;), i=l,2, ... ,m. (23.13) 
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Proof. If a < xi. then the form of a natural spline on the interval [a, xi] is 
defined uniquely by the form of the spline on [xi. x2]. A similar condition 
holds at the other end of the range [a, b ]. Therefore there is no loss of 
generality in assuming that x1 =a and Xm =b. It has been noted already 
that the dimension of the space Y(2k + 1, xi, x2 , •.• , Xm) of ordinary 
splines is equal to (2k +m). Natural splines, however, are splines that 
satisfy the linear homogeneous conditions (23.12). Therefore the 
dimension of YN(2k + 1, xi, x2 , ••• , Xm) is not less than m. If the dimen­
sion exceeds m, then the equations 

s(xj) = 0, i = 1, 2, ... 'm,. SE YN, (23.14) 
have a non-trivial solution. Therefore we ask whether these equations 
imply that s is the zero function. 

We evaluate the integral 

I(.f'k+t>) = rm [s<k+t>(x)]2 dx (23.15) 
x, 

by parts. It follows from conditions (23.12), from the fact that .f'2k+ll is 
constant on each of the intervals {(xi, Xi+1); i = 1, 2, ... , m -1}, and from 
equation (23.14), that the integral has the value 

I(.f'k+t>)=(-l)k rm s'(x)s<2k+t>(x)dx 
x, 

m-1 

= (- l)k I 5<2k+1>(xi+ )[s(xi+1)- s(xj)] 
i=l 

=0, (23.16) 

where xi+ is any point in the interval (xi, Xi+1). Therefore, because 5<k+t> is 
a continuous function, equations (23.15) and (23.16) imply that 5<k+ll is 
identically zero. Hence s is in fl/'k, but s also satisfies the conditions 
(23.14). Thus, because m;;;.: k + 1, sis the zero function, which completes 
the proof that the dimension of the space YN(2k + 1, Xi. x2 , ••• , Xm) is 
equal tom. 

We now know that the number of conditions (23.13) ons is equal to the 
dimension of YN. It follows from the method of proof of Theorem 5.4 that 
these conditions defines uniquely, unless the equations (23.14) have a 
non-trivial solution. Because we have shown already that s can only be 
the zero function, the theorem is proved. D 

The next theorem shows that interpolating natural splines are the 
solution to the kind of variational problem that is studied in Section 23 .1. 
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Theorem 23.2 
Let the function values {f (x;); i = 1, 2, ... , m} be given, and let k 

be an integer in [l, m -1]. The functions in cg<k+ll[a, b] that minimizes 
the integral 

b t [s<k+ll(x )]2 dx, (23.17) 

subject to the interpolation conditions (23.13), is the natural spline that is 
defined in Theorem 23.1. 

Proof. We lets be the natural spline that is the subject of Theorem 23.1, 
and we let g be any function in cg<k+ll[a, b] that interpolates the data. 
Hence the equations 

g(x;)-s(x;) = 0, i = 1, 2, ... , m, (23.18) 

are satisfied. Because the definition of the 2-norm gives the identity 
llg<k+Oll~ = lls<k+lll@+ llg<k+ll - s<k+llll~ + 2(g<k+ll _ s<k+tl, /k+ll), 

(23.19) 

where the last term is twice the scalar product 
b t [g<k+ll(x )- s<k+O(x )] s<k+ll(x) dx, (23.20) 

it is sufficient to show that this scalar product is zero. By applying 
integration by parts, by using the conditions 

s<n(a)=s<n(b)=O, k+l,,;;;j,,;;;2k, (23.21) 

which are obtained because s is a natural spline, and by noting that 
s <2 k+ 1l(x) is zero if x is in the interval (a, x 1) or (xm, b ), it follows that the 
integral (23.20) has the value 

(-l)k rm[g'(x)-s'(x)]/2 k+l)(x)dx. (23.22) 
Xt 

Therefore, because of condition (23.18), the method that gives the last 
three lines of expression (23 .16) implies also that the present integral is 
zero, which completes the proof of the theorem. D 

One result that can be deduced from the proof is useful later. It is 
obtained from equation (23.19) and the fact that expression (23.20) is 
zero. It is that, if f is in cg<k+ll[a, b ], and if s is the natural spline that is 
defined in Theorem 23.1, then the identity 

11/k+llll~ = lls<k+llll~ + 11/k+ll -s<k+llll~ (23.23) 

is satisfied. 
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The most remarkable property of natural splines is their relevance to 
an approximation problem that is mentioned in Section 22.3. In this 
problem a linear functional L is estimated by the expression 

m 

L(f) = I w;f(x;), (23.24) 

where the values {f (x;); i = 1, 2, ... , m} are given, but the weights 
{ w;; i = 1, 2, ... , m} have to be chosen. We recall that, if the estimate is to 
be exact when f is in PPk, and if m is much larger thank, then a suitable way 
of fixing the degrees of freedom in the weights is to minimize a norm of 
the kernel function 

a~(}~ b, 

(23.25) 

of the relation 

m f b L(f)- ;~i w;f(x;) = a K(8)ik+O((}) d(}, f E cgCk+l)[a, b ]. 

(23.26) 

Natural splines give a direct and convenient method of calculating the 
approximation (23.24), when the weights {w;; i = 1, 2, ... , m} have the 
values that minimize the 2-norm 

b ! 

llKlh = { { [K(8)]2 d8} 2 • (23.27) 

The importance of natural splines to this calculation is shown usually by 
a detailed analysis of the conditions for the least value of llKlh. However, 
because a similar analysis is given in Chapter 24, we prefer a different and 
much shorter approach, that depends on knowing that the required 
approximation to L(f) is L(s ), where s is the natural spline that is defined 
in Theorem 23.1. This approximation does have the form (23.24), 
because, if the natural splines {s;; i = 1, 2, ... , m} are the cardinal 
functions of the interpolation procedure of Theorem 23 .1, then L(s) is 
the expression 

m 

= I L(s;)f(x;) 
i=l 

m 

= I w;f(x;), (23.28) 
i=I 
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say. We let {K(O); a.;;; 0.;;; b} be the kernel function that is obtained by 
setting {w; = w;; i = 1, 2, ... , m} in equation (23.25). The following 
theorem shows that L(s) is the required approximation. 

Theorem 23.3 
Let L be any linear functional from <6'[a, b] to '&, 1 , and let K be 

the kernel function that has just been defined. Let expression (23.24) be 
any approximation to L(f), that is exact when f is in (J>k· Then the norm of 
the kernel function (23.25) is bounded below by the inequality 

\\K\b.;;; \\K\\z. (23.29) 

Proof. Equation (23.26) implies the bound 

I L(f)- i~l wJ(x;) I .;; \\K\b \\lk+O\\z, f E <6'(k+l)(a, b ]. (23.30) 

By replacing f by f - s, where s is defined in Theorem 23.1, we obtain the 
relation 

IL(f)- L(s)- ;~1 w;[f(x;)-s(x;)Jj.;; \\K\\z \\lk+O _ s(k+ll\\z. 

(23.31) 

Because s satisfies the interpolation conditions (23.13), and because 
equation (23.23) shows that \\f(k+O -s(k+ll\b is bounded above by 
\\f(k+ll\\z, it follows that the inequality 

IL(f)- L(s )I.;; \\K\b \\f<k+O\lz, f E <6'(k+l)(a, b ], (23.32) 

is satisfied. The proof is completed by making a particular choice of f, 
namely a function f such that pk+O is equal to K. Hence expressions 
(23.28) and (23.32) give the relation 

IL(f)-I wJ(x;), .;;\\K\\i l\K\\i. (23.33) 

Because the kernel function K is defined by the equation 

m Jb L(f)- i~l wJ(x;) = a K(O)f(k+l)(O) dO, f E <6'(k+ll(a, b ], 

(23.34) 

the choice of f implies the identity 
m 

L(f)- I wJ(x;) =\I.Kl@. (23.35) 

It follows from condition (23.33) that the theorem is true. 0 
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If c is any constant that can replace llKl'2 in inequality (23.30), then 
llKllz may be replaced by c throughout the proof of the theorem. 
Therefore, for every set of weights {w;; i = 1, 2, ... , m} that allows an 
error bound of the form 

f E ig(k+l)(a, b ], (23.36) 

the constant c is not less than llKllz. Equation (23.34) shows that the least 
value c = 11.Klb is achieved when the weights have the values {w; = w; = 
L(s;); i = 1, 2, ... , m}. Hence the approximation L(s) to L(f) is the one 
that minimizes the constant c of expression (23.36). 

It is interesting that, if L(f) is the point function value/(~), where ~ is 
any fixed point of [a, b ], then the estimate off(~) that minimizes the 
right-hand side of expression (23.36) is the same as the value at~ of the 
function that solves the variational problem of Theorem 23.2. The fact 
that these two different techniques give the same estimate of f (~) is a 
consequence of the dependence of the work of this section on the 2-norm 
of ik+1l. 

23.3 Perfect splines 
Perfect splines are obtained from a variational problem that is 

closely related to the one that is the subject of Theorem 23.2. The new 
variational problem is to calculate a functions that minimizes lls(k+Olloo, 
subject to the interpolation conditions (23.3), where m > k, and where 
the abscissae of the data {f(x;); i = 1, 2, ... , m} satisfy expression (23.1). 
We consider this calculation, and we find that, at least on a part of the 
range [a, b ], s is a spline function of degree (k + 1). 

As in Section 23 .1, divided differences are used to express the 
interpolation conditions in terms of s(k+O. Therefore, letting 
{z(x) = s(k+ll(x); a,;;;; x,;;;; b }, the least value of the norm 

J(z) = max lz(x)I (23.37) 
a~x~b 

is required, subject to the conditions 

b t Bv(O)z(O) dO = k! f[xv, Xv+i. ... , Xv+k+i] 

p = 1, 2, ... , m -k-1, (23.38) 

say, where Bv is the B-spline that has the form (19 .10) and the knots 
{xi;j=p,p+l, ... ,p+k+l}. Expressions (23.37) and (23.38) cor­
respond to equations (23.7) and (23.8). 
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Because there is an unknown function to be found, and because the 
number of constraints is finite, it is useful to apply duality theory to the 
calculation of z. We note, therefore, that the constraints (23.38) imply 
that, for all values of the multipliers {Av; p = 1, 2, ... , m -k-1}, the 
inequality 

m1:1 
Avcv = r [m]:1 

AvBv(8)] z(8) d8 

~llzlloo r lmJ:1 
AvBv(8)1 d8 (23.39) 

must hold, which gives the bound 

llzlloo ~ mJ:J Av cv/ r rJ:1 
Av Bv(8)1 d8. (23.40) 

Because the calculation of z is a continuous version of a linear program­
ming problem, it follows from the duality that necessary and sufficient 
conditions for z to be optimal are that the constraints (23.38) are 
satisfied, and that there exist values of the parameters {Av; p = 1, 
2, ... , m - k -1} such that inequality (23.40) becomes an equation. In 
this case the two lines of expression (23.39) are equal. Therefore, 
provided that equation (23.38) holds, the condition that characterizes the 
optimal z is that there is a function 

m-k-1 

ri(8) = L ApBp(8), a ~8~b, (23.41) 

that is not identically zero, such that, if 8 is any point of [a, b] at which 
ri(8) is non-zero, then z(8) has the value 

z(8) = llzlloo sign [ri(8)]. (23.42) 

The following theorem gives a useful version of this result that depends 
on properties of B-splines. In order to state the theorem, we require the 
definition of a 'perfect spline'. 

The functions is a perfect spline of degree (k + 1) on the interval [a, b ], 
if it is a spline of degree (k + 1), and if the constant sections of s<k+tl all 
have the same absolute value. Thus the equation 

(23.43) 

is satisfied, except perhaps at the knots of s. If s is a perfect spline of 
degree (k + 1), we adopt the convention that a point of [a, b] is a knot of s, 
only if it is an interior point of the interval, and if s<k+O actually changes 
sign at the point. It is convenient sometimes, for example in the statement 
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of Theorem 23.4, to call an element of Pl'k+i a perfect spline of degree 
(k + 1). 

Theorem 23.4 
Let the function values {f(x;); i = 1, 2, ... , m} be given, where 

the abscissae satisfy condition (23.1), and let k be an integer in [1, m -2]. 
Let .s4 be the set of functions that have bounded (k + l)th derivatives, and 
that interpolate the data. The function sin .s4 gives the least value of the 
derivative norm {\\s<k+ll\\00 ; s Ed}, if and only if there exist data points Xq 

and x,, such that r - q ~ k + 1, and such that, on the interval [xq, x, ], s is a 
perfect spline of degree (k + 1) that satisfies the following two conditions. 
The equation 

Xq <x <x,, (23.44) 

holds, except perhaps at the knots of s, where the norm on the right-hand 
side refers to the whole interval [a, b ], and s has at most (r - q - k -1) 
knots in the range (xq, x,). 

Proof. First we consider the case when s minimizes {\\s<k+ll\\00 ; s Ed}. 
The function z = s<k+ll gives the least value of expression (23.37) subject 
to the constraints (23.38), because otherwise, if z is a solution to this 
optimization problem, then, by integrating z (k + 1) times, as in the 
solution to the variational problem of Section 23.1, we obtain an element 
of .s4 whose (k + l)th derivative is smaller than s<k+o. It follows from the 
discussion at the beginning of this section that there is a function 11 of the 
form (23.41), that is not identically zero, Si.'Ch that, if fJ is any point of 
[a, b] at which 77(8) is non-zero, then z(fJ) has the value (23.42). We let x0 

and Xm+l be fixed points that are less than x1 and greater than Xm 

respectively, and, if necessary, we extend the definition (23.41) to the 
range [x 0 , Xm+ 1]. Hence there exist integers q and r in the interval [1, m], 
such that 11 has a finite number of zeros in the range (xq, x,), but 11 is 
identically zero on [Xq-h Xq] and [x,, x,+ 1]. Because z = s<k+o, it follows 
from equation (23.42) that s is a perfect spline of degree (k + 1) on the 
interval [xq, x,], and that condition (23.44) is satisfied, except perhaps at 
the knots of s. Further, by applying Theorem 19.1 to 77, the condition 
r ~ (q + k + 1) holds, and the number of zeros of 11 in (xq, x,) is at most 
(r -q - k -1). Equation (23.42) shows that these zeros are the only points 
at which z = s<k+ll can change sign. Hence s has at most (r - q - k -1) 
knots in the range (xq, x,), which completes one of the two parts of the 
proof. 
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To prove the second part of the theorem, we let s be an element of .stl, 
that is a perfect spline of degree (k + 1) on the interval [xq, x,], where 
r-q ~ k + 1, where equation (23.44) holds, and where s has at most 
(r - q - k - 1) knots in (xq, x,). We have to show that lls <k + 0 iioo is as small as 
possible. It follows from the remarks on duality, that are made before the 
statement of the theorem, that it is sufficient to find a non-zero function of 
the form (23.41), such that equation (23.42) is satisfied if ri(8) is non­
zero, where z is still the derivative s<k+o. The relation lz(8)1 = llzlloo that is 
required by condition (23.42) is obtained from expression (23.44) by 
choosing T/ so that ri(O) is non-zero only if (J is in the interval (xq, x,). 
Therefore we have to show that the sign of ri(8) can satisfy equation 
(23.42). 

There is no loss of generality in increasing the integer q and in 
decreasing the integer r, until the difference (r - q) is as small as possible, 
subject to the condition r - q ~ k + 1, and subject to the number of knots 
of s in (xq, x,) being not more than (r -q - k -1). We assume that this is 
done. The number of knots is equal to (r -q - k -1), because otherwise a 
further reduction in (r - q) can be made. If the number of knots is zero, 
then s<k+ll = z is constant on the interval (xq, x,). Therefore the required 
sign of T/ can be obtained by letting T/ be a non-zero multiple of the 
B-spline {Bq('J); a~ (J ~ b }, which has the form (23.41). Because ri(8) is 
zero when 8 is not in (xq, x, ), the theorem is proved in the special case 
when r - q = k + 1. 

When (r-q - k -1) is positive, we let the knots of sin (xq, x,) have the 
values {gi; j = q, q + 1, ... , r - k - 2}. Because the assumption that is 
made in the previous paragraph prevents an increase in q to (j + 1), where 
j is any one of the integers {q, q + 1, ... , r - k -2}, the splines has at least 
(r - j- k -1) knots in (x;+i. x,). Hence the inequality gi > xi+l is satisfied. 
By giving similar consideration also to the possibility of decreasing r, it 
follows that the bounds 

X;+l < gi < X;+k+h j = q, q + 1, ... , r-k-2, (23.45) 

are obtained. We require a function of the form 
r-k-1 

ri(8)= I i\.pBp((J), a~ (J~b, (23.46) 
p=q 

that changes sign at the knots {gi; j = q, q + 1, ... , r - k - 2}. Therefore it 
must satisfy the conditions 

ri(gj)=O, j=q,q+l, ... ,r-k-2, (23.47) 

where some or all of the parameters {il.P; p = q, q + 1, ... , r - k -1} are 
non-zero, which is possible because there are fewer conditions than 
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parameters. Expression (23.45) is useful, for it implies that the knots 
uj; j = q, q r 1, ... ' r - k - 2} are the only zeros of the function (23 .46) 
in the interval (xq, x,). 

In order to prove this statement, we suppose that g is another zero, and 
we let Uv; p=q,q+l, ... ,r-k-1} be the numbers g and Ui; j=q, 
q + 1, ... , r - k - 2}, arranged in ascending order. It follows from 
expression (23.45) and from the form of B-splines that the numbers 
{Bv ((v); p = q, q + 1, ... , r - k - 1} are all non-zero. Therefore Theorem 
19.4 states that there is exactly one set of parameters {µ,v; p = q, q + 1, 
... , r - k -1} that satisfies the equations 

r-k-1 

L µ,pBp((j)=O, j = q, q + 1, ... , r-k -1. (23.48) 
p=q 

This is a contradiction, because, in addition to the trivial solution {µ,v = 

O;p=q,q+l, ... ,r-k-1}, the points {(i;j=q,q+l, ... ,r-k-1} 
are all zeros of the function (23.46). Hence the zeros of T/ in (xq, x,) are 
just the points {gi; j = q, q + 1, ... , r-k-2}. 

Finally, we have to show that T/ changes sign at the zeros Ui; j = q, q + 1, 
... , r - k -2}. Because the work of the last paragraph rules out the 
possibility that T/ is identically zero on a subinterval of (xq, x, ), and because 
T/ has the form (23.46), the method of proof of Theorem 19.1 may be 
applied to T/ on [xq, x, ]. Hence the total number of zeros inside the 
interval does not exceed (r - q - k - 1 ), even if zeros at which T/ does not 
change sign are counted twice. It follows that the points {gi; j = q, 
q + 1, ... , r - k - 2} are all simple zeros. Hence, in (xq, x, ), the sign 
changes of the function (23.46) occur at the same points as the sign 
changes of s<k+tl. Therefore, because T/ is identically zero outside (xq, x,), 
and because equation (23.44) is satisfied, it is possible to choose T/ so that 
condition (23.42) is obtained for all values of() in [a, b] at which ri(e) is 
non-zero. The theorem is proved. D 

Although the variational problem of Theorem 23.2 always has a 
unique solution, there can be many functions s in the set stl. of Theorem 
23.4 that minimize lls<k+t)lloo. For example, if k = 0, and if the data have 
the values that are shown by the small circles in Figure 23 .1, then both the 
dashed and the solid lines of the figure minimize lls'lloo, where the two lines 
coincide between the third and fourth data points. The solid line shows 
the only perfect spline of degree one on the interval [x 1, Xm], that solves 
the variational problem and that has not more than (m - 2) kr.ots. 

More generally, if k;,. 0, if m;,. k + 2, and if condition (23.1) is satisfied, 
there is a perfect spline of degree (k + 1) on the full range [a, b ], that 
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interpolates the data {f(x;); i = 1, 2, ... , m}, and that has not more than 
(m - k -2) knots. Theorem 23.4 states that this perfect spline minimizes 
{lls<k+lllloo; s Ed}. References to proofs of the existence of the perfect 
spline are given in Appendix B. A condition for uniqueness is the subject 
of Exercise 23.10. 

A strong disadvantage of using a perfect spline of degree (k + 1) to 
approximate a function f in ~[a, b] is that, if it is necessary for the 
(k + l)th derivative of the spline to be large on a part of [a, b ], then, by the 
definition of a perfect spline, the derivative is large throughout the range. 
This disadvantage is shown in Figure 23.1. However, some of the 
theoretical properties of perfect splines are useful. In particular they give 
error bounds on the interpolation method that is considered in the next 
chapter. 

23 Exercises 
23.1 Prove that, if f is a function in ~<2l[O, 1] that has the values 

f(O) = 0, /(!) = 1 and f(l) = 1, then the inequality r [f"(x)]2 dx ;;.12 

holds. 
23.2 Letthe points{g;; i = 0, 1, ... , n}satisfycondition (19.1), and let 

f be a function in ~<k+O[a, b]. Prove that there is a spline, s* say, 
in the space Y(2k + 1, fo, gi, ... , gn) that satisfies the equations 
{s*(f";) = f(g;); i = 0, 1, ... , n}, {s*<i\a) = /il(a); j = 1, 2, ... , k}, 

Figure 23.1. Two solutions to a variational problem. 
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and {s*<il(b)=/il(b);j=l,2, ... ,k}. Prove also that s* mini­
mizes the integral 

b L [f<k+ll(x)-s<k+l\x)]2 dx, SE Y(2k + 1, ~o, ~i, ••• , ~n). 

23.3 Verify that the coefficients w0 , w1 and w3 that solve Exercise 22.3 
are such that [w0 /(0) + wif(l) + w3 f(3)] is the value at x = 2 of 
the natural cubic spline that interpolates /(0), f(l) and /(3). 

23.4 Let f be a function in c-e<3l[-2, 2] that has the values /(-2) = 
f(-1) = /(1) = /(2) = 0 and /(0) = 1. Show that the inequality 
llf"'lloo;;;,; 4.5 is sc:.tisfied. If it is known also that f'(-2) = /'(2) = 0, 
show that the lower bound on llf"'lloo may be increased to 
6.425 ... , whi<:h is the number (231+9v'33)/ 44. 

23.5 Let m = 4 and k = 1 in the statement of Theorem 23.4, and lets* 
be the function in .slJ. that minimizes {lls"lloo; s E .sl/.}. Prove that the 
inequality 

lls*"lloo ~ 4 max {j/[xi, X2, X3]j, lf[x2, X3, X4JI} 

holds, and that, if f can be any function in <e[a, b ], then the 
constant 4 on the right-hand side cannot be replaced by a smaller 
number. 
Calculate the function s in "65'[0, 2] that minimizes the integral 

2 1 {[s"(x)]2 /(l+x)}dx, 

subject to the conditions s(O) = 0, s(l) = 0 and s(2) = 16. You 
should find the piecewise polynomial 

{-3x +2x 3+x 4 • 0:%;x:%;1 
s(x) = 2 . 3 4 

6 - 19 x + 12x + 2x - x , 1 :%; x :%; 2. 

23.7 Let u be the spline in Y(k, ~0 , ~1 , ••• , ~n) that minimizes the 
integral 

b 

llg-sll~= f [g(x)-s(x)]2 dx, SE Y(k, ~o, ~i. .•. , ~n), 
"a 

where inequality (19.1) holds, and where g is any fixed function 
in <e[a, b ]. If f is a (k + 1)-fold integral of g, and ifs* is the spline 
in Y(2k + 1, ~u, ~i. ... , ~n) that is defined in Exercise 23.2, then 
u is equal to s*<k+O. Prove that, if it is not possible to reduce the 
error Ilg - ulb by altering the positions of the interior knots 
U;; i = 1, 2, ... , n -1}, then, not only does s* satisfy the equa-
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tions of Exercise 23.2, but also the derivative conditions 
{s*'(~;) = /'(~;); i = 1, 2, ... , n -1} are obtained. 

23.8 Let the points {x;; i = 0, 1, ... , n} of the quadrature formula 

(" f(x) dx =;to w;f(x;), f E f€(2l[x0, Xn], 

satisfy the conditions {x;=x0 +ih;i=l,2, ... ,n}, and let the 
weights { W;; i = 0, 1, ... , n} have the values that minimize the 
multiple of ll!"llz that bounds the error of the quadrature formula. 
Show that w0 =Wm and that the equations 

W; = h[l +{3(·h-2)i +{3(•J3-2r-iJ, i = 1, 2, ... , n-l, 

are obtained, where {3 is a number that does not depend on i. 
23.9 Prove the necessary and sufficient conditions that are stated in 

the sentence that follows inequality (23.40). 
23.10 Let the conditions of Theorem 23.4 be satisfied, and let d be the 

set of perfect splines of degree (k + 1) on the full range [a, b ], that 
interpolate the data {f(x;); i = 1, 2, ... , m}, and that have not 
more than (m - k - 2) knots. Let s be an element of d, let z be 
the derivative s(k+1l, and let the function (23.41) have the 
property that equation (23.42) is satisfied for all points 0 in [a, b] 
at which 71(0) is non-zero. Prove that, if T/ has only a finite 
number of zeros in [a, b ], then sis the only element of d. Express 
this condition as a relation between the knots of s and the 
positions of the data points {x;; i = 1, 2, ... ,m }. Investigate 
relations between the knots of sand the data points that allow d 
to contain more than one element. 
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Optimal interpolation 

24.1 The optimal interpolation problem 
If one is given many values {f (x;); i = 1, 2, ... , m} of a function f 

in cg<k+ll[a, b ], if it is known that 11/<k+l)lloo is not very large, and if an 
estimate of f(g) is required, where g is any point of [a, b ], then one may 
make an approximation of the form 

m 

f (g) = L w;f (x;), (24.1) 
i=l 

where the multipliers {w;; i = 1, 2, ... , m} are such that the approxima­
tion is exact when f is in [J'>k· In this case the Peano kernel theorem shows 
that there is a number c, that is independent of f, such that the bound 

f E cg<k+l)(a, b ], (24.2) 

is satisfied. When m > k + 1, there is some freedom in the values of the 
multipliers. If this freedom is used to minimize c, the approximation 
(24.1) is said to be 'optimal'. We reserve the notation {w;(g); i = 1, 2, 
... , m} for the optimal multipliers, we let s(g) be the optimal estimate 

m 

s(g) = L w;(g)f(x;), (24.3) 
i=l 

of f(g), and we let c(g) be the least value of c. We find later that the 
optimal multipliers are unique for each f 

Because the optimal interpolation procedure can be applied for all 
values of gin [a, b ], the function (24.3) can be regarded as an approxima­
tion to the function {f(x); a~ x ~ b }. It is shown in Section 24.3 that this 
approximation is a spline of degree k that has (m - k -1) knots whose 
positions are independent of f. It is highly satisfactory that s is a spline of 
the lowest degree that is allowed by an error bound of the form (24.2). We 
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recall, however, that natural splines that are obtained by minimizing the 
number c2 in the bound 

jf(g)- i~t w;f(x;)I o;;eillf'k+lllb (24.4) 

are less convenient, because they are of degree (2k + 1), and because their 
end conditions force errors to occur when f is in fll2k+t but not in fllk. 

Another remark that we recall from Section 23.2 is that the minimiza­
tion of c2 gives the same estimate off (g) as the solution to the variational 
problem of Theorem 23.2. If an analogous result were true when lfr<k+tllb 
is replaced by llf'k+lllloo, then, by Theorem 23.4, the function (24.3) would 
be a perfect spline of degree (k + 1) on a subinterval of [a, b ], but the 
degree of s is only k. Nevertheless, the properties of perfect splines are 
important to optimal interpolation. In particular, it will be shown that the 
function {c(g); ao;;g~b} is the modulus of a perfect spline of degree 
(k + 1). 

When g is a variable whose range is [a, b ], then the functions { w;; i = 1, 
2, ... , m} in expression (24.3) are the cardinal functions of the optimal 
interpolation procedure. We have called w;(g) a multiplier, however, 
instead of a cardinal function, because, from now until the beginning of 
Section 24.3, g is treated as a fixed point of [a, b]. The main properties of 
optimal interpolation are derived from the following theorem. 

Theorem 24.1 
Let the points {x;; i = 1, 2, ... , m} satisfy the conditions 

a ~Xt < X2 < ... < Xm ~ b, (24.5) 

let g be any point of [a, b ], and let { w;; i = 1, 2, ... , m} be multipliers, 
such that the estimate (24.1) is exact when f is in fllk. Let K be the kernel 
function 

1 [ k m k] K(8)= k! (g-8)+-;~i w;(x;-8)+, a~ 8 ~b. (24.6) 

Then the multipliers have the values that minimize the constant c in 
inequality (24.2), if and only if they minimize the norm 

b 

llKlli =I IK(8)1 dO. (24.7) 

Proof. Theorem 22.1 implies the equation 

f(g)-;~i w;f(x;)= r K(O)f'k+ll(O)d8, f E C'€(k+l)[a, b ]. 

(24.8) 
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Hence, for any particular choice of the multipliers, the least constant c in 
inequality (24.2) has the value (24. 7). It follows that the problems of 
choosing the multipliers to minimize c and to minimize llKll1 are 
equivalent. D 

In order to minimize \\K\Ji, we make use of an idea that is given in 
Chapter 22. It is to express the approximation (24.1) in the form 

k+I m-k-1 
f(g) = I uJ(x;) + I vpf[xp, Xp+i. . .. , Xp+k+1], (24.9) 

where f[xp, Xp+t. .. . , Xp+k+i] is a divided difference. This approximation 
is exact when f is in P/\, if and only if the coefficients {u;; i = 1, 2, ... , 
k + 1} satisfy the condition 

k+l 
f(O = I uJ(x;), f E [l/\. (24.10) 

i~l 

Because the right-hand side of this condition can only be the value at g of 
the polynomial in PJk that interpolates the data {f (x;); i = 1, 2, ... , k + 1 }, 
it follows that, as in equation (22.43), the identity 

k+l {k+l } 
f(g)-;~i uJ(x;)= D1 (g-x;) f[xi,x2, ... ,Xk+i.g] (24.11) 

holds for all functions f in ce[a, b ]. Therefore the error of the estimate 
(24.9) is the expression 

{ k+l } Di (g- x;) f[x1, Xz, . .. , Xk+1, g] 

m-k-1 
- I Vpf[xp, Xp+t. .. . , Xp+k+1J. (24.12) 

p~I 

Theorem 22.3 shows that, whenf is in cg<k+l>[a, b ], this expression may be 
written in the form 

1 Jb [{k+l } m-k-1 ] 
k! a D1 (g-x;) B(fJ)- p~l VpBp(fJ) r<k+l)(fJ)dfJ, (24.13) 

where the knots of the B -splines are the arguments of the corresponding 
divided differences. It follows from Theorem 24.1 that the approximation 
(24.9) is the optimal interpolation formula, if and only if the coefficients 
{vp; p = 1, 2, ... , m - k -1} minimize the norm 

Jb l{k+l } m-k-1 I 
a D1 (g-x;) B(fJ)- p~l Vp Bp(fJ) dfJ. (24.14) 

Thus the optimal interpolation problem is equivalent to calculating the 
best L 1 approximation to the function {B(fJ); a~ (J ~ b} by a linear 
combination of the B-splines {BP; p = 1, 2, ... , m - k -1}. 
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24.2 L1 approximation by B-splines 
The main result of this section is that the required parameters 

{vp;p=l,2,. .. ,m-k-1} in expression (24.14) are defined by the 
linear equations 

j = 1, 2, ... , m -k -1, 

(24.15) 

where the points {gi; j = 1, 2, ... , m -k -1} are independent off The 
result is a corollary of Theorem 14.4, but this theorem requires the set of 
approximating functions to be a Chebyshev set. Therefore it is necessary 
to show that the B-splines {BP; p = 1, 2, ... , m - k -1} are sufficiently 
close to a Chebyshev set for Theorem 14.4 to be useful. 

Theorem 24.2 
Let k and m be positive integers such that m > k + 1, let the 

points {x;; i = 1, 2, ... , m} satisfy c0ndition (24.5), and for 1 ~ p ~ 
m - k - 1 let BP be the B-spline 

a~ O~b. 

(24.16) 

For any e > 0, there exists a Chebyshev set of functions { </>p; p = 1, 2, 
... , m - k -1} such that the inequalities 

p = 1, 2, ... , m -k -1, (24.17) 

hold. 

Proof. Let q = m - k -1, and let I/! be the function 

-OO<a<OO, (24.18) 

where M is a parameter. For p = 1, 2, ... , q, we let 4>P have the form 

</>p(O) = L: l/!(a -0) Bp(a) da, a~ 0 ~ b, (24.19) 

where Bp(a) is zero if a is outside [a, b]. Because the ar.ea under the curve 
{l/!(a ); -oo <a< oo} is one, because I/! tends to a delta function as M tends 
to infinity, and because the functions {BP; p = 1, 2, ... , q} are continuous 
and bounded, we can choose M to be so large that the conditions (24.17) 
are satisfied for any fixed positive value of e. Therefore it is sufficient to 
prove that the set { 4>P; p = 1, 2, ... , q} is a Chebyshev set. We show that 



Optimal interpolation 302 

property (4) of Section 7.3 is obtained, which is that, if the numbers 
{ fJi; j = 1, 2, ... , q} satisfy the inequalities 

a ~ 81 < 82 < ... < 8q ~ b, (24.20) 

then the q x q matrix A, whose elements have the values Avi = <f>v(8i), is 
non-singular. 

Because Bv(a) is zero unless a is in the interval (a, b ), the matrix A has 
the form 

b L l/J(a1 - 81) B1(a1) da1 
b L !/l(a2 - fh) B 1 (a2) da2 ... 

b b L l/J(a1 - 81) B2(a1) da1 L !/l(a2 - 82) B2(a2) da2 ... 

(24.21) 

We consider the value of its determinant. If all of the columns of A are 
fixed except for the jth column, then the determinant is a linear functional 
of the jth column. It follows that the integral over ai can be taken outside 
the determinant, and this can be done for each j. Hence we obtain the 
identity 

det A = f b • •• f b { .TI l/l(ai - 8J} det H da 1 ... daq, (24.22) 
a a J=l 

where His the q x q matrix whose elements are Hvi = Bv(ai). Because the 
numbers{!/l(ai-8i);j = 1, 2, ... , q} are all positive, and because detH is 
a continuous function of the variables {ai; j = 1, 2, ... , q}, it is sufficient 
to prove that det H is not identically zero and does not change sign in the 
range of integration of expression (24.22). 

The matrix H is similar to the one that occurs in the linear system of 
equations (19.37) of the Schoenberg-Whitney theorem. It follows from 
the proof of Theorem 19.4 that det H(a1, a 2, ... , aq) is non-zero if and 
only if the numbers {Bv(av); p = 1, 2, ... , q} are all positive. If 
det H(ai, a 2, ... , aq) is positive, but det H({3 1 , {32, ... , {3q) is negative, 
then, by continuity, there exists a number r in [O, 1] such that 
det H('y1,.y2, .. , yq) is zero, where hv = rav + (1-r)f3v; p = 1, 2, 
... , q}. However, because Bv(ap) and Bv(f3v) are both positive, and 
because Bv is a B-spline, the number Bv( 'Yv) must also be positive for 
p = 1, 2, ... , q, which gives a contradiction. Hence det H does not 
change sign in the range of the integral (24.22). The theorem is 
proved. D 

In order to apply Theorem 14.4 to the minimization of expression 
(24.14), we let ~ be a point of [a, b] that is not in the set {x;; i = 
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1, 2, ... , m}, we let M be a large number, we define the functions 
{<l>v; p = 1, 2, ... , m - k -1} by equation (24.19), and we let <I> be the 
function 

b 

<f>(O) = L l/l(a -(}) B(a) da, a.:;;(}.:;; b. (24.23) 

By inserting g into the sequence {xi; i = 1, 2, ... , m}, it follows from 
Theorem 24.2 that the linear space that is spanned by the functions <I> 

and { <f>v; p = 1, 2, ... , m - k -1} satisfies the Haar condition. We 
deduce from Theorem 14.4 that there exist points U;(M); j = 1, 2, ... , 
m - k -1}, that are independent of g, such that a necessary and sufficient 
condition for the coefficients {vv; p = 1, 2, ... , m - k -1} to minimize the 
norm 

(24.24) 

is that the interpolation conditions 

mJ~1 
Vv <f>v(g;[M]) = { ~6: (g-xJ} <f>(g;[M]), 

j = 1, 2, ... , m - k -1, (24.25) 

are satisfied. Because { <f>v; p = 1, 2, ... , m - k -1} and <I> tend to {Bv; p = 
1, 2, ... , m - k -1} and B respectively as M tends to infinity, it seems to 
be appropriate to let the interpolation points U;; j = 1, 2, ... , m -k -1} 
of equation (24.15) be a limit of the set U;(M); j = l, 2, ... , m - k -1} as 
M becomes large, where the inequalities 

(24.26) 

hold. The remainder of this section shows that it is suitable to define the 
points U;; j = 1, 2, ... , m - k -1} in this way. First it is proved that the 
matrix of the system of equations (24.15) is non-singular. 

Theorem 24.3 
Let the conditions of Theorem 24.2 hold, let {M,; t = 1, 2, 3, ... } 

be a monotonically increasing divergent sequence of positive real 
numbers, and let {g;; j = 1, 2, ... , m - k -1} be a limit of the sequence of 
sets [{g;(M,); j = 1, 2, ... , m -k -1}; t = 1, 2, 3, ... ], where the numbers 
{g;(M,);j = 1, 2, ... , m -k-l}havejustbeendefined. Then the numbers 
{~;; j = 1, 2, ... , m -k -1} are all different, and they satisfy the condi­
tions 

j=l,2, ... ,m-k-1. (24,27) 
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Proof. Let M be any positive number, for 1 ~ p ~ m - k -1 let cf>v be the 
function (24.19), and let ZM be the sign function 

(- l)i, gi(M) < 8 < gi+1(M}, 1 ~j ~ m -k -2 ll, a~ 8 < g1(M) 

ZM((}) = m-k-1 
(-1) , gm~k-1(M) < 8 ~ b 

0, otherwise. (24.28) 

Theorems 14.1, 14.4 and 24.2 imply that the equations r ZM((})c/>p((}) d(} = 0, p = 1, 2, ... , m - k - l, (24.29) 

hold. By taking the limit as M tends to infinity, it follows that the 
conditions 

b L z(8)Bv(8) d(} = 0, p = 1, 2, ... , m -k -1, (24.30) 

are obtained, where z is the function 

\

1, a~8<g1 

(-l}i, gi<8<gi+i. l~j~m-k-2 
z((J) = m-k-1 

(-1} , gm-k-1<8~b 

0, otherwise. 

(24.31) 

We let u be a perfect spline of degree (k + 1) that satisfies the equation 

o-<k+IJ(8) = z(8), a~ 8 ~ b, (24.32) 

except perhaps when 8 is in the set {gi; j = 1, 2, ... , m - k -1}. 
The notation z is chosen for the (k + l)th derivative of the perfect 

spline, in order to make use of the second half of the proof of Theorem 
23.4. This proof shows that, if there are data points Xq and x, such that 
r-q;;.; k + 1, and such that u has at most (r-q -k -1) knots in the range 
(xq, x,), then there is a function of the form 

r-k-1 
71(8) = L Ap Bp(8), a~ 8 ~ b, (24.33) 

p=q 

that is not identically zero, and that has the property that equation (23 .42) 
holds when 71(8) is non-zero. Hence the inequality 

b b L z(8)71(8) d8 = L l11(8)j d8 

>0 (24.34) 
is obtained. This inequality, however, contradicts equations (24.30) and 
(24.33). Hence there is a relation between the knots of u and the 
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positions of the data points {x;; i = 1, 2, ... , m}, which we find is sufficient 
to complete the proof. 

Specifically, because of the possibility that q = 1 and r = m, the spline u 
must have more than (m - k - 2) knots, which proves that the points 
U°;; j = 1, 2, ... , m -k -1} are all different. Moreover, if there is an 
integer j in the range [1, m - k - l] such that gi ~ x;, then letting q = j and 
r = m also gives a contradiction. Similarly, by letting q = 1 and r = 
j + k + 1, there is a contradiction if g; ~ X;+k+l· Hence inequality (24.27) is 
satisfied. The proof is complete. D 

We let the points U°;; j = 1, 2, ... , m - k - l} satisfy the conditions of 
Theorem 24.3. It follows from Theorem 19.4 that the system of equations 
(24.15) defines the parameters {vP; p = 1, 2, ... , m - k -1} uniquely. We 
have to show that these parameters are the ones that minimize llKlli. 
where K is the kernel function 

1 [{ k+l } m-k-1 ] 
K(fJ)= k! }]1 (g-x;) B(fJ)- P~ 1 Vp Bp(fJ) , a~(}~ b. 

(24.35) 

Theorem 14.1 states that it is sufficient to prove that, for any values of the 
parameters {AP; p = 1, 2, ... , m - k -1}, the function 

m-k-1 

71(8)= I a~ fJ ~ b, 

satisfies the inequality 

If t(fJ)71(fJ) d(JI ~ f)71(8)1 dfJ, 

where t is the sign function 

{ 
1, 

t(fJ) = 0, 
-1, 

and where ~ is the set 

K(fJ)>O 

K(fJ) = 0 

K(fJ) <0, 

£l={fJ: K(fJ)=O, a.~fJ~b}. 

a~ fJ ~ b, 

(24.36) 

(24.37) 

(24.38) 

(24.39) 

Inequality (24.37) is not a direct consequence of equation (24.30), 
because of the possibility that K is identically zero on some subintervals 
of [a, b ]. We have to apply Theorem 19.1 again. Therefore we let x0 and 
Xm+i be fixed points such that the conditions 

x0 <min[xi,g] } 

Xm+l > max [Xm, g] 
(24.40) 
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hold, and if necessary we extend the range of(} in the definition (24.35) so 
that it includes the points x 0 and Xm+t· 

The kernel function (24.35) is a spline of degree k whose knots are 
{x;; i = 1, 2, ... , m}and ~,and, due to equation (24.15), it has zeros at{~i; 
j = 1, 2, ... , m - k -1}. If p and q are integers such that K is identically 
zero on [Xp-t. Xp] and [xq, Xq+i], but if K has a finite number of zeros in 
(xp, Xq), then condition (24.27) implies that the number of zeros in (xp, Xq) 
is not less than (q - p - k ). It follows from Theorem 19 .1 that K has at 
least (q - p) knots in (xp, xq). Because only (q - p - l) of the points 
{x;; i = 1, 2, ... , m} are in this interval, ~is also in (xp, Xq). Therefore, 
either K is identically zero, which happens when ~ is in the point set 
{x;; i = 1, 2, ... , m}, or there exist numbers a and f3 in [a, b] such that K 
is non-zero only in (a, /3), and in this interval the number of zeros of K is 
finite. In the first case inequality (24.37) is satisfied because {t(O) = O; 
a .;;; (}.;;; b }, but the second case requires further consideration. 

The only zeros of K in the interval (a, /3) are in the set Ui; j = 1, 
2, ... , m - k -1}, and all these zeros are simple, because otherwise, by 
extending the argument of the previous paragraph that depends on 
Theorem 19 .1, we find that K has insufficient knots. It follows from the 
definitions (24.31) and (24.38) that either {t(8) = z(O); a<(}< /3} or 
{t(O)=-z(O); a<8</3}. Therefore, because t is zero on (a,a) and 
(/3, b ), and because equations (24.30) and (24.36) imply the value 

b L z(8)TJ(8)d0=0. (24.41) 

the identity 
b ~ IL t(8)TJ(0) dO' = IL z(O)TJ(O) dO' 

=If' z(O)TJ(O) dO + ( z(O)TJ(O) dO' (24.42) 

is satisfied. We note that the set (24.39) contains the intervals (a, a) and 
(/3, b ), and that \lz\\oo is one. Hence inequality (24.37) is a consequence of 
equation (24.42). Therefore equation (24.15) does define the parameters 
of the optimal interpolation formula. 

We require later that the definition (24.38), and the properties of K, t 
and z that are given in the previous two paragraphs, imply the equation 

b 

l\K\11 = L K(O)t(O) d(J 

b 

= IL K(O)z(O) dO,. (24.43) 
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24.3 Properties of optimal interpolation 
Instead of calculating the parameters {vp; p = 1, 2, ... , m - k -1} 

of the optimal interpolation formula from equation (24.15), and then 
obtaining the coefficients { w;(g); i = 1, 2, ... , m} from the equivalence of 
the approximations (24.1) and (24.9), it is better to determine {w;(g); 
i = 1, 2, ... , m} directly from the properties that define the optimal 
values of {u;; i = 1, 2, ... , k +1} and {vp; p = 1, 2, ... , m-k-1}. These 
properties are that equation (24.1 O) must hold, and that the kernel 
function (24.35) is zero when {8 = gi; j = 1, 2, ... , m -k-1}, where the 
points Ui; j = 1, 2, ... , m - k -1} are independent of g. Because equa­
tion (24.10) states that the approximation (24.1) is exact when f is in PJ>k. it 
is equivalent to the conditions 

m 

I w;(g)xr = g', r=O, 1, ... , k, (24.44) 
i=l 

and, because expressions (24.6) and (24.35) must be the same, the 
relations that determine {vP; p = 1, 2, ... , m - k -1} are the equations 

j = 1, 2, .. ., m - k -1. 

(24.45) 
The formulae (24.44) and (24.45) give a square system of linear 

equations in the unknowns {w;(g); i = 1, 2, ... , m}, which is non­
singular, because equivalent equations define {u;; i = 1, 2, ... , k + l} and 
{vp; p = 1, 2, ... , m - k -1} uniquely. The matrix elements of the system 
are the numbers {xr; r=0,1,. . .,k} and {(x;-gi)~; j=l,2,. . ., 
m - k -1}, where 1:;;::; i:;;::; m. They are mentioned explicitly, because it is 
important to notice that they are independent of g. Therefore, if the 
system is multiplied by the inverse matrix, which is also independent of g, 
it follows that each of the coefficient functions {w;(g); a:;;;;g:;;;;b; 

i = 1, 2, ... , m} is in the linear space that is spanned by {(; a :;;::; g:;;::; b; 
r = 0, 1, .. ., k} and {(g-gi)~; a :;;;;g:;;;;b; j= 1, 2, ... , m -k-1}. Thus, 
letting g0 =a and gm-k = b, the functions { w;; i = 1, 2, ... , m} are all in 
the space that we call Y(k, g0 , gi, ... , gm-k). It follows that the optimal 
interpolating function (24.3) is also a spline of degree k. Because there is 
no error in the optimal interpolation formula when g is one of the data 
points {x;; i = 1, 2, ... , m}, the optimal interpolating function satisfies 
the conditions 

s(x;) = f(x;), i = 1, 2, ... , m. (24.46) 

The number of equations is equal to the dimension of 
Y(k, go, 6, ... , gm-d· Therefore, instead of calculating {w;(g); i = 1, 
2, ... , m} in order to determine s, one can calculate s directly from the 
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system (24.46), provided that the knots {g;; j = 1, 2, ... , m -k -1} are 
known. Because the indirect procedure defines s uniquely, the equations 
(24.46) are non-singular. Alternatively, one can turn to Theorem 19.4 to 
check whether the equations have a solution. We find that the conditions 
on {g;; j = 1, 2, ... , m -k -1}, that are required by Theorem 19.4, are 
equivalent to the ones that occur in Theorem 24.3. 

In order to determine the knots of s, we consider the conditions that 
they have to satisfy. Theorem 24.1 states that it is necessary and sufficient 
for the points U;; j = 1, 2, ... , m - k - 1} to have the property that, if the 
parameters {vP; p = 1, 2, ... , m - k -1} are defined by equation (24.15), 
then the norm (24.14) is minimized. It follows from the discussion that 
follows the proof of Theorem 24.3 that it is sufficient if the points 
{g;; j = 1, 2, ... , m -k-1} satisfy the bounds (24.27), and if equation 
(24.30) holds, where z is the sign function (24.31). Moreover, Theorem 
24.3 shows that such points exist. However, instead of calculating 
{g;; j = 1, 2, ... , m -k -1} directly from the non-linear equations that 
are implied by expressions (24.30) and (24.31), it is usually easier to seek 
a perfect spline u of degree (k + 1) whose knots are {g;; j = 1, 2, ... , 
m - k -1}. The relation (24.32) between u and z has to be satisfied, 
but this relation allows any polynomial from (f/'k to be added to u. 
Therefore we impose the conditions {u(x;) = O; i = 1, 2, ... , k + l}. 
Hence, because equation (24.30) implies that the divided differences 
{u[xp, Xp+i. . .. , Xp+k+i]; p = 1, 2, ... , m - k -1} are all zero, it follows 
that all the data points {x;; i = 1, 2, ... , m} are zeros of u. Thus the 
required knots {g;; j = 1, 2, ... , m -k -1} of the optimal interpolating 
function (24.3) are the knots of a perfect spline u of degree (k + 1) that 
satisfies the equations 

u(x;) = 0, i = 1, 2, ..• , m } 
llu(k+l)lloo = 1 . 

(24.47) 

It'is particularly useful that the converse of the last remark is true. In 
other words, if u is a perfect spline of degree (k + 1) that has (m -k-1) 
knots, and that satisfies condition (24.47), then its knots {g;; j = 1, 
2, ... , m - k -1} are suitable knots for the spline s of the optimal 
interpolation procedure. In order to prove this statement it is sufficient to 
show that expressions (24.27) and (24.30) are valid, where· z and BP are 
the functions (24.31) and (24.16). The first line of equation (24.4 7) and 
Theorem 22.3 imply the identities 

b t u<k+ll(8) Bp(8) d8 = 0, p = 1, 2, ... , m - k -1. (24.48) 
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Therefore, because the function (24.31) is a multiple of cr<k+l>, equation 
(24.30) is satisfied. It follows from the last two paragraphs of the proof of 
Theorem 24.3 that inequality (24.27) is also valid. 

The next theorem summarises these properties of optimal inter­
polation, and it gives one new result. 

Theorem 24.4 
Let k and m be positive integers such that m;;;;. k + 1, let the 

points {x;; i = 1, 2, ... , m} satisfy condition (24.5), and let er be a perfect 
spline of degree (k + 1) on [a, b] that has (m -k -1) knots Ui; j = 1, 
2, ... , m -k-1}, and that satisfies equation (24.47). If f is any 
function in ce<k+l)[a, b ], then the interpolation conditions (24.46) define a 
unique approximation s in Y(k, g0 , g1, 6, ... , gm-k-h gm-d, whose 
error is bounded by the inequality 

lf(g)- s (g)I ~ lcr(g)l 11/k+l)llro, a ~ g ~ b, (24.49) 

where g0 =a and gm-k =b. Further, if the parameters {w;; i = 1, 2, 
... , m} and c have any values such that condition (24.2) is valid for 
ant in ce(k+l)[a, b J, then c is not less than lcrCg)I. 

Proof. The only result that has not been proved already is that, if g is any 
fixed point of [a, b ], then llKlli is equal to lcr(g)I, where the kernel function 
K is defined by the equation 

f(g)- i~l W;(g) f(x;) = r K(fJ) /k+l)(fJ) dfJ, f E Cfb'(k+l)[a, b ], 

(24.50) 
and where the notation (24.3J is used for the optimal interpolating 
function in order to show its dependence on[. We express llKll1 in terms of 
er. The sign function z, defined by equation (24.31), changes sign at the 
knots of er, and the absolute values of z and cr(k+ll are equal to one almost 
everywhere. Therefore equation (24.43) gives the value 

11Kll1=lf K(fJ)cr(k+l)(fJ)dej. (24.51) 

The proof is completed by obtaining an identity from equation (24.50) in 
the particular case when f =er. The equation is valid in this case, even 
though cr(k+ll is not continuous, because otherwise one can deduce a 
contradiction by letting f be a function that satisfies the conditions 
{f(x;) = cr(x;); i = 1, 2, ... , m}, f(g) = cr(g) and the inequality 

I r K (fJ)[f(k+l)(fJ)- (T(k+l)(fJ)] dfJI < e, (24.52) 
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where e is a sufficiently small positive constant. Because the terms {<T(xi); 
i = 1, 2, ... , m} are all zero, substituting/= O" in expression (24.50) gives 
the value 

<T(g) = r K(fJ) <T<k+1J(fJ) dfJ. (24.53) 

It follows from equation (24.51) that the numbers llKll1 and l<T(g)I are 
equal. The theorem is proved. D 

Some examples on the use of the optimal interpolation procedure are 
given in the exercises. They show that the error bounds of optimal 
interpolation are not much smaller than those that are obtained by 
simpler algorithms. Therefore the value of the optimal interpolation 
method may be questioned. One good reason for studying optimal 
procedures is that they can indicate directly whether it is possible to make 
substantial improvements to more convenient algorithms. Moreover, the 
work of this chapter gives excellent theoretical support to the strong 
practical reasons for employing spline approximations in computer 
calculations. 

24 Exercises 
24.1 Let {B 1 (fJ); 0 ~ (J ~ 3} be the linear B-spline of the form (24.16) 

that has knots at the points {x 1 = 0, x 2 = 1, x 3 = 3}. Calculate the 
value of 6 that satisfies the equation 

Let {<T(g); 0 ~ g ~ 3} be a perfect spline of degree two that has 
only one knot, and that has zeros at the points {x;; i = 1, 2, 3}. 
Verify that the knot of O" is at g1• 

24.2 Calculate from Theorem 24.4 and from Exercise 24.1 the 
numbers wi, w2 , w3 and c, such that the value of c is as small as 
possible in the inequality 

l/(2)- W1 /(0)- W2 /(1)- W3 /(3)1 ~ cllf"lloo, I E ~(2)[0, 3]. 

Compare the term on the right-hand side with the error expres­
sion of Theorem 4.2 for the approximation /(2) = ![f(l) + /(3)]. 

24.3 Find the form of the optimal linear spline approximation to the 
function values {/( -1), /( -1 + e ), f(l - e ), /(1)}, where e is a 
constant from the open interval (O, ~). Show that the oo-norm of 
the optimal interpolation operator has the value [ -! + e ~ 1]. 
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24.4 Extend Theorem 24.4 to the case when the data points satisfy the 
condition 
a .;;;x1 .;:;x2.;:; .. ,.;;;xm .;;;b 

instead of inequality (24.5), assuming that no number is repeated 
more than (k + 1) times in the set {x;; i = 1, 2, ... , m}. If 
repeats occur, then the conditions (24.46) on s are replaced 
by the equations {sUl(x;) = f(i) (x;); j = 0, 1, ... , r(i)-1; 
i = 1, 2, ... , m}, where r(i) is the number of occurrences of the 
number x; in the set of data points. 

24.5 The values /(0), f'(O), f"(O) and /(1) of a function fin cg<3l[o, 1] 
are given. For any gin [O, l], let s(g) be the estimate of f(g) that 
minimizes the value of c(g) in the error bound 

l/(g)-s(g)I < c(g) llf"'lloo· 
Calculate the functions {s(g); 0.;:;: g.;:;: l} and {c(g); 0.;:;: g.;:;: l}. 

24.6 Let f be a function that is defined on the range ( - oo, oo) and that 
has a bounded and continuous fourth derivative, and let the 
function values {f(x;) = f(ih); i = 0, ± 1, ± 2, ... } be given, where 
h is a positive constant. Let {s (g); - oo < g < oo} be the best 
estimate of {f(g); - oo < g < oo} that can be obtained from the 
data, in the sense that the multiple of ll/4llloo that bounds the error 
l/(g)- s(g)I is minimized. Prove that s is the cubic spline that has 
knots at the points {x; = ih; i = 0, ± 1, ± 2, ... } and that inter­
polates f at its knots. Obtain the analogous property of the 
quadratic spline interpolation procedure whose cardinal 
functions have the form that is shown in Figure 18.4. 

24.7 Let the conditions of Exercise 24.6 be satisfied except that only 
the function values {f(x;) = f(ih); i = 1, 2, ... , m} are given, 
where m ;;:.4. Hence the optimal interpolating function {s(g); 
x 1 .;:;: g.;:;: Xm} is a cubic spline that has (m - 4) knots. Let s be the 
cubic spline in the space Y'(3, xi. x2, •.• , Xm) that interpolates 
the data, and whose third derivative is continuous at x2 and at 
Xm-1· Let 9"0 be the two-dimensional subspace of Y' that contains 
splines that are zero at the knots {x;; i = 1, 2, ... , m}. Let s"' and 
s13 be the elements of 9"0 whose third derivative discontinuities at 
x 2 and Xm-I are one and zero and zero and one respectively. By 
comparing s and s with the cubic spline that is considered in 
Exercise 24.6, prove that there exists a number µ, independent 
of f, h and m, such that the bound 

l/(g)- s(g)I.;:; {lcr(g)I + µh[lsa (g)I + ls13 (g)J]}ll/4 )lloo, X1.;:;: g.;:;: Xm, 

is satisfied, where er is defined in Theorem 24.4. 
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24.8 The argument that follows Theorem 24.3 proves that the equa­
tions (24.15) define the parameters { vp; p = 1, 2, ... , m - k - l} 

that minimize the norm (24.14 ). Another way of obtaining this 
result depends on the fact that the system (24.15) is the limit as M 

tends to infinity of the system (24.25). Make this alternative 
argument rigorous. 

24.9 Show that, except for an overall change of sign, there is only one 
perfect spline u that satisfies the conditions of Theorem 24.4. It 
is suitable to combine the method of proof of Theorem 14.4 with 
the orthogonality conditions (24.48). 

24.10 Let f be a function in ~(k+l>[a, b ], let the function values {f(x;); 
i = 1, 2, ... , m} be given, where m ~ k + 1, and let L be a linear 
functional. The approximation to Lf by a linear combination of 
the function values is required, such that the error of the approx­
imation is bounded by the smallest possible multiple of lllk+lllloo. 
Investigate conditions on L that imply that Ls is the required 
approximation to Lf, where s is the spline function that is defined 
in Theorem 24.4. 
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The Haar condition 

Let slJ be an (n + 1)-dimensional linear space in ~[a, b]. In Section 7.3 slJ is 
defined to satisfy the Haar condition if the following property is obtained. 

Condition (1). If <P is any element of slJ that is not identically zero, then the 
number of roots of the equation {,P(x)=O; a ,,;::x ,,;::b} is less than (n + 1). 

The purpose of this appendix is to prove that the following three conditions are 
implied by Condition (1), and also that Condition (3) and Condition (4) are each 
equivalent to Conditio'n (1). 

Condition (2). If k is any integer in [1, n], and if {(i; j = 1, 2, ... , k} is any set of 
distinct points from the open interval (a, b ), then there exists an element of slJ that 
changes sign at these points, and that has no other zeros. Moreover, there is a 
function in slJ that has no zeros in [a, b]. 

Condition (3). If <P is any element of slJ that is not identically zero, if the number 
of roots of the equation { <P (x) = O; a ,,;:: x ,,;:: b} is equal to j, and if k of these roots 
are interior points of [a, b] at which <P does not change sign, then (j + k) is less 
than (n + 1). 

Condition (4). If {,P,; i = 0, 1, ... , n} is any basis of slf, and if u·i; j = 0, 1, ... , n} 
is any set of (n + 1) distinct points in [a, b ], then the (n + 1) x (n + 1) matrix whose 
elements have the values {<PMJ; i = 0, 1, ... , n; j = 0, 1, ... , n} is non-singular. 

It is clear that Condition (3) implies Condition (1). First it is proved that 
Conditions (1) and (4) are equivalent. Secondly it is shown that Conditions (1) and 
(4) together imply Condition (3). Finally we deduce Condition (2) from Condition 
(3). The final stage depends on limits of sequences of functions. 

The equivalence of Conditions (1) and (4). Suppose that Condition (1) holds but 
Condition (4) fails. Then there exist (n + 1) distinct points {~i; j = 0, 1, ... , n} in 
[a, b ], such that the matrix {<PMi); i = 0, 1, ... , n; j = 0, 1, ... , n} is singular. 
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where {c/J,; i = 0, 1, ... , n} is a basis of si. Therefore there exist multipliers 
{A,; i = 0, 1, ... , n }, that are not all zero, and that satisfy the equations 

n 

L A,c/J;{g;)=O, j=O, 1, ... , n. (A.1) 
i=O 

It follows that the function 

</J(x) = L A, </J,(x), a ,,;;x,,;;b, (A.2) 
i=O 

has zeros at the points {g;; j = 0, 1, ... , n }, but this conclusion contradicts Condi­
tion (1). 

Conversely, if Condition (1) fails, then there is a function of the form (A.2) that 
is not identically zero, and that has zeros at the points {g;;j=O, 1, ... , n}, say. 
Hence equation (A.1) is satisfied, which implies that the matrix {c/J;(g;); i = 0, 
1, ... , n; j = 0, 1, ... , n} is singular. Therefore there is also a contradiction if 
Condition (1) fails but Condition (4) holds, which completes the proof that 
Conditions (1) and (4) are equivalent. 

Conditions (1) and (4) imply Condition (3). It is sufficient to show a contradic­
tion if Conditions (1) and (4) hold, but Condition (3) is not satisfied. When 
Condition (3) is not obtained, there is a function <P in si that is not identically zero, 
that has double zeros at the points { 71;; i = 1, 2, ... , k} and that has simple zeros at 
the points {71,; i = k + 1, k +2, ... , j}, where (j + k) ";3!: (n + 1), and where a zero is 
said to be simple if it is a point at which <P changes sign, or if it is one of the ends of 
the range [a, b]. Because Condition (1) is contradicted if j ";3!: (n + 1), we only 
consider the case when j,,;; n. Therefore there is at least one double zero. We let e 
be a positive number such that, for each integer i in the range 1,,;; i,,;; k, the 
function <P is zero at only one point of the interval [ 71, - e, 71, + e ], namely the point 
71,, and we let c, be any non-zero number whose sign is the same as the sign of the 
function <P on the interval [ 71; - e, 71; + e]. Further, we let {g,; t = 0, 1, ... , n} be 
any set of distinct points of [a, b] that includes the points {g, = 711+1; t = 0, 
1, ... ,j-1}. 

Condition (4) implies that there is a unique element of si, I/! say, that is defined 
by the equations 

l/!(g,) = { C1+1' ~ = 0, 1, ... , k - l 
0, t - k, k + 1, ... , n. 

(A.3) 

We consider the function {<P*(x)=<P(x)-81/!(x);a,,;;x,,;;b}, where 8 is a small 
positive number that satisfies the inequalities 

Bll/!( 71• -e)i < lc/J(71, -e )I} 
Bil/!(71,+e)l<lc/J(71;+e)i ' 

i = 1, 2, ... , k. (A.4) 

By construction <P* changes sign in each of the intervals {(71, -e, 71,); i = 1, 
2, ... ,k} and {(71.,71,+e); i=l,2, ... ,k}, and also it has zeros at the points 
{ 71,; i = k + 1, k + 2, ... , j}. Hence it has at least (j + k) zeros, which contradicts 
Condition (1). The proof that Condition (3) is a consequence of Conditions (1) 
and (4) is complete. 
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Proof that Condition (2) is satisfied. Let{(;; j = 1, 2, ... , n} be any set of distinct 
points in [a, b]. Because the dimension of s1 is (n + 1), there exists a function l/J in 
s1 that is not identically zero and that satisfies the equations 

l/l((;) = 0, j = 1, 2, ... , n. (A.5) 

It follows from Condition (3) that l/J has no other zeros in [a, b ], and that it changes 
sign at those zeros that are interior points of [a, b ]. Therefore Condition (2) holds 
when k =n. 

When k = n -1, we let{(;; j = 1, 2, ... , k} be interior points of [a, b ], and we 
let l/J. and I/lb be non-zero functions in s1 that have zeros at the points {(;; j = 

1, 2, ... , k} and at one other point, namely a and b respectively. Condition (3) 
implies that the overall sign of I/lb may be chosen to satisfy the inequality 
{l/l.(x)l/Jb(x ).:;;. O; a,,,; x,,,; b }. Hence the function l/J = !(1/1. +I/lb) shows that Condi­
tion (2) is valid when k = n -1. 

The method of proof for smaller values of k depends on the following 
statement. If k and t are non-negative integers such that k + 2t = n, and if 
{(;; j = 1, 2, ... , k} and {11;; j = 1, 2, ... , t} are distinct points of [a, b ], where all 
the points {11;;j= 1, 2, ... , t} are in the open interval (a, b), then there exists a 
function l/J in s1 that has simple zeros at {(;; j = 1, 2, ... , k} and that has double 
zeros at { 77;; j = 1, 2, ... , t}. In order to prove it we let e be a positive constant 
such that, for each integer i in [l, t], 11• is the only one of the points{(;; j= 1, 
2, ... , k}, {1);; j = 1, 2, ... , t}, a and b that are in the interval [ 77, - e, 77, + e]. 
Further, for any e in (0, e), we let !/I, be a function in s1 that has zeros at the points 
{(;;j = 1, 2, ... , k}, {77;; j = 1, 2, ... , t} and {11; +e ;j = 1, 2, ... , t}. This function 
is scaled so that the coefficients of the expression 

l/l,(x) = L A,(e)cf>Jx), a ,,,;x ,,,;b, (A.6) 
i=O 

satisfy the condition 
n 

L [A,(e)]2=1, (A.7) 
i=O 

where {</>,; i = 0, 1, ... , n} is a basis of s1. Because Condition (3) implies that all 
the zeros of !/I, are simple, the products {1/1, (11; -8)1/1,( 11; + 8); j = 1, 2, ... , t} are 
all positive, where 8 is any number in (e, E). 

We let {e.; q = 1, 2, 3, ... } be a sequence of numbers from the interval (0, E) 
that tends to zero. Condition (A.7) implies that the sequence of parameters 
[{A;(e.); i = 0, 1, ... , n}; q = 1, 2, 3, ... ] has a limit point {At; i = 0, 1, ... , n}. It 
will be shown that it is suitable to let l/J be the function 

n 

l/l(x)= L At</>,(x), a ,,,;x,,,;b. (A.8) 
i=O 

Equation (A. 7) implies that l/J is not the zero function. Moreover, the definition 
of each !/I, implies that l/J has zeros at the points{(;; j = 1, 2, ... , k} and {11;; j = 

1, 2, ... , t}. It remains, therefore, to rule out the possibility that one or more of 
the points { 77;; j = 1, 2, ... , } are simple zeros. If 77; is a simple zero, there exists 8 
in (O, E) such that the product [!/1(11; - 8)1/1(11; + 8)] is negative. However, we have 
noted already that the product [ l/l, ( 11; - 8 )l/l, ( 11; + 8)] is positive if e is less than 8, 
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so it is non-negative in the limit as e tends to zero. This contradiction completes 
the proof that the function (A.8) has the required zeros. 

In order to show that Condition (2) holds when n - k = 2t is a positive even 
integer, we choose interior points {71;; j = 1, 2, ... , t} of [a, b] that are different 
from the points {(;; j = 1, 2, ... , k} and we let tfJ be a function in d that has the 
zeros that have just been considered. It is important to notice that, because of 
Condition (3), tfJ has no other zeros. Further we let ( 77 t ; j = l, 2, ... , t} be a set of 
points in (a, b) that has no points in common with the sets {(;; j = 1, 2, ... , k} and 
{ 77;; j = 1, 2, ... , t} and we let t/J + be a function in d that has simple zeros at {(;; 
j = 1, 2, ... , k} and double zeros at {71t;j=1, 2, ... , t}. This function also has no 
other zeros: Because both tfJ and tfJ + change sign only at the points {(;; j = 1, 
2, ... , k}, either the function (t/1-t/I+) or the function (t/l+t/I+) proves that 
Condition (3) is obtained when (n - k) is an even integer. 

Alternatively, if n - k = 2t + 1 is an odd integer, we follow the method of the 
last paragraph, except that we add the point a to the set{(;; j = 1, 2, ... , k} before 
defining t/J, and we add b to the set {(;; j = 1, 2, ... , k} before defining tfJ +. The 
remainder of the proof is as before. Because these techniques can be used even 
when k = 0, it follows that the last statement of Condition (2) is valid. The proofs 
of the relations between Conditions (1), (2), (3) and (4) are now complete. 
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Related work and references 

Many excellent books are published on approximation theory and methods. The 
general texts that are particularly valuable to the present work are the ones by 
Achieser [2], Cheney [35], Davis [50], Handscomb (ed.) [74], Hayes (ed.) [77], 
Hildebrand [78], Holland & Sahney [81], Lorentz [100], Rice [132] and [134], 
Rivlin [138] and Watson [161]. Detailed references and suggestions for further 
reading are given in this appendix. 

Most of the theory in Chapter 1 is taken from Cheney [35] and from Rice [132]. 
If one prefers an introduction to approximation theory that shows the relations to 
functional analysis, then the paper by Buck [32] is recommended. We give further 
attention only in special cases to the interesting problem, mentioned at the end of 
Section 1.1, of investigating how well any member of 9lJ can be approximated 
from Jfi; a more general study of this problem is in Lorentz [100] and in Vitushkin 
[160]. The development of the Polya algorithm, which is the subject of Exercise 
1.10, into a useful computational procedure is considered by Fletcher, Grant & 
Hebden [57]. 

In Chapter 2, as in Chapter 1, much of the basic theory is taken from Cheney 
[35]. For a further study of convexity the book by Rockafellar [142] is recom­
mended. Several excellent examples of the non-uniqueness of best approximation 
with respect to the 1- and the oo-norms are given by Watson [161]. An interesting 
case of Exercise 2.1, namely when 9lJ is the space .o/l" and the unit ball {f: 11111.:; 1; 
f E @}is a polyhedron, is considered by Anderson & Osborne [5]. 

The point of view in Chapter 3 that approximation algorithms can be regarded 
as operators is treated well by Cheney [35], and more advanced work on this 
subject can be found in Cheney & Price [37]. Several references to applications of 
Theorem 3.1 are given later, including properties of polynomial approximation 
operators that are defined by interpolation conditions. A comparison of the 
advantages of preferring rational to polynomial approximations is made by 
Hastings [76]. There is now a vast literature on spline functions, including 
interesting books by Ahlberg, Nilson & Walsh [ 4], de Boor [26], Prenter [127] 
and Schultz [151]. For a short introduction to splines the papers by Birkhoff & de 
Boor [15] and by Greville [70] are recommended. An excellent summary of more 
advanced properties of spline functions is given by Schoenberg [149]. 
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The theory of Lagrange interpolation, considered in Chapter 4, is in most 
text-books on numerical analysis; see Hildebrand [78], for instance. These books 
include also many properties of Chebyshev polynomials. A careful analysis of 
Rung-;:'s example (4.19) is given by Steffensen [155]. The norms of polynomial 
interpolation operators are used by Powell [121] to draw attention to some of the 
advantages of the Chebyshev interpolation points. Further properties of the 
Lebesgue function n:: llk(x)I; a~ x ~ b }, when the Chebyshevinterpolation points 
are used, are derived by Brutman [31]. The solution to the problem of Exercise 
4.10 was conjectured by Bernstein in 1931, but the conjecture was not proved 
until 1977, by de Boor & Pinkus [28] and by Kilgore [89] independently. 

Because the divided difference theory and methods of Chapter 5 were used 
extensively for the construction of tables, some of the best accounts of this work 
are in the older numerical analysis text-books, such as Steffensen [155]. The use 
of divided differences to detect errors in equally spaced data is explained by Miller 
[115], and an extension to allow unequal spacing between data points is made by 
Blanch [16]. More recent applications of divided differences are included in our 
study of spline approximations. A comparison of methods of representing 
polynomials in terms of coefficients is given by Gautschi [64]; the criterion of the 
comparison has several other applications. An algorithm for the Hermite inter­
polation method of Section 5.5 is described by Krogh [93]. A particularly elegant 
solution to Exercise 5.9, on the divided difference of a product, is in the book by 
de Boor [26]. Further information on the rational interpolation problem of 
Exercise 5.10 can be found in Mayers [110], Meinguet [111] and Wuytack [165]. 

The method of proof of the Weierstrass theorem, given in Chapter 6, is taken 
from Cheney [35]. The advantages of the Bernstein approximation method in 
interactive computing are explained by Gordon & Riesenfeld [68]. The con­
vergence of the derivatives of the Bernstein approximations to the derivatives of 
the function that is being approximated is proved by Davis [SO], and the variation 
diminishing properties of Bernstein approximations are studied by Schoenberg 
[143]. Many further properties of Bernstein polynomials are given by Lorentz 
[99]. 

The theory of Chapter 7 on minimax approximations is similar to the treatment 
in Rice [132]. An alternative approach, which is preferred by Cheney [35], by 
Rivlin & Shapiro [141] and by Watson [161], makes use of the properties of 
convex hulls. This approach is based on a necessary and sufficient condition for 
best minimax approximation, given by Kirchberger [90], that depends only on the 
extreme values of the error function. Therefore our remark, that one only need 
consider extreme values of the error function to decide whether an approximation 
is optimal, has been known for many years. For further information on Chebyshev 
systems the book by Karlin & Studden [85] is recommended. A paper by Stiefel 
[156] directed attention to the usefulness of the bounds of Theorem 7.7. An 
extension of the result of Exercise 7 .2 to the case when .sli is not a linear space is 
given by Curtis & Powell [ 47]. A good discussion of non-uniqueness of best 
approximations when the linear space .sli does not satisfy the Haar condition, 
which is the subject of Exercise 7.9, is in Watson [161]. 

It is mentioned in Chapter 8 that there are several versions of the exchange 
algorithm. The version that we give most attention to, that exchanges only one 
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point of the reference on each iteration, and that brings into the reference a point 
where the current error function takes its maximum value, is due to Stiefel [156]. 
Another one-point method, which is proposed by Curtis & Frank [ 49] for 
minimax approximation on a discrete point set, is to alter the points of the 
reference in rotation. The version that can alter all of the reference on each 
iteration is studied by Murnaghan & Wrench [116). Methods for updating matrix 
factorizations, in order to reduce the work of solving the system (8.4) on every 
iteration, are reviewed by Gill, Golub, Murray & Saunders [65]. For further 
reading on telescoping, the book by Lanczos [95] is recommended. Moreover, the 
gain in accuracy that can be obtained by calculating directly the best polynomial 
approximation of degree m to a polynomial of degree n, where m .;:; n - 2, instead 
of using the telescoping technique (n - m) times, is considered by Clenshaw [38], 
Lam & Elliott [94] and Talbot [158]. In order to apply the work of Section 8.5, 
one may replace a continuous interval [a, b] by a set of discrete points; the effect 
of this replacement on the best minimax approximation is studied by Chalmers 
[33], Dunham [51] and Rivlin & Cheney [140]. The relations between the discrete 
exchange algorithm and linear programming are explained by Rabinowitz [129], 
and a Fortran subroutine that is suitable for discrete minimax approximation is 
given by Barrodale & Phillips [9]. 

The proof of the convergence of the exchange algorithm, given in the first two 
sections of Chapter 9, is similar to the theory of Dunham [52]. The analysis of the 
rate of convergence of the one-point exchange algorithm is new, but the quadratic 
rate of convergence of the version of the exchange algorithm that can alter all the 
reference points on each iteration was established by Veidinger [159]. The zero 
off-diagonal elements of the final second derivative matrix of the levelled 
reference error, which are stated in Exercise 9.8, were found by Curtis & Powell 
[ 48]. The presence of these zero second derivatives is implied by the convergence 
rate of the one-point exchange algorithm. 

The book by Achieser [2] is recommended for the basic theory of rational 
approximation that is omitted from Chapter 10. Many descriptions of the 
exchange algorithm for the calculation of minimax rational approximations have 
been published, for instance see Curtis [ 44] and Maehly [105], because both of 
these papers give attention to the practical difficulties of the algorithm. An Algol 
listing of the algorithm is given by Werner, Stoer & Bommas [162]. A good 
solution to the problem of replacing the eigenvalue calculation (10.16) by a 
suitably accurate finite calculation is proposed by Curtis & Osborne [ 46]. 
Methods for determining whether a system of linear constraints is consistent, 
which are required by the elementary linear programming methods of Section 
10.4, are reviewed by Wolfe [164]. The differential correction algorithm is due to 
Cheney & Loeb [36], and the advantages of expression (10.38) over expression 
(10.36) are shown by Barrodale, Powell & Roberts [10). A numerical comparison 
of several algorithms for minimax rational approximation is made by Lee & 
Roberts [98], but more recently a procedure has been proposed by Kaufman, 
Leeming & Taylor [86], that combines the advantages of the exchange and the 
differential correction methods. Some of the difficulties that arise, if one prefers 
best rational approximations with respect to the 1-norm or 2-norm, are explained 
by Barrodale [8] and by Fraser [60]. 
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The basic material of Chapter 11 is in many books on approximation theory and 
on numerical analysis, for example see Cheney [35], Davis [50], Lawson & 
Hanson [97] and Rice [132]. There are also many publications on the numerical 
solution of discrete linear least squares problems without forming the normal 
equations, in particular the paper by Golub [67] is recommended. The application 
of the three-term recurrence relation of Theorem 11.3 to data fitting by poly­
nomials was proposed by Forsythe [58]. 

Most of the results of Chapter 12 are in Hildebrand [78], which is an excellent 
book for further reading on Gaussian quadrature and special families of ortho­
gonal polynomials. More properties of orthogonal polynomials are given by 
Szego [157]. The practical difficulties of adaptive quadrature are discussed by de 
Boor [20], and he gives a suitable algorithm for this calculation. The material of 
Section 12.4 is one of the main topics of books on Chebyshev polynomials, for 
instance see Fox & Parker [59], Rivlin [139] and Snyder [153]. The behaviour of 
the coefficients of the expansion of Rnf in terms of Chebyshev polynomials when f 
is analytic is studied by Elliott [53], and the relations between Rnf and the best 
minimax approximation from {J}" to f are considered by Clenshaw [38]. The 
expression for llLnlloo in Exercise 12.6 is derived by Powell [121], and the 
Erdos-Turan theorem, which is the subject of Exercise 12.7, is proved in Cheney 
[35]. The calculation of polynomials that are orthogonal with respect to some 
'non-classical' weight functions is studied by Price [128], who suggests a tech­
nique that is similar to the one that is mentioned in Exercise 12.8. 

The work of Chapter 13 is in most text-books on approximation, for instance 
see Cheney [35] and Rice [132]. For further reading on the theory of the Fourier 
series operator the book by Lanczos [96] is recommended. Interest in the FFT 
method has been strong during the last fifteen years, due to the wide range of 
applications that were stimulated by the fundamental paper of Cooley & Tukey 
[39]. There is a book on Fast Fourier Transforms by Brigham [30], an error 
analysis of the main procedure is given by Ramos [130], recent developments for 
the case when the number of data is not a power of two are in Winograd [163], and 
extensions for vector computers are considered by Korn & Lambiotte [91]. 

Except for Rice [132] and Watson [161], approximation books give little 
attention to the theory of best L 1 approximations. These two books, however, 
cover the theory of Chapter 14. Further, the characteristic property that best L 1 

approximations depend on the sign of the error function is shown well by 
Barrodale [7]. The calculation of best L 1 approximations by interpolation to fat 
points that are independent off, which is suggested at the end of Section 14.3, is 
not restricted to the case when stl satisfies the Haar condition, because Hobby & 
Rice [79] show the existence of interpolation points that may be suitable when stl 
is any finite-dimensional linear space. 

The proof of Jackson's first theorem, given in the first two sections of Chapter 
15, is taken from Cheney [35], and the theory of discrete L 1 approximation is in 
Rice [132], for instance. The application of linear programming methods to the 
solution of discrete L 1 calculations was proposed by Barrodale & Young [13], and 
it is now an active field of research. The geometric view of linear programming, 
taken in Section 15.4, can be found in Abdelmalek [1] and in Bloomfield & 
Steiger [17]. The linear programming test for optimality, which is composed of a 
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finite number of linear inequalities, is expressed in terms of the original L 1 

approximation problem by Powell & Roberts [126]. The by-passing of vertices, 
recommended in Section 15.4, is included in the algorithm of Barrodale & 
Roberts [11], which has since been extended to allow general linear constraints on 
the parameters of the approximating function [12]. This algorithm defines each 
trial approximation by interpolation conditions, but Bartels, Conn & Sinclair [14] 
prefer a technique that reduces the L 1 error on each iteration without the 
restriction of moving from vertex to vertex of the feasible region. A solution to 
Exercise 15. 7, on the number of zeros of a best L 1 approximation in the 
continuous case, is in Ascher [6]. 

The material of Chapter 16 can all be found in Cheney [35]. The optimality of 
the constant TT/2(n + 1) in inequality (16.2) is due to Achieser & Krein [3] and to 
Favard [54]. It is shown by Korneicuk [92] that the constant hn the bound (16.11) 
can be reduced to one. Substantial improvements to expression (16.50) are made 
by Fisher [55]; he considers the construction of the least number c(k, n) such that 
d~ (g) is bounded above c (k, n) llg<k>lloo, and he finds that the optimal value 
depends on properties of perfect splines, which are considered in Chapter 23. The 
optimal value of c(k, n) when k = n + 1, which is the subject of Exercise 16.5, is 
given by Phillips [119] and by Riess & Johnson [137]. 

The elementary theory of the first section of Chapter 17 can be found in most 
text-books on analysis, but the proof of the uniform boundedness theorem in 
Section 17.2 is new. Theorems 17.3 and 17.4 are taken from Cheney [35], who 
states that the minimum norm property of the Fourier series operator is due to 
Lozinski [101]. The problem of finding the linear projection operator from 
~[a, b] to f/'" of least norm, which is suggested in Section 17.4, is considered 
briefly by Chalmers & Metcalf [34]. Because Theorems 17 .2 and 17.4 imply that 
no prescribed interpolation method for calculating a sequence of polynomial 
approximations can give uniform convergence for all continuous functions, it is 
interesting that the Erdos-Turan theorem, stated in Exercise 12.7, shows that 
some interpolation methods give convergence in the 2-norm; similar convergence 
properties for other norms are studied by Nevai [118]. 

Due to the construction and the use of tables of function values, the methods of 
Section 18.1 are a small sample from the techniques that are proposed in the older 
numerical analysis books for piecewise polynomial interpolation. Most of the 
material on spline functions in Chapter 18 can be found in de Boor [26]. The 
papers by Curtis [45] and Lucas [102] are also recommended for consideration of 
the two end-conditions of cubic spline interpolation. There are many publications 
on interpolation by splines of degree greater than three: for instance, in the case of 
equally spaced data, Richards [136] studies the norm of the interpolation 
operator, and Powell [123] draws attention to the deterioration of the localization 
properties. The unboundedness of the interpolation operator for unevenly spaced 
data points, mentioned in Exercise 18.2, is shown by Marsden [108] to apply also 
to cubic spline interpolation, but Kammerer & Reddien [83] prove that the 
accuracy of cubic spline interpolation is excellent, even for irregularly spaced 
data, when the approximand has a continuous fourth derivative. The bicubic 
splines of Exercise 18.10 are highly useful for surface approximation; many of 
their properties are studied by de Boor [18] and [26]. 
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The theory of the first three sections of Chapter 19, on the properties of 
B-splines and on the important idea of using them as a basis of a space of spline 
functions, is in Curry & Schoenberg [43]. A stronger form of Theorem 19.1, on 
the number of zeros of spline functions, is given by Schumaker [152]. The 
recurrence relation of Section 19.4 for the stable evaluation of B-splines was 
proposed by de Boor [21] and Cox [ 40]; in later papers Cox [ 42] suggests another 
stable technique for the calculation of a linear combination of B-splines, and de 
Boor [25] gives Fortran programs that calculate B-splines and their derivatives. 
Theorem 19.4, on conditions for the solution of the general spline interpolation 
problem, is due to Schoenberg & Whitney [150]. An algorithm for general spline 
interpolation is described by Cox [ 41 ], and de Boor [23] studies the norm of the 
general spline interpolation operator. The geometric interpretation of B-splines, 
given in Exercise 19.1, was found by Curry & Schoenberg [43]. Rice [133] proves 
the theorem of Exercise 19.6 on the characterization of a best minimax approxi­
mation. The expression for the indefinite integral of a B-spline that is stated in 
Exercise 19.8 is due to Gaffney [61]. Exercise 19.10 shows some of the features of 
least squares spline approximations. There are several publications on this useful 
subject; for instance, the localization properties are studied by Powell [124] in the 
case when the knot spacing is constant, Reid [131] describes a way of organizing 
the calculation to take full advantage of the band matrices that come from the use 
of B-splines, and de Boor [26] gives some computer programs. 

So much has been published on the accuracy of spline approximations, that 
Chapter 20 gives only a small sample of the convergence theorems and the 
techniques of analysis. Many of our theorems have been proved in other ways. For 
example de Boor [19] uses divided differences to establish Theorem 20.1, and 
Marsden [107] strengthens Theorem 20.2 by applying Schoenberg's [147] 'varia­
tion diminishing method'. This technique sets each variable xP in the definition 
(20.11) to the average of the non-trivial knots of NP, in order that s is equal to f for 
any fin P1'1, see Marsden [106]. Thus the accuracy and some variational properties 
of s are similar to those of a Bernstein polynomial approximation to f, but s has 
the advantage that each s (x) depends only on the form off in a neighbourhood of 
x. Therefore Gordon & Riesenfeld [69] recommend the use of spline approxima­
tions in computer aided design. The method that is used in Section 20.2, to 
establish the order of convergence of best spline approximations when f is 
differentiable, is taken from de Boor [19]. For further reading on the construction 
and applications of local spline approximations, which are studied in Section 20.3, 
the papers by de Boor & Fix [27] and Lyche & Schumaker [103] are recom­
mended. Substantial improvements to the error bounds of Section 20.4 are given 
in Chapter 22, and in Kammerer & Reddien [83] and Lucas [102]. 

The advantages of suiting the knot positions of spline approximations to 
singularities of the approximand, which are considered in Section 21.1, are shown 
well by Rice [135]. Moreover, Rice [134] explains clearly the behaviour of the 
functions in the space Y(k, ~0, ~i. ••• , ~.) when the knots tend to coincide. 
Theorem 21.2, on the norm of a quadratic spline interpolation operator, is due to 
Marsden [109]. The adaptive method for the calculation of a cubic spline 
approximation, given in Section 21.3, is described by Curtis [ 45]. An algo'rithm 
that uses a similar disposition of knots is proposed by Powell [125] for least 
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squares approximation to discrete data. An alternative to inserting knots near a 
singularity is to adjust the positions of a fixed number of knots; Jupp [82] 
considers the application of general optimization procedures to this calculation, 
and de Boor & Rice [29] present a tailored algorithm, where in both cases the 
least squares norm of the error function is minimized. Some theoretical properties 
of optimal knot positions in minimax and least squares approximation are given 
by Handscomb [75] and Powell [122] respectively. 

Conditions for the validity of the Peano kernel theorem, which is studied in 
Chapter 22, are in Davis [50] for instance. Applications of this important theorem 
are plentiful in the numerical analysis literature; in particular the analysis of the 
accuracy of Bernstein polynomial approximation that is given by Stancu [154], 
and Kershaw's [88] results on estimating derivatives of a function by differentiat­
ing a spline approximation to the function, are both highly relevant to our studies. 
Theorem 22.3, stating that a B-spline is the Peano kernel of a divided difference, 
is in Curry & Schoenberg [43]. The calculation of Section 22.4 is not new, the 
constant 3~4 of expression (22.64) being derived by both Hall [71] and Schultz 
[151]. An interesting generalization of a property that is shown in Figure 22.1 
is proved by Hall & Meyer [73]; it is that the Peano kernel function of cubic 
spline interpolation changes sign at the data points even when the spacing of 
the data is irregular, provided that the knots of the spline remain at the data 
points. 

Many publications are relevant to the work of Chapter 23. The solution of the 
variational problem of Section 23.1 is due to Holladay [80), and it was generalized 
by Schoenberg [144] to give the properties of natural splines that are stated in 
Theorems 23.1 and 23.2. Theorem 23.3 is also due to Schoenberg [145], but a 
different approach to functional approximation by Golomb & Weinberger [66] 
had already established a similar result. This theorem is applied in many papers to 
calculate the weights of quadrature formulae; see Schoenberg [148] for a review 
of this fi~ld. The accuracy of natural spline interpolation is analysed by Schoen­
berg [146], but not making full use of the degree of the spline at the ends of the 
range is a disadvantage. However, both Hall [72] and Kershaw [87] show that, for 
cubic spline interpolation to equi-spaced data, the disadvantage is negligible at 
any interior point of the range in the limit as the interval between data points 
tends to zero. The norm of the natural spline interpolation operator for general 
data points is studied by Neuman [117]. The fact that perfect splines solve the 
variational problem of Theorem 23.4 was proved by de Boor [22] and [24] and 
Karlin [84) independently, allowing for the Hermite interpolation case where 
suitable derivatives off are given if data points coincide. For further reading on 
perfect splines, including results on uniqueness, the papers by Fisher & Jerome 
[56], Karlin [84], McClure [104] and Pinkus [120) are recommended. 

The optimal interpolation problem, that is studied in Chapter 24, was solved 
independently and differently by Gaffney & Powell [63] and by Micchelli, Rivlin 
& Winograd [114], but several properties of the solution were known already, see 
Meinguet [112] for instance. Most of the theory of Section 24.2 is in Karlin & 
Studden [85], including the relation between B-splines and Chebyshev sets that is 
stated in Theorem 24.2. An algorithm that calculRtes the optimal interpolating 
function in the way that is suggested by Theorem 24.4 is given by Gaffney [62]. 
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The uniqueness of the perfect spline a-, stated in Exercise 24.9, is proved by Karlin 
(84] and by Micchelli (113]. 
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of a spline basis 227-8 
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97-9, 116-17 
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by a piecewise polynomial 29, 212-15 
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interpolation 
by a rational function 44-5, 59-60 
by a spline, see spline interpolation 
by a trigonometric polynomial 161 
cardinal functions 33-5, 214-19, 222-3 
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196-7 
Jacobi polynomials 142 

kernel functions 
Fejer kernel 162-3 
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interpolation 263-5 
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definition 29-30 
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fitting to a singularity 254-7, 266-7 
in best least squares approximation 296 
in optimal interpolation 308-9 
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183-6 
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168 
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175 
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L2 approximation, see least squares 

approximation 
L 00 approximation, see minimax 

approximation 
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condition for best approximation 168-9 
definition of norm 6-7 
uniqueness of best approximation 16 

Lagrange interpolation 
description 33-5 
discussion of stability 52-3 

Laguerre polynomials 143 
least maximum approximation, see 

minimax approximation 
least squares approximation 

basis functions 126-31, 240 
by algebraic polynomials 131-3 
by spline functions 240, 296 
by the Chebyshev operator Rn 143-7 
by trigonometric polynomials 152-61 
characterization theorem 125-6 
definition of norm 6-7, 123-5 
Erdos-Turan theorem 148 
in the discrete case 124-5, 133, 157-8 
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41-3, 218-19 
Legendre polynomials 142, 149 
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bounds on its value 81-2 
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diagonal second derivative matrix 110 
explicit expression and its multipliers 
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in analysis of exchange algorithm 

101-2 
in rational approximation 112-17 
methods of calculation 85-6, 113-15 
monotonic increase 87, 97-9, 116-17 

linear programming 
duality 94, 291 
for L 1 approximation 183-6 
for minimax approximation 94, 118-20 
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geometric view 184-6 
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spline 291 
local spline approximation 
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248-51 

by interpolation 225, 246-8 
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Chebyshev polynomials 78 
natural splines 287-90 
perfect splines 290-5 
the norm of Sn 206-8 

minimax approximation 
by algebraic polynomials 26-8, 76-9 
by rational functions 111-21 
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by trigonometric polynomials 162, 196 
characterization theorems 75-7, 79, 

112-13, 120-1, 239-40 
definition of norm 7, 72 
in the discrete case 19, 79, 92-4, 112-

13, 118-20 
methods of calculation 12, 85-8, 92-4, 

112-15, 118-20 
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on a reference 79, 85-6, 112-13 
uniqueness of best approximation 79-
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when Haar condition holds 77, 79-82, 

90 

monotone operator 62-5, 162-3 
multivariate approximation 71, 226 

natural spline 
definition 285 
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interpolation conditions 219, 285-6 
minimal properties 287-90 

Newton's method for polynomial 
interpolation 

description 48-51 
discussion of stability 52-3 
extension to Hermite interpolation 

53-7 
non-uniqueness of 

best approximations 11 
best L 1 approximations 18-19, 187 
best minimax approximations 19, 83 

normal equations in least squares 
calculations 127-9 

normed linear space 5-6, 9-11, 13-15, 
17-19 

norm of operator 
definition 23 
for polynomial interpolation 23-4, 

41-3 
for spline interpolation 218-19, 225, 

257-9 
in the error bound that depends on the 

least maximum error 24 
in the uniform boundedness theorem 

203-4 
values and bounds for llRnll and llSnll 

145-7, 155, 192-3 
norm of space 

definition 5 
geometric view 9-11 
relation between norms 7-9, 11 
strictly convex norm 14-19 
the L1 -norm 6-7, 18-19, 164 
the LP-norm 6-7, 16 
the least squares norm 6-7, 17-18, 

123-5 
the minimax norm 7, 18-19, 72 

numerical integration, see quadrature 

one-point exchange algorithm, see 
exchange algorithm 

operator 
best approximation operators 16-17 
equivalence of operators 201-2 
linear operators 22-3 
monotone operators 62-5, 162-:3 
norm, see norm of operator 
projection operators 22-5, 206-10 
the Bernstein operator 65-9 
the Chebyshev least squares operator 

Rn 143-7, 155, 208-9 
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the discrete Fourier series operator 

156-8 
the Fejer operator 162-3 
the Fourier series operators. 152-6, 

192-3, 206-8 
optimal interpolation 

definition 298 
derivation of interpolation formula 

299-309 
error bounds 309-10 
knot positions 308-9 
method of calculation 307-8 

order of convergence 
of polynomial approximation 26-8, 

195-8 
of spline approximation 30, 241-6 
of trigonometric approximation, see 

Jackson's theorems 
orthogonality 

definition 125 
in least squares approximations 125-31 
of algebraic polynomials 131-3, 141-3 
of Chebyshev polynomials 144 
of trigonometric polynomials 153, 158 

orthogonal polynomials 
characterization theorem 141 
Chebyshev, see Chebyshev polynomials 
elementary theory 136-8 
Hermite polynomials 143 
in Gaussian quadrature 138-40 
in least squares approximation 131-3 
Jacobi polynomials 142 
Laguerre polynomials 143 
Legendre polynomials 142, 149 
properties of zeros 137-8, 147 
recurrence relation 131-3 
Rodrigue's formula 142 

Peano kernel theorem 
description and proof 270-4 
discussion and applications 268-70, 

273-81 
for cubic spline interpolation 277-81 
for divided differences 274-5 
for polynomial interpolation 276 
minimization of the Li -norm of the 

kernel 299-306 
minimization of the least squares norm 

of the kernel 288-90 
perfect splines 

definition 291-2 
error bound and knots for optimal 

interpolation 308-10 
minimal property 292-4 
uniqueness 294-5, 297, 312 

piecewise polynomials, see also spline 
approximation 

337 

discussion of applications 28-9 
interpolation procedures 29, 212-15 

Polya algorithm 12 
polynomial approximation 

basis functions 33, 51-3, 131-3 
Bernstein operator 65-9 
best in the Li norm 166-7, 172-4 
best in the least squares norm 125-6, 

131-3 
best in the minimax norm 26-8, 76-9 
by interpolation, see polynomial 

interpolation 
characterization theorems 77, 125-6, 

166-7 
methods of calculation 34, 48-51, 55-

6, 65, 85-8,92-3, 131-3, 174 
order of convergence 26-8, 195-8 
orthogonality of polynomials 131-3, 

141-4 
telescoping 92, 148 
trigonometric, see trigonometric 

polynomials 
uniform convergence 61-7, 196-7 

polynomial interpolation 
by a straight line 23-4, 29, 213-14 
cardinal functions 33-5 
choice of interpolation points 37-41 
effect of data errors 34 
error expressions 35-6, 276 
Hermite interpolation 53-7 
Lagrange formula 33-5, 52-3 
Newton's method 48-57 
norm of operator 41-3, 208-10 
to obtain convergence in the least 

squares norm 148 
uniqueness of solution 33-4, 54-5 

product divided difference formula 59, 
236 

projection operator 22-5, 206-10 

quadratic spline interpolation 221-5, 
257-61, 282 

quadrature 
Gaussian 138-40, 147 
of B-splines 240, 275 
of trigonometric functions 156-7 

R. operator (Chebyshev least squares) 
143-7, 155, 208-9 

rational approximation 
by interpolation 44-5, 59-60 
comparison with polynomial 

approximation 28, 111-12 
differential correction algorithm 119-22 
exchange algorithm 112-18 
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minimax approximation on a reference 

112-13 
minimax theory 12, 111-13, 117, 

120-1 
recurrence relation for 

B-splines 234-6 
Chebyshev polynomials 39 
divided differences 49-51 
Legendre polynomials 149 
orthogonal polynomials 131-3 
spline interpolation 216, 222-3, 258 

reference, see exchange algorithm and 
levelled reference error 

Remes' algorithm, see exchange 
algorithm 

Rodrigue's formula 142 
Rolle's theorem 35-6, 47 
Runge's example 37-41 
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3, 206-8 

scalar product 17, 123-5, 168 
Schoenberg-Whitney theorem 223, 

236-8,294,302,305 
sign alternation in minimax 

approximation 77, 79, 87-8, 98, 112 
spline approximation 

B-splines, see B-splines 
basis functions 29-30, 227-8, 231-4 
best in the least squares norm 240, 296 
best in the minimax norm 239-40 
bicubic splines 226 
definition of a spline function 29-30 
derivative discontinuities 220, 224, 

261-5 
extended space of spline functions 

255-7 
interpolation, see spline interpolation 
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local methods 225, 243, 246-51 
methods of calculation 215-16, 220, 

222-4, 238-9, 257, 261-6, 307-8 
natural splines, see natural splines 
near a singularity 254-7 
order of convergence 30, 241-6 
perfect splines, see perfect splines 
uniform convergence 241-3 
zeros of spline functions 230-1 

spline interpolation 
by a cubic spline 215-21, 224, 261-6, 

277-81 
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by a quadratic spline 221-5, 257-61, 

282 
cardinal functions 216-19, 222-3 
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end conditions 216, 219-21, 223-5, 
285 

error bounds 277-82, 309-10 
error estimates for cubic splines 261-5 
general data points 236-9, 259-61 
localization properties 218, 220-4, 

246-7 
norm of operator 218-19, 225, 257-9 
on an infinite range 216-19, 221-3, 

277-80 
optimal, see optimal interpolation 
recurrence relations 216, 222-3, 258 
Schoenberg-Whitney theorem 236-8 
to surfaces 226 
uniqueness of solution 216, 237-8, 

285-6 
strict convexity 13-19 
surface approximation 71, 226 

Tchebycheff, see Chebyshev 
telescoping 92, 148 
third derivative discontinuities of cubic 

splines 220, 224, 261-5 
three term recurrence relation for 

orthogonal polynomials 131-3 
trigonometric polynomials, see also 

Fourier series 
approximation to discrete data 156-61 
best in the L 1-norm 176 
best in the least squares norm 152-3, 

157-8 
best in the minimax norm 162, 196 
interpolation 161 
methods of calculation 156-61 
order of convergence, see Jackson's 

theorems 
orthogonality conditions 153, 158 
quadrature 156-7 
relation to algebraic polynomials 151-

2, 195-8 
uniform convergence 151-2, 162-3, 

190-1 
zeros of trigonometric polynomials 150, 

161 

unicity, see uniqueness 
uniform approximation, see minimax 

approximation 
uniform boundedness theorem 203-4 
uniform convergence of 
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linear operators 202-4 
monotone operators 62-5, 162-3 
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290-5 
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